Advertisement

The Complete Nucleotide Sequence of the DNA of Human Adenovirus Type 12

Chapter
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 199/2)

Abstract

In earlier work from this laboratory, we used human adenovirus type 12 (Ad12) extensively for basic research on the mechanism and the consequences of foreign DNA integration into mammalian genomes (Doerfler 1968, 1970; for recent reviews Doerfler 1991, 1992, 1993, 1995; Fechteler etal. 1995). The investigations on Ad12 DNA integration led to a long-standing interest in the biological significance of DNA methylation, its role in the long-term silencing of eukaryotic promoters, and the mechanism of de novo methylation of foreign DNA in mammalian cells (Sutter et al. 1978; Sutter and Doerfler 1980; Doerfler 1981, 1983, 1991, 1993, 1995). In the course of these studies it became necessary to perform nucleotide sequence determinations in various parts of the Ad12 genome. Recently, the entire nucleotide sequence was completed (Sprengel et al. 1994) and made generally available under EMBO Accession Number X73487. Complete nucleotide sequences were thus available for the DNAs of adenovirus type 2 (Ad2) (Roberts et al. 1986), Ad5 (Chroboczek et al. 1992), Ad12 (Sprengel et al. 1994), and Ad40 (Davison et al. 1993; Mautner et al. 1995).

Keywords

Adenovirus Type Human Adenovirus Type Ad12 Genome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akusjärvi G, Zabielski J, Perricaudet M, Pettersson U (1981) The sequence of the 3′ non-coding region of the hexon mRNA discloses a novel adenovirus gene. Nucleic Acids Res 9: 1–17PubMedCrossRefGoogle Scholar
  2. Barton GJ (1993) ALSCRIPT, a tool to format multiple sequence alignments. Protein Eng 6: 37–40PubMedCrossRefGoogle Scholar
  3. Bucher P, Trifonov EN (1986) Compilation and analysis of eukaryotic POL II promoter sequences. Nucleic Acids Res 14: 10009–10026PubMedCrossRefGoogle Scholar
  4. Burger H, Doerfler W (1974) Intracellular forms of adenovirus DNA. III. Integration of the DNA of adenovirus type 2 into host DNA in productively infected cells. J Virol 13: 975–992PubMedGoogle Scholar
  5. Cai F, Bourbonnière M, Tang D, Hu S-L, Weber JM (1990a) Nucleotide and deduced amino acid sequence of the bovine adenovirus type 3 proteinase. Nucleic Acids Res 18: 5568CrossRefGoogle Scholar
  6. Cai F, Tang D, Hu S-L, Weber JM (1990b) Nucleotide and deduced amino acid sequence of the bovine adenovirus type 7 proteinase. Nucleic Acids Res 18: 5567CrossRefGoogle Scholar
  7. Chroboczek J, Jacrot B (1987) The sequence of adenovirus fiber: similarities and differences between serotypes 2 and 5. Virology 161: 549–554PubMedCrossRefGoogle Scholar
  8. Chroboczek J, Bieber F, Jacrot B (1992) The sequence of the genome of adenovirus type 5 and its comparison with the genome of adenovirus type 2. Virology 186: 280–285PubMedCrossRefGoogle Scholar
  9. Davison AJ, Telford EAR, Watson MS, McBride K, Mautner V (1993) The DNA sequence of adenovirus type 40. J Mol Biol 234: 1308–1316PubMedCrossRefGoogle Scholar
  10. Deuring R, Doerfler W (1983) Proof of recombination between viral and cellular genomes in human KB cells productively infected by adenovirus type 12: structure of the junction sites in a symmetric recombinant ( SYREC ). Gene 26: 283–289PubMedCrossRefGoogle Scholar
  11. Deuring R, Klotz G, Doerfler W (1981) An unusual symmetric recombinant between adenovirus type 12 DNA and human cell DNA. Proc Natl Acad Sci USA 78: 3142–3146PubMedCrossRefGoogle Scholar
  12. Devereux J, Haeberli P, Smithies O (1984) A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res 12: 387–395PubMedCrossRefGoogle Scholar
  13. Doerfler W (1968) The fate of the DNA of adenovirus type 12 in baby hamster kidney cells. Proc Natl Acad Aci USA 60: 636–643CrossRefGoogle Scholar
  14. Doerfler W (1970) Integration of the deoxyribonucleic acid of adenovirus type 12 into the deoxyribonucleic acid of baby hamster kidney cells. J Virol 6: 652–666PubMedGoogle Scholar
  15. Doerfler W (1981) DNA methylation a regulatory signal in eukaryotic gene expression. J Gen Virol 57: 1–20PubMedCrossRefGoogle Scholar
  16. Doerfler W (1983) DNA methylation—and gene activity. Annu Rev Biochem 52: 93–124PubMedCrossRefGoogle Scholar
  17. Doerfler W (1991) The abortive infection and malignant transformation by adenoviruses: integration of viral DNA and control of viral gene expression by specific patterns of DNA methylation. Adv Virus Res 39: 89–128PubMedCrossRefGoogle Scholar
  18. Doerfler W (1992) Transformation of cells by adenoviruses: less frequently discussed mechanisms. In: Doerfler W, Bohm P (eds) Malignant transformation by DNA viruses. Molecular mechanisms. Weinheim, pp 87–109Google Scholar
  19. Doerfler W (1993) Adenoviral DNA integration and changes in DNA methylation patterns: a different view of insertional mutagenesis. Prog Nucleic Acid Res Mol Biol 46: 1–36PubMedCrossRefGoogle Scholar
  20. Doerfler W (1995) The insertion of foreign DNA into mammalian genomes and its consequences: a concept for oncogenesis. Adv Cancer Res 66: 313–344PubMedCrossRefGoogle Scholar
  21. Dragulev BP, Sira S, Abouhaidar MG, Campbell JB (1991) Sequence analysis of putative E3 and fiber genomic regions of two strains of canine adenovirus type 1. Virology 183: 298–305PubMedCrossRefGoogle Scholar
  22. Fechteler K, Tatzelt J, Huppertz S, Wilgenbus P, Doerfler W (1995) On the mechanism of adenovirus DNA integration: studies in a cell-free system. CurrTop Microbiol Immunol 199 /11: 109–137Google Scholar
  23. Gosh D (1992) TFD: The transcription factors database. Nucleic Acids Res 20: 2091–2093Google Scholar
  24. Hérissé J, Rigolet M, de Dinechin SD, Galibert F (1981) Nucleotide sequence of adenovirus 2 DNA fragment encoding for the carboxylic region of the fiber protein and the entire E4 region. Nucleic Acids Res 9: 4023–4042PubMedCrossRefGoogle Scholar
  25. Higgins DG, Bleasby AJ, Fuchs R (1992) CLUSTAL V: improved software for multiple sequence alignment. Comput Appl BioSci 8: 189–191PubMedGoogle Scholar
  26. Hong JS, Mullis KG, Engler JA (1988) Characterization of the early region 3 and fiber genes of Ad7. Virology 167: 545–553PubMedGoogle Scholar
  27. Houde A, Weber JM (1987) Sequence of the protease of human subgroup E adenovirus type 4. Gene 54: 51–56PubMedCrossRefGoogle Scholar
  28. Houde A, Weber J M (1988a) Sequence of the human adenovirus type 3 protease. Nucleic Acids Res 16: 11374PubMedCrossRefGoogle Scholar
  29. Houde A, Weber JM (1988b) The primary structure of human adenovirus type 12 protease. Nucleic Acids Res 16: 7195PubMedCrossRefGoogle Scholar
  30. Kidd AH, Erasmus MJ (1989) Sequence characterization of the adenovirus 40 fiber gene. Virology 172: 134–144PubMedCrossRefGoogle Scholar
  31. Kristensen T, Lopez R, Prydz H (1992) An estimate of the sequencing error frequency in the DNA sequence databases. DNA Sequence. J DNA Sequencing Mapping 2: 343–346Google Scholar
  32. Kruijer W, Van Schaik FMA, Sussenbach JS (1980) Nucleotide sequence analysis of a region of adenovirus 5 DNA encoding a hitherto unidentified gene. Nucleic Acids Res 8: 6033–6042PubMedCrossRefGoogle Scholar
  33. Lopez R (1992) Database contamination. Nature 355: 211PubMedCrossRefGoogle Scholar
  34. Mautner V, Steinthorsdottir V, Bailey V (1995) Euteric adenoviruses. CurrTop Microbiol Immunol 199 /111: 229–282Google Scholar
  35. Pearson WR, Lipman DJ (1988) Improved tools for biological sequence comparison. Proc Natl Acad Sci USA 85: 2444–2448PubMedCrossRefGoogle Scholar
  36. Petterson M, Schaffner W (1987) A purine-rich DNA sequence motif present in SV40 and lymphotropic papovavirus binds a lymphoid-specific factor and contributes to enhancer activity in lymphoid cells. Genes Dev 1: 962–972PubMedCrossRefGoogle Scholar
  37. Pieniazek NJ, Slemenda SB, Pieniazek D, Velarde J Jr, Luftig RB (1989) Sequence of human enteric adenovirus type 41 Tak fiber protein gene. Nucleic Acids Res 17: 9474PubMedCrossRefGoogle Scholar
  38. Raviprakash KS, Grunhaus A, el Kholy MA, Horwitz MS (1989) The mouse adenovirus type 1 contains an unusual E3 region. J Virol 63: 5455–5458PubMedGoogle Scholar
  39. Roberts RJ, Akusjärvi G, Aleström P, Gelinas RE, Gingeras T, Sciaky D, Pettersson U (1986) A consensus sequence for the adenovirus-2 genome. Dev Mol Virol 8: 1–51Google Scholar
  40. Schick J, Baczko K, Fanning E, Groneberg J, Burger H, Doerfler W (1976) Intracellular forms of adenovirus DNA: Integrated form of adenovirus DNA appears early in productive infection. Proc Natl Acad Sci USA 73: 1043–1047PubMedCrossRefGoogle Scholar
  41. Signäs C, Akusjärvi G, Pettersson U (1985) Adenovirus 3 fiber polypeptide gene: implications for the structure of the fiber protein. J Virol 53: 672–678PubMedGoogle Scholar
  42. Sprengel J, Schmitz B, Heuss-Neitzel D, Zock C, Doerfler W (1994) Nucleotide sequence of human adenovirus type 12 DNA: a comparative analysis. J Virol 68: 379–389PubMedGoogle Scholar
  43. Sutter D, Doerfler W (1980) Methylation of integrated adenovirus type 12 DNA sequences in transformed cells is inversely correlated with viral gene expression. Proc Natl Acad Sci USA 77: 253–256PubMedCrossRefGoogle Scholar
  44. Sutter D, Westphal M, Doerfler W (1978) Patterns of integration of viral DNA sequences in the genomes of adenovirus type 12-transformed hamster cells. Cell 14: 569–585PubMedCrossRefGoogle Scholar
  45. Vos HL, van der Lee FM, Reemst AMCB, van Loon AD, Sussenbach JS (1988) The genes encoding the DNA binding protein and the 23K protease of adenovirus types 40 and 41. Virology 163: 1–10PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  1. 1.Institut für GenetikUniversität zu KölnCologneGermany

Personalised recommendations