Skip to main content

Expression, Nuclear Transport, and Phosphorylation of Adenovirus DNA Replication Proteins

  • Chapter

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 199/2))

Abstract

DNA tumor viruses have contributed immense wealth of knowledge in the past few years regarding the eukaryotic cellular processes involving replication, transcription, and translation. Adenoviruses (Ad) in particular have played a pioneering and significant role in the understanding of the mechanisms of many of these biological processes mainly due to the interaction of viral proteins with the host proteins during the virus life cycle. The development of the first cell-free system to study Ad DNA replication (Challberg and Kelly 1979; for reviews, see Challberg and Kelly 1989; Stillman 1989; Hay and Russell 1989) was pivotal to our current understanding of eukaryotic DNA replication.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akiyama T, Ohuchi T, Sumida S, Matsumoto K, Toyoshima K (1992) Phosphorylation of the retinoblastoma protein by cdk2. Proc Natl Acad Sci USA 89: 7900–7904

    PubMed  CAS  Google Scholar 

  • Alvarez E, Northwood IC, Gonzalez FA, Latour DA, Seth A, Abate C, Curran T, Davis RJ (1991) Pro-Leu-Ser/Thr-Pro is a consensus primary sequence for substrate protein phosphorylation. Characterization of the phosphorylation of c-myc and c-jun proteins by an epidermal growth factor receptor threonine 669 protein kinase. J Biol Chem 266: 15277–15285

    PubMed  CAS  Google Scholar 

  • Anderson CW, Hardy MM, Dunn JJ, Klessig DF (1983) Independent, spontaneous mutants of adenovirus type 2-simian virus 40 hybrid Ad2+ND3 that grew efficiently in monkey cells possess identical mutations in the adenovirus type 2 DNA-binding protein gene. J Virol 48: 31–39

    PubMed  Google Scholar 

  • Anderson CW, Samad A, Carroll RB (1986) Identification and characterization of the sites phosphorylated in the cellular tumor antigen p53 from SV40-transformed 3T3 cells and in the DNA-binding protein from adenovirus 2. In: Botchan M, Grodzicker T, Sharp PA (eds) DNA tumor viruses, p4. Cold Spring Harbor Press, Cold Spring Harbor, New York, pp 395–404

    Google Scholar 

  • Anderson KP, Klessig DF (1983) Posttranscriptional block to synthesis of a human adenovirus capsid protein in abortively infected monkey cells. J Mol Appl Genet 2: 31–43

    PubMed  CAS  Google Scholar 

  • Ariga H, Klein A, Levine A, Horwitz M (1980) A cleavage product of the adenoviral DNA binding protein is active in DNA replication in vitro. Virology 101: 307–310

    PubMed  CAS  Google Scholar 

  • Arrand JR, Roberts RJ (1979) The nucleotide sequences at the termini of adenovirus 2 DNA. J Mol Biol 128: 577–594

    PubMed  CAS  Google Scholar 

  • Asselbergs FAM, Mathews MB, Smart JE (1983) Structural characterization of the proteins encoded by adenovirus early region 2A. J Mol Biol 163: 177–207

    PubMed  CAS  Google Scholar 

  • Axelrod N (1978) Phosphoproteins of adenovirus type 2. Virology 87: 366–383

    PubMed  CAS  Google Scholar 

  • Babich A, Nevins JR (1981) The stability of early adenovirus mRNA is controlled by the viral 72 kD DNA-binding protein. Cell 26: 371–379

    PubMed  CAS  Google Scholar 

  • Biedenkapp H, Borgmeyer U, Sippel AE, Klempnauer KH (1988) Viral myb oncogene encodes a sequence specific DNA-binding activity. Nature 335: 835–837

    PubMed  CAS  Google Scholar 

  • Blanco L, Bemad A, Blasco MA, Salas M (1991) A general structure for DNA-dependent DNA polymerases. Gene 100: 27–38

    PubMed  CAS  Google Scholar 

  • Bodner JW, Hanson PI, Polvino-Bodner M, Zempsky W, Ward DC (1989) The terminal regions of adenovirus and minute virus of mice DNAs are preferentially associated with the nuclear matrix in infected cells. J Virol 63: 4344–4353

    Google Scholar 

  • Bohman D (1990) Transcription factor phosphorylation: a link between signal transduction and the regulation of gene expression. Cancer Cells 2: 337–344

    Google Scholar 

  • Bosher J, Robinson EC, Hay RT (1990) Direct interactions between the adenovirus type 2 DNA polymerase and the DNA binding domain of nuclear factor I. New Biol 2: 1083–1090

    PubMed  CAS  Google Scholar 

  • Bosher J, Leith IR, Temperley SM, Wells M, Hay RT (1991) The DNA-binding domain of nuclear factor I is sufficient to cooperate with the adenovirus type 2 DNA-binding protein in viral DNA replication. J Gen Virol 72: 2975–2980

    PubMed  CAS  Google Scholar 

  • Bosher J, Dawson A, Hay RT (1992) Nuclear factor I is specifically targeted to discrete subnuclear sites in adenovirus type 2-infected cells. J Virol 66: 3140 — 3150

    PubMed  CAS  Google Scholar 

  • Boyle WJ, Smeal T, Defize LHK, Angel P, Woodgett JR, Karin M, Hunter T (1991) Activation of protein kinase C decreases phosphorylation of c-Jun at sites that negatively regulate its DNA-binding activity. Cell 64: 573–584

    PubMed  CAS  Google Scholar 

  • Branton PE, Evelegh M, Rowe DT, Graham FL, Bacchetti S (1985) Protein kinase and ATP-binding activity associated with the 72-kdalton single-stranded DNA-binding protein from early region 2A of human adenovirus type 5. Can J Biochem Cell Biol 63: 941–952

    PubMed  CAS  Google Scholar 

  • Brigati DJ, Myerson D, Leary JJ, Spalholz B, Travis SZ, Fong CK, Hsiung GD, Ward DC (1983) Detection of viral genomes in cultured cells and parafilm-embedded tissue sections using biotin-labeled hybridization probes. Virology 126: 32–50

    PubMed  CAS  Google Scholar 

  • Brough DE, Rice SA, Sell S, Klessig DF (1985) Restricted changes in the adenovirus DNA-binding protein that lead to extended host range or temperature-sensitive phenotype. J Virol 55: 206–212

    PubMed  CAS  Google Scholar 

  • Brough DE, Drouguett G, Horwitz MS, Klessig DF (1993) Multiple functions of the adenovirus DNA-binding protein are required for efficient viral DNA synthesis. Virology 196: 269–281

    PubMed  CAS  Google Scholar 

  • Cajean-Feroldi, Loeb J, Meguenni S, Girad M (1981) Protein kinase associated with the adenovirus single-stranded DNA-binding protein. Eur J Biochem 120: 79–87

    PubMed  CAS  Google Scholar 

  • Cardenas ME, Walter R, Hanna D, Gasser SM (1993) CaScin kinase II copurifies with yeast DNA topoisomerase II and re-activates the dephosphorylated enzyme. J Cell Sci 104: 533–543

    PubMed  CAS  Google Scholar 

  • Carter TH, Blanton RA (1978) Possible role of the 72,000-dalton in regulation of adenovirus type 5 early gene expression. J Virol 25: 664–674

    PubMed  CAS  Google Scholar 

  • Cegielska A, Virshup DM (1993) Control of simian virus 40 DNA replication by the HeLa cell nuclear kinase, caScin kinase I. Mol Cell Biol 13: 1202–1211

    PubMed  CAS  Google Scholar 

  • Challberg MD, Kelly TJ (1979) Adenovirus DNA replication in vitro., Proc Natl Acad Sci USA 76: 655–659

    PubMed  CAS  Google Scholar 

  • Challberg MD, Kelly TJ (1989) Animal virus DNA replication. Annu Rev Biochem 58: 671–717

    PubMed  CAS  Google Scholar 

  • Challberg MD, Kelly TJ Jr (1981) Processing of the adenovirus terminal protein. J Virol 38: 272–277

    PubMed  CAS  Google Scholar 

  • Challberg MD, Rawlins DR (1984) Template requirement for the initiation of adenovirus DNA replication. Proc Natl Acad Sci USA 81: 100–104

    PubMed  CAS  Google Scholar 

  • Challberg MD, Desiderio SV, Kelly TJ (1980) Adenovirus DNA replication in vitro: characterization of a protein covalently linked to nascent DNA strands. Proc Natl Acad Sci USA 77: 5105–5109

    PubMed  CAS  Google Scholar 

  • Chen M, Horwitz MS (1989) Dissection of functional domains of adenovirus DNA polymerase by linker insertion mutagenesis. Proc Natl Acad Sci USA 86: 6116–6120

    PubMed  CAS  Google Scholar 

  • Chen M, Mermod N, Horwitz MS (1990) Protein-protein interactions between adenovirus DNA polymerase and nuclear factor I mediate formation of the DNA replication preinitiation complex. J Biol Chem 265: 18634–18642

    PubMed  CAS  Google Scholar 

  • Chroboczek J, Bieber F, Jacrot (1992) The sequence of the genome of adenovirus type 5 and its comparison with the genome of adenovirus type 2. Virology 186: 280–285

    CAS  Google Scholar 

  • Clark-Lewis I, Sanghera JS, Pelech SL (1991) Definition of a consensus sequence for peptide substrate recognition by p44mpk- the meiosis-activated myelin basic protein kinase. J Biol Chem 266: 15180–15184

    PubMed  CAS  Google Scholar 

  • Cleat PH, Hay RT (1989) Co-operative interactions between NFI and the adenovirus DNA binding protein at the adenovirus origin of replication. EMBO J 8: 1841–1848

    PubMed  CAS  Google Scholar 

  • Cleghon V, Klessig DF (1986) Association of the adenovirus DNA-binding protein with RNA both in vitro and in vivo. Proc Natl Acad Sci USA 83: 8947–8951

    PubMed  CAS  Google Scholar 

  • Cleghon V, Klessig DF (1992) Characterization of the adenovirus DNA binding protein’s nucleic acid binding region by partial proteolysis and photochemical cross-linking. J Biol Chem 267: 7872–17881

    Google Scholar 

  • Cleghon V, Voelkerding K, Morin N, Delsert C, Klessig DF (1989) Isolation and characterization of a viable adenovirus mutant defective in nuclear transport of the DNA-binding protein. J Virol 63: 2289–2299

    PubMed  CAS  Google Scholar 

  • De Robertis EM, Longthorne RF, Gurdon JB (1978) Intracellular migration of nuclear proteins in Xenopus oocytes. Nature 272: 254–256

    PubMed  Google Scholar 

  • Desiderio SV, Kelly TJ Jr (1981) Structure of the linkage between adenovirus DNA and the 55,000 molecular weight terminal protein. J Mol Biol 145: 319–337

    PubMed  CAS  Google Scholar 

  • De Vries E, Van Driel W, Tromp M, Van Boom J, Van der Vliet PC (1985) Adenovirus DNA replication in vitro: site-directed mutagenesis of the nuclear factor I binding site of the Ad2 origin. Nucleic Acids Res 13: 4935–4952

    PubMed  Google Scholar 

  • De Vries E, Van Driel W, Bergsma WG, Arnberg AC, Van der Vliet PC (1989) HeLa nuclear protein recognizing DNA termini and translocating on DNA forming a regular DNA-multimeric protein complex. J Mol Biol 208: 65–78

    PubMed  Google Scholar 

  • Dingwall C (1991) Transport across the nuclear envelope: enigmas and explanations. Bioessays 13: 213–218

    PubMed  CAS  Google Scholar 

  • Dingwall C, Laskey RA (1986) Protein import into the cell nucleus. Annu Rev Cell Biol 2: 367–390

    PubMed  CAS  Google Scholar 

  • Dingwall C, Laskey RA (1991) Nuclear targeting sequences—a consensus? Trends Biochem Sci 16: J 478–481

    Google Scholar 

  • Dingwall C, Laskey RA (1992) The nuclear membrane. Science 258: 942–947

    PubMed  CAS  Google Scholar 

  • Dingwall C, Sharnick SV, Laskey RA (1982) A polypeptide domain that specifies migration of nucleoplasms to the nucleus. Cell 30: 449–458

    PubMed  CAS  Google Scholar 

  • Dobbs L, Zhao L-J, Sripad G, Padmanabhan R (1990) Mutational analysis of single-stranded DNA J templates active in the in vitro initiation assay for adenovirus DNA replication. Virology 178: 43–51

    CAS  Google Scholar 

  • Draetta G (1990) Cell cycle control in eukaryotes: molecular mechanisms of cdc2 activation. Trends Biochem Sci 15: 378–383

    PubMed  CAS  Google Scholar 

  • Draetta G, Beach D (1988) Activation of cdc2 protein kinase during mitosis in human cells: cell-cycle-dependent phosphorylation and subunit rearrangement. Cell 54: 17–26

    PubMed  CAS  Google Scholar 

  • Dutta A, Stillman B (1992) cdc2 family kinases phosphorylate a human cell DNA replication factor, RPA, and activate DNA replication. EMBO J 11: 2189–2199

    PubMed  CAS  Google Scholar 

  • Eagle PA, Klessig DF (1992) A zinc-binding motif located between amino acids 273 and 286 in the adenovirus DNA-binding protein is necessary for ssDNA binding. Virology 187: 777–787

    PubMed  CAS  Google Scholar 

  • Elroy-Stein O, Fuerst TR, Moss B (1989) Cap-independent translation of mRNA conferred by encephalomyocarditis virus 5′ sequence improves the performance of the vaccinia virus/ bacteriophage T7 hybrid expression system. Proc Natl Acad Sci USA 86: 6126–6130

    PubMed  CAS  Google Scholar 

  • Enomoto T, Lichy JH, Ikeda JE, Hurwitz J (1981) Adenovirus DNA replication in vitro: purification of the terminal protein in a functional form. Proc Natl Acad Sci USA 78: 6779–6783

    PubMed  CAS  Google Scholar 

  • Faha B, Harlow E, Lees E (1993) The adenovirus E1A-associated kinase consists of cyclin E-p33cdck2 and cyclin A-p33cdck2. J Virol 67: 2456–2465

    PubMed  CAS  Google Scholar 

  • Fanning E (1992) Simian virus 40 large T antigen: the puzzle, the pieces, and the emerging picture. J Virol 66: 1289–1293

    PubMed  CAS  Google Scholar 

  • Field J, Gronostajski RM, Hurwitz J (1984) Properties of the adenovirus DNA polymerase. J Biol Chem 259: 9487–9495

    PubMed  CAS  Google Scholar 

  • Finlay DR, Meier E, Bradley P, Horecka J, Forbes DJ (1991) A complex of nuclear pore proteins required for pore function. J Cell Biol 114: 169–183

    PubMed  CAS  Google Scholar 

  • Flint SJ, Sharp PA (1976) Adenovirus transcription. V. Quantitation of viral RNA sequences in adenovirus 2-infected and transformed cells. J Mol Biol 106: 749–771

    PubMed  CAS  Google Scholar 

  • Fredman JN, Engler JA (1993) Adenovirus precursor to terminal protein interacts with the nuclear matrix in vivo and in vitro. J Virol 67: 3384–3395

    PubMed  CAS  Google Scholar 

  • Freimuth PI, Ginsberg HS (1986) Codon insertion mutants of the adenovirus terminal protein. Proc Natl Acad Sci USA 83: 7816–7820

    PubMed  CAS  Google Scholar 

  • Friefeld BR, Krevolin MD, Horwitz MS (1983) Effects of the adenovirus H5ts125 and H5ts107 DNA-binding proteins on DNA replication in vitro Virology 124: 380–389

    CAS  Google Scholar 

  • Fuerst TR, Moss B (1989) Structure and stability of mRNA synthesized by vaccinia virus-encoded bacteriophage T7 RNA polymerase in mammalian cells: importance of the 5′-untranslated leader. J Mol Biol 206: 333–348

    PubMed  CAS  Google Scholar 

  • Garcia-Bustos J, Heitman J, Hall MN (1991) Nuclear protein localization. Biochim Biophys Acta 1071: 83–101

    PubMed  CAS  Google Scholar 

  • Georgaki A, Hubscher U (1993) DNA unwinding by replication protein A is a property of the 70 kDa sübunit and is facilitated by phosphorylation of the 32 kDa subunit. Nucleic Acids Res 21: 3659–3665

    PubMed  CAS  Google Scholar 

  • Gingeras TR, Sciaky D, Gelinas RE, Bing-Dong J, Yen CE, Kelly MM, Bullock PA, Parson BL, O’Neill KE, Roberts RJ (1982) Nucleotide sequences from the adenovirus-2 genome. J Biol Chem 257: 13475–13491

    PubMed  CAS  Google Scholar 

  • Ginsberg HS, Ensinger MJ, Kauffman RS, Mayer AJ, Lundholm U (1974) Cell transformation: a study of regulation with type 5 and adenovirus temperature sensitive mutants. Cold Spring Harbor Symp Quant Biol 39: 419–426

    Google Scholar 

  • Ginsberg HS, Lundholm V, Linne T (1977) Adenovirus DNA binding proteins in cells infected with wild- type 5 adenovirus and two DNA-minus temperature sensitive mutants H5ts125 and H5ts149. J Virol 23: 142–151

    PubMed  CAS  Google Scholar 

  • Giordano A, Lee JH, Scheppler JA, Herrmann C, Harlow E, Deuschle U, Beach D, Franza BR Jr (1991) Cell cycle regulation of histone H1 kinase activity associated with the adenoviral protein E1A. Science 253: 1271–1276

    PubMed  CAS  Google Scholar 

  • Goldfarb DS (1989) Nuclear transport. Curr Opin Cell Biol 1: 441–446

    PubMed  CAS  Google Scholar 

  • Goldfarb DS, Michaud N (1991) Pathways for the nuclear transport of proteins and RNAs. Trends Cell Biol 1: 20–24

    PubMed  CAS  Google Scholar 

  • Gounari F, De Francesco R, Schmitt J, Van der Vliet PC, Cortese R, Stunnenberg H (1990) Amino-terminal domain of NF1 binds to DNA as a dimer and activates adenovirus DNA replication. EMBO J 9: 559–566

    PubMed  CAS  Google Scholar 

  • Green M, Symington J, Brackmann KH, Cartas MA, Thornton H, Young L (1981) Immunological and chemical identification of intracellular forms of adenovirus type 2 terminal protein. J Virol 40: 541–550

    PubMed  CAS  Google Scholar 

  • Greenspan D, Palese P, Crystal M (1988) Two nuclear location signals in the influenza virus NS1 non-structural protein. J Virol 62: 3020–3026

    PubMed  CAS  Google Scholar 

  • Handa H, Kingston RE, Sharp PA (1983) Inhibition of adenovirus early region IV transcription in vitro by a purified viral DNA binding protein. Nature 302: 545–547

    PubMed  CAS  Google Scholar 

  • Hanover JA (1992) The nuclear pore: at the cross roads. FASEB J 6: 2288–2295

    PubMed  CAS  Google Scholar 

  • Hard T, Kellenbach E, Boelens R, Maler BA, Dahlman K, Kreedman LP, Carlstedt-Duke J, Yamamoto KR, Gustafsson JA, Kaptein R (1990) Solution structure of the glucocorticoid receptor DNA-binding domain. Science 249: 157–160

    PubMed  CAS  Google Scholar 

  • Hay RT, Rüssel WC (1989) Recognition mechanism in the synthesis of animal virus DNA. Biochem J 58: 3–16

    Google Scholar 

  • Herrmann C, Su L-K, Harlow E (1991) Adenovirus E1a is associated with a serine/threonine protein kinase. J Virol 65: 5848–5859

    PubMed  CAS  Google Scholar 

  • Hope IA, Struhl K (1986) Functional dissection of a eukaryotic transcriptional activator protein, GCN4 of yeast. Cell 46: 885–894

    PubMed  CAS  Google Scholar 

  • Horwitz MS (1978) Temperature-sensitive replication of H5ts125 adenovirus DNA in vitro. Proc Natl Acad Sci USA 75: 4291–4295

    PubMed  CAS  Google Scholar 

  • Horwitz MS (1990) Adenoviridae and their replication. In: Fields BN, Knipe DM, Chanock RM et al. (eds) Virology, 2nd ed. Raven, New York, pp 1679–1721

    Google Scholar 

  • Hoss A, Moarefi I, Scheidtmann K-H, Cisek LJ, Corden JL, Dornreiter I, Arthur AK, Fanning E (1990) Altered phosphorylation pattern of simian virus 40 T antigen expressed in insect cells by using a baculovirus vector. J Virol 64: 4799–4807

    PubMed  CAS  Google Scholar 

  • Hu Q, Lees JA, Buchkovich KJ, Harlow E (1992) The retinoblastoma protein physically associates with the human cdc2 kinase. Mol Cell Biol 12: 971–980

    PubMed  CAS  Google Scholar 

  • Hunter T, Karin M (1992) The regulation of transcription by phosphorylation. Cell 70: 375–387

    PubMed  CAS  Google Scholar 

  • Hurley JR, Dean AM, Sohl JL, Koshland DEJ, Stroud RM (1990) Regulation of enzyme by phosphorylation at the active site. Science 249: 1012–1016

    PubMed  CAS  Google Scholar 

  • Imamoto N, Matsuoka Y, Kurihara T, Kohno K, Miyagi M, Sakiyama F, Okada Y, Tsunaswa S, Yoneda Y (1992) Antibodies against 70-KD heat shock cognate protein inhibit mediated nuclear import of karyophilic proteins. J Cell Biol 119: 1047–1061

    PubMed  CAS  Google Scholar 

  • Jans DA, Ackermann M, Bischoff JR, Beach DH, Peters R (1991) p34cdc2-Mediated phosphorylation at T124 inhibits nuclear import of SV-40 T antigen proteins. J Cell Biol 115: 1203–1212

    Google Scholar 

  • Jeng YH, Wold WSM, Sugawara K, Gilead Z, Green M (1977) Adenovirus type 2 coded single-stranded DNA binding protein: in vivo phosphorylation and modification. J Virol 22: 402–411

    PubMed  CAS  Google Scholar 

  • Johnston JM, Anderson KP, Klessig DF (1985) Partial block to transcription of human adenovirus type 2 late genes in abortively infected monkey cells. J Virol 56: 378–385

    PubMed  CAS  Google Scholar 

  • Jones KA, Kodonaga JT, Rosenfeld PJ, Kelly TJ, Tijan R (1987) A cellular DNA-binding protein that activates eukaryotic transcription and DNA replication. Cell 48: 79–89

    PubMed  CAS  Google Scholar 

  • Joung I, Engler JA (1992) Mutations in two cysteine-histidinerich clusters in adenovirus type 2 DNA polymerase affect DNA binding. J Virol 66: 5788–5796

    PubMed  CAS  Google Scholar 

  • Kalderon D, Richardson WD, Markham AF, Smith AE (1984a) Sequence requirements for nuclear location of simian virus 40 large-T antigen. Nature 311: 33–38

    CAS  Google Scholar 

  • Kalderon D, Roberts BL, Richardson WD, Smith AE (1984b) A short amino acid sequence able to specify nuclear location. Cell 39: 499–509

    CAS  Google Scholar 

  • Kaplan LM, Ariga H, Hurwitz J, Horwitz MS (1979) Complementation of the temperature-sensitive defect in H5ts125 adenovirus DNA replication in vitro. Proc Natl Acad Sci USA 76: 5534–5538

    PubMed  CAS  Google Scholar 

  • Kawamura H, Nagata K, Masamune Y, Nakanishi Y (1993) Phosphorylation of NF-I in vitro by cdc2 kinase. Biochem Biophys Res Commun 192: 1424–1431

    PubMed  CAS  Google Scholar 

  • Kedinger C, Brison O, Perrin F, Wilhelm J (1978) Structural analysis of viral replication intermediates isolated from adenovirus type-2 infected HeLa cell nuclei. J Virol 26: 364–379

    PubMed  CAS  Google Scholar 

  • Kennelly PJ, Krebs EG (1991) Consensus sequences as substrate specificity determinants for protein kinases and protein phosphatases. J Biol Chem 266: 15555–15558

    PubMed  CAS  Google Scholar 

  • Kenny M, Hurwitz J (1988) Initiation of adenovirus DNA replication II. Structural requirements using synthetic oligonucleotide adenovirus templates. J Biol Chem 263: 9809–9817

    PubMed  CAS  Google Scholar 

  • Kitagawa M, Saitoh S, Ogino H, Okabe T, Matsumoto H, Okuyama A, Tamai K, Ohba Y, Yasuda H, Nishimura S, Taya Y (1992) cdc2-Like kinase is associated with the retinoblastoma protein. Oncogene 7: 1067–1074

    PubMed  CAS  Google Scholar 

  • Klein H, Maltzman W, Levine AJ (1979) Structure-function relationships of the adenovirus DNA-binding protein. J Biol Chem 254: 11051–11060

    PubMed  CAS  Google Scholar 

  • Kleinberger T, Shenk T (1991) A protein kinase is present in a complex with adenovirus E1A proteins. Proc Natl Acad Sci USA 88: 11143–11147

    PubMed  CAS  Google Scholar 

  • Klessig DF, Anderson CW (1975) Block of multiplication of adenovirus serotype 2 in monkey cells. J Virol 16: 1650–1668

    PubMed  CAS  Google Scholar 

  • Klessig DF, Grodzicker T (1979) Mutations that allow human Ad2 and Ad5 to express late genes on monkey cells map in the viral gene encoding the 72K DNA-binding protein. Cell 17: 957–966

    PubMed  CAS  Google Scholar 

  • Koff A, Cross F, Fisher A, Schumacher J, Leguellec K, Philipe M, Roberts JM (1991) Human cyclin E, a new cyclin that interacts with two members of the CDC2 gene family. Cell 66: 1217–1228

    PubMed  CAS  Google Scholar 

  • Kraiss S, Barnekow A, Montenarh M (1990) Protein kinase activity associated with immunopurified p53 protein. Oncogene 5: 845–855

    PubMed  CAS  Google Scholar 

  • Krevolin MD, Horwitz MS (1987) Functional interactions of the domains of the adenovirus DNA-binding protein. Virology 156: 167–170

    PubMed  CAS  Google Scholar 

  • Kusukawa J, Ramachandra M, Nakano R, Padmanabhan R (1994) Phosphorylation-dependent interaction of adenovirus preterminal protein with the viral origin of DNA replication. J Biol Chem 269: 2189–2196

    PubMed  CAS  Google Scholar 

  • Lanford RE, Butel JS (1984) Construction and characterization of an SV40 mutant defective in nuclear transport of T antigen. Cell 37: 801–813

    PubMed  CAS  Google Scholar 

  • Lanford RE, Kanda P, Kennedy RC (1986) Induction of nuclear transport with a synthetic peptide homologous to the SV40 T antigen transport signal. Cell 46: 575–582

    PubMed  CAS  Google Scholar 

  • Leegwater PAJ, Van Driel W, Van der Vliet PC (1985) Recognition site of nuclear factor I, a sequence-specific DNA-binding protein from HeLa cells that stimulates adenovirus DNA replication. EMBO J 4: 1515–1521

    PubMed  CAS  Google Scholar 

  • Lees JA, Buchkovich KJ, Marshak DR, Anderson CW, Harlow E (1992) The retinoblastoma protein is phosphorylated on multiple sites by human cdc2. EMBO J 10: 4279–4290

    Google Scholar 

  • Leith IR, Hay RT, Russel WC (1989) Adenovirus subviral particles and cores can support limited DNA replication. J Gen Virol 70: 3235–3248

    PubMed  CAS  Google Scholar 

  • Leopald P, O’Farrell PH (1991) An evolutionary conserved cyclin homolog from Drosophila rescues yeast deficient in G1 cyclins. Cell 66: 1207–1216

    Google Scholar 

  • Levine AJ, Van der Vliet PC, Sussenbach J (1976) The replication of papovavirus and adenovirus DNA. Curr Top Microbiol Immunol 73: 68–124

    Google Scholar 

  • Levinson A, Levine AJ (1977) The isolation and identification of the adenovirus group C tumor antigens. Virology 76: 1–11

    PubMed  CAS  Google Scholar 

  • Levinson AD, Postel EH, Levine AJ (1977) In vivo and in vitro phosphorylation of the adenovirus type 5 single strand-specific DNA-binding protein. Virology 79: 144–159

    PubMed  CAS  Google Scholar 

  • Lew DJ, Dulic V, Reed SI (1991) Isolation of three novel cyclins by rescue of G1 cyclin (cln) function in yeast. Cell 66: 1197–1206

    PubMed  CAS  Google Scholar 

  • Lewis JB, Atkins JF, Baum PR, Solen R, Gesteland RF, Anderson CW (1976) Location and identification of the genes for adenovirus type 2 early polypeptide. Cell 7: 141–151

    PubMed  CAS  Google Scholar 

  • Lichy JH, Field J, Horwitz MS, Hurwitz J (1982) Separation of adenovirus terminal protein precursor from its associated DNA polymerase: role of both proteins in the initiation of adenovirus DNA replication. Proc Natl Acad Sci USA 79: 5225–5229

    PubMed  CAS  Google Scholar 

  • Lindenbaum JO, Field J, Hurwitz J (1986) The adenovirus DNA binding protein and adenovirus DNA polymerase interact to catalyze elongation of primed templates. J Biol Chem 261: 10218–10227

    PubMed  CAS  Google Scholar 

  • Linne T, Philipson L (1980) Further characterization of the phosphate moiety of the adenovirus type 2 DNA-binding protein. Eur J Biochem 103: 259–270

    PubMed  CAS  Google Scholar 

  • Linne T, Jornvall H, Philipson L (1977) Purification and characterization of the phosphorylated DNA-binding protein from adenovirus type 2 infected cells. Eur J Biochem 76: 481–490

    PubMed  CAS  Google Scholar 

  • Lucknow VA, Summers MD (1988) Trends in the development of baculovirus expression vectors. Biotechnology 6: 47–55

    Google Scholar 

  • Ma J, Ptashne M (1987) Deletion analysis of GAL4 defines two transcriptional activating segments. Cell 48: 847–853

    PubMed  CAS  Google Scholar 

  • Mailer JL (1990) Xenopus oocytes and the biochemistry of cell division. Biochemistry 29: 3157–3166

    Google Scholar 

  • Mann R (1987) Identification and characterization of phosphorylation sites of adenovirus (Ad2) DNA-binding protein (DBP). Ph D thesis, New York University, New York

    Google Scholar 

  • Matsushime H, Roussel MF, Ashmun RA, Sherr CJ (1991) Colony-stimulating factor 1 regulates novel cyclins during the G1 phase of the cell cycle. Cell 65: 701–713

    PubMed  CAS  Google Scholar 

  • Matsuura Y, Possee RD, Overton HA, Bishop DHL (1987) Baculovirus expression vectors: the requirements of high level expression of proteins including glycoproteins. J Gen Virol 69: 1233–1250

    Google Scholar 

  • McPherson RA, Ginsberg HS, Rose JA (1982) Adeno-associated virus helper activity of adenovirus DNA binding protein. J Virol 44: 666–673

    PubMed  CAS  Google Scholar 

  • McVey D, Brizuela L, Mohr I, Marshak DR, Gluzman J, Beach D (1989) Phosphorylation of large tumor antigen by cdc2 kinase stimulates SV40 DNA replication. Nature 341: 503–507

    PubMed  CAS  Google Scholar 

  • McVey D, Ray S, Gluzman Y, Berger L, Wildman AG, Marshak DR, Tegtmeyer P (1993) cdcl phosphorylation of threonine 124 activates the origin-unwinding functions of simian virus 40 T antigen. J Virol 67: 5206–5215

    CAS  Google Scholar 

  • Mermod N, O’Neill EA, Kelly TJ, Tjian R (1989) The proline-rich transcriptional activator of CTF/NFI-I is distinct from the replication and DNA binding domain. Cell 58: 741–753

    PubMed  CAS  Google Scholar 

  • Meyerson M, Enders GH, Wu C, Su L, Gorka C, Nelson C, Harlow E, Tsai L (1992) A family of human cdc2-related protein kinases. EMBO J 11: 2909–2917

    PubMed  CAS  Google Scholar 

  • Miller LK (1988) Baculovirus as gene expression vectors. Annu Rev Microbiol 42: 177–199

    PubMed  CAS  Google Scholar 

  • Mittanacht S, Weinberg RA (1991) G1/S phosphorylation of the retinoblastoma protein is associated with an altered affinity for the nuclear compartment. Cell 65: 381–393

    Google Scholar 

  • Moarefi IF, Small D, Gilbert I, Hopfner M, Randall SK, Schneider C, Russo AA, Ramsperger U, Arthur AK, Stahl H, Kelly TJ, Fanning E (1993) Mutation of the cyclin-dependent kinase phosphorylation site in simian virus 40 (SV 40) large T antigen specifically blocks SV 40 origin DNA unwinding. J Virol 67: 4992–5002

    PubMed  CAS  Google Scholar 

  • Mohr IJ, Stillman B, Gluzman Y (1987) Regulation of SV40 DNA replication by phosphorylation of T antigen. EMBO J 6: 153–160

    PubMed  CAS  Google Scholar 

  • Moreland RB, Langevin GL, Singer RH, Garcea RL, Hereford LM (1987) Amino acid sequences that determine the nuclear localization of yeast histone 2B. Mol Cell Biol 7: 4048–4057

    PubMed  CAS  Google Scholar 

  • Moreno S, Nurse P (1990) Substrates for p34cdc2: in vivo Veritas? Cell 61: 549–551

    PubMed  CAS  Google Scholar 

  • Morin N, Delsert C, Klessig DF (1989a) Nuclear localization of the adenovirus DNA-binding protein: requirement for two signals and complementation during viral infection. Mol Cell Biol 9: 4372–4380

    PubMed  CAS  Google Scholar 

  • Morin N, Delsert C, Klessig DF (1989b) Mutations that affect phosphorylation of the adenovirus DNA-binding protein alters its ability to enhance its own synthesis. J Virol 63: 5228–5237

    PubMed  CAS  Google Scholar 

  • Moss B (1991) Vaccinia virus: a tool for research and vaccine development. Science 252: 1662–1667

    PubMed  CAS  Google Scholar 

  • Moss B, Elroy-Stein T, Mizukami T, Alexander WA, Fuerst TR (1990) New mammalian expression vectors (product review). Nature 348: 91–92

    PubMed  CAS  Google Scholar 

  • Mul YM, Van der Vliet PC (1992) Nuclear factor I enhances adenovirus DNA replication by increasing the stability of a preinitiation complex. EMBO J 11: 751–760

    PubMed  CAS  Google Scholar 

  • Mul YM, Verrijzer CP, Van der Vliet PC (1990) Transcription factors NFI and NFIII/Oct-I function independently employing different mechanisms to enhance adenovirus DNA replication. J Virol 64: 5510–5518

    PubMed  CAS  Google Scholar 

  • Mul YM, Verrijzer CP, Van der Vliet PC(1993) Adenovirus DNA binding protein effects the kinetics of DNA replication by a mechanism distinct from NFI or oct I. Nucleic Acids Res 21: 641–647

    PubMed  CAS  Google Scholar 

  • Murti KG, Davis DS, Kitchingman GR (1990) Localization of adenovirus-encoded DNA replication protein in the nucleus by immunogold electron microscopy. J Gen Virol 71: 2847–2857

    PubMed  CAS  Google Scholar 

  • Nagata K, Guggenheimer RA, Enomoto T, Lichy JH, Hurwitz J (1982) Adenovirus DNA replication in vitro: identification of a host factor that stimulates synthesis of the preterminal protein-dCMP complex. Proc Natl Acad Sci USA 79: 6438–6442

    PubMed  CAS  Google Scholar 

  • Nagata K, Guggenheimer RA, Hurwitz J (1983a) Adenovirus DNA replication in vitro: synthesis of full-length DNA with purified proteins. Proc Natl Acad Sci USA 80: 4266–4270

    PubMed  CAS  Google Scholar 

  • Nagata K, Guggenheimer RA, Hurwitz J (1983b) Specific binding of a cellular DNA replication protein to the origin of replication of adenovirus DNA. Proc Natl Acad Sci USA 80: 6177–6181

    PubMed  CAS  Google Scholar 

  • Nakamura H, Marita T, Sato C (1986) Structural organization of replicon domains during DNA synthetic phase in the mammalian nucleus. Exp Cell Res 165: 291–297

    PubMed  CAS  Google Scholar 

  • Nakano R, Zhao L-J, Padmanabhan R (1991) Overproduction of adenovirus DNA polymerase and preterminal protein in HeLa cells. Gene 105: 173–178

    PubMed  CAS  Google Scholar 

  • Nasheuer H-P, Moore A, Wahl AF, Wang TSF (1991) Cell cycle-dependent phosphorylation of human DNA polymerase a. J Biol Chem 266: 7893–7903

    PubMed  CAS  Google Scholar 

  • Nasheuer HP, von Winkler D, Schneider C, Dornreiter I, Gilbert I, Fanning E (1992) Purification and functional characterization of bovine RP-A in an in vitro SV40 DNA replication system. Chromosoma 102: S52–S59

    PubMed  CAS  Google Scholar 

  • Nath ST, Nayak DP (1990) Function of two discrete regions is required for nuclear localization of polymerase basic protein 1 of A/WSN/33 influenza virus (H1 N1). Mol Cell Biol 10: 4139–4145

    PubMed  CAS  Google Scholar 

  • Neale GAM, Kitchingman GR (1990) Conserved region 3 of the adenovirus type 5 DNA-binding protein is important for interaction with single-stranded DNA. J Virol 64: 630–638

    PubMed  CAS  Google Scholar 

  • Newmeyer DD, Forbes DJ (1988) Nuclear import can be separated into distinct steps in vitro: nuclear pore binding and translocation. Cell 52: 641–653

    PubMed  CAS  Google Scholar 

  • Nicolas JC, Sarnow P, Girad M, Levine AJ (1983) Host range, temperature-conditional mutants in the adenovirus DNA binding protein are defective in the assembly of infectious virus. Virology 126: 228–239

    PubMed  CAS  Google Scholar 

  • Nigg EA, Baeuerle PA, Luhrmann R (1991) Nuclear import-export: in search of signals and mechanisms. Cell 66: 15–22

    PubMed  CAS  Google Scholar 

  • O’Neill EA, Kelly TJ (1988) Purification and characterization of nuclear factor III (origin recognition protein C) a sequence-specific DNA binding protein required for efficient initiation of adenovirus DNA replication. J Biol Chem 263: 931–937

    PubMed  Google Scholar 

  • O’Neill EA, Fletcher C, Burrow CR, Heintz N, Roeder RG, Kelly TJ (1988) Transcriptional factor OTF-1 is functionally identical to the DNA replication factor NF III. Science 241: 1210–1213

    PubMed  Google Scholar 

  • Ostrove JM, Rosenfeld P, Williams J, Kelly TJ Jr (1983) In vitro complementation as an assay for purification of adenovirus DNA replication proteins. Proc Natl Acad Sci USA 80: 935–939

    PubMed  CAS  Google Scholar 

  • Pagano M, Draetta G, Jansen-Durr P (1992a) Association of cdk2 kinase with the transcription factor E2F during S phase. Science 255: 1144–1147

    PubMed  CAS  Google Scholar 

  • Pagano M, Pepperkok R, Verde F, Ansorje W, Draetta G (1992b) cyclin A is required at two points in the human cell cycle. EMBO J 11: 961–971

    Google Scholar 

  • Paris J, Le Guellec R, Couturier A, Le Guellec K, Omilli F, Camonis J, MacNeill S, Philippe M (1991) Cloning by differential screening of a Xenopus cDNA coding for a protein highly homologous to cdc2. Proc Natl Acad Sci USA 88: 1039–1043

    PubMed  CAS  Google Scholar 

  • Pearson RB, Kemp BE (1991) Protein kinase phosphorylation site sequences and consensus specificity motifs: tabulations. Methods Enzymol 200: 62–81

    PubMed  CAS  Google Scholar 

  • Peck VM, Gerner EW, Cress AE (1993) A DNA polymerase a-associated 56 kDa protein kinase. Biochem Biophys Res Commun 190: 325–331

    PubMed  CAS  Google Scholar 

  • Pelech SL, Sanghera JS (1992) Mitogen-activated protein kinases: versatile transducers for cell signaling. Trends Biochem Sci 17: 233–238

    PubMed  CAS  Google Scholar 

  • Peters R (1986) Fluorescence microphotolysis to measure nucleocytoplasmic transport and intracellular mobility. Biochim Biophys Acta 864: 305–359

    PubMed  CAS  Google Scholar 

  • Pettit SC, Horwitz MS, Engler JA (1988) Adenovirus preterminal protein synthesized in COS cells from cloned DNA is active in DNA replication in vitro. J Virol 62: 496–500

    PubMed  CAS  Google Scholar 

  • Picard D, Yamamoto KR (1987) Two signals mediate hormone-dependent nuclear localization of the glucocorticoid receptor. EMBO J 6: 3333–3340

    PubMed  CAS  Google Scholar 

  • Pines J, Hunter T (1989) Isolation of a human cyclin cDNA: evidence for cyclin mRNA and protein regulation in cell cycle and for interaction with p34cdc2. Cell 58: 833–846

    PubMed  CAS  Google Scholar 

  • Postel E, Klein H, Levine AJ (1978) The fidelity of phosphorylation of the adenovirus DNA-binding protein by an in vitro nuclear protein kinase from virus-infected cells. Virology 86: 291–294

    PubMed  CAS  Google Scholar 

  • Prevelige P Jr, Fasman GD (1989) Chou-Fasman Prediction of the secondary structure of proteins: Chou-Fasman-Prevelige algorithm. In: Fasman GD (ed) Prediction of protein structure and the principles of protein conformation. Plenum, New York, pp 391

    Google Scholar 

  • Prives C (1990) The replication functions of SV40 T antigen are regulated by phosphorylation. Cell 61: 735–738

    PubMed  CAS  Google Scholar 

  • Pruijn GJM, Van Driel W, Van der Vliet PC (1986) Nuclear factor III, a novel sequence-specific DNA-binding protein from HeLa cells stimulating adenovirus DNA replication. Nature 322: 656–659

    PubMed  CAS  Google Scholar 

  • Pruijn GJM, Van Driel W, Van Miltenburg RT, Van der Vliet PC (1987) Promoter and enhancer elements containing a conserved sequence motif are recognized by nuclear factor III, a protein stimulating adenovirus DNA replication. EMBO J 6: 3771–3778

    PubMed  CAS  Google Scholar 

  • Puvion-Dutilleul F (1991) Simultaneous detection of highly phosphorylated proteins and viral major DNA binding protein distribution in nuclei of adenovirus type 5-infected HeLa cells. J Histochem Cytochem 39: 669–680

    PubMed  CAS  Google Scholar 

  • Puvion-Dutilleul F, Puvion E (1990a) Replicating single-stranded adenovirus type 5 DNA molecules accumulate within well-delimited intranuclear areas of lytically infected HeLa cells. Eur J Cell Biol 379–388

    Google Scholar 

  • Puvion-Dutilleul F, Puvion E (1990b) Analysis by in situ hybridization and autoradiography of sites of replication and storage of single- and double-stranded adenovirus type 5 DNA in lytically infected HeLa cells. J Struct Biol 103: 280–289

    PubMed  CAS  Google Scholar 

  • Quinlan MP, Chen LB, Knipe DM (1984) The intranuclear location of a herpes simplex virus DNA-binding protein is determined by the status of viral DNA replication. Cell 36: 857–868

    PubMed  CAS  Google Scholar 

  • Ramachandra M, Padmanabhan R (1993) Adenovirus DNA polymerase is phosphorylated by a stably associated histone H1 kinase. J Biol Chem 268: 17448–17456

    PubMed  CAS  Google Scholar 

  • Ramachandra M, Nakano R, Mohan PM, Rawitch AB, Padmanabhan R (1993) Adenovirus DNA polymerase is a phosphoptrotein. J Biol Chem 268: 442–445

    PubMed  CAS  Google Scholar 

  • Rawlins DR, Rosenfeld PJ, Wides RJ, Challberg MD, Kelly TJ Jr (1984) Structure and function of the adenovirus origin of DNA replication. Cell 37: 309–319

    PubMed  CAS  Google Scholar 

  • Rekosh DMK, Russel WC, Bellett AJD, Robinson AJ (1977) Identification of a protein linked to the ends of adenovirus DNA. Cell 11: 283–295

    PubMed  CAS  Google Scholar 

  • Rice SA, Klessig DF (1984) The function(s) provided by the adenovirus-specified, DNA-binding protein required for viral late gene expression is independent of the role of the protein in viral DNA replication. J Virol 49: 35–49

    PubMed  CAS  Google Scholar 

  • Richardson WD, Roberts BL, Smith AE (1986) Nuclear location signals in polyoma virus large-T. Cell 44: 77–85

    PubMed  CAS  Google Scholar 

  • Richardson WD, Mills AD, Dilworth SM, Laskey RA, Dingwall C (1988) Nuclear protein migration involves two steps: rapid binding at the nuclear envelope followed by slower translocation through nuclear pores. Cell 52: 655–664

    PubMed  CAS  Google Scholar 

  • Rihs HP, Peters R (1989) Nuclear transport kinetics depend on phosphorylation-site-containing sequences flanking the karyophilic signal of the simian virus 40 T antigen. EMBO J 8: 1479–1484

    PubMed  CAS  Google Scholar 

  • Rihs H-P, Jans DA, Fan H, Peters R (1991) The rate of nuclear cytoplasmic protein transport is determined by the caScin kinase II site flanking the nuclear localization sequence of the SV 40 T-antigen. EMBO J 10: 633–639

    PubMed  CAS  Google Scholar 

  • Robbins J, Dilworth SM, Laskey RA, Dingwall C (1991) Two interdependent basic domains in nucleoplasmin nuclear targeting sequence: identification of a class of bipartite nuclear targeting sequence. Cell 64: 615–623

    PubMed  CAS  Google Scholar 

  • Roberts B (1989) Nuclear location signal-mediated protein transport. Biochim Biophys Acta 1008: 263–280

    PubMed  CAS  Google Scholar 

  • Roberts SB, Segil N, Heintz N (1991) Differential phosphorylation of the transcription factor oct1 during the cell cycle. Science 253: 1022–1026

    PubMed  CAS  Google Scholar 

  • Roninson I, Padmanabhan R (1980) Studies on the nature of the linkage between the terminal protein and the adenovirus DNA. Biochem Biophys Res Commun 94: 398–405

    PubMed  CAS  Google Scholar 

  • Roovers DJ, Van der Lee FM, Van der Wees J, Sussenbach JS (1993) Analysis of the adenovirus type 5 terminal protein precursor and DNA polymerase by linker insertion mutagenesis. J Virol 67: 265–276

    PubMed  CAS  Google Scholar 

  • Rosenblatt J, Gu Y, Morgan DO (1992) Human cyclin-dependent kinase 2 is activated during the S and G2 phases of the cell cycle and associates with cyclin A. Proc Natl Acad Sci USA 89: 2824–2828

    PubMed  CAS  Google Scholar 

  • Rosenwirth B, Anderson CW, Levine AJ (1976) Tryptic finger printing analysis of adenovirus 2, 5 and 12 DNA-binding proteins. Virology 69: 617–625

    PubMed  CAS  Google Scholar 

  • Russell WC, Blair GE (1977) Polypeptide phosphorylation in adenovirus-infected cells. J Gen Virol 34: 19–35

    PubMed  CAS  Google Scholar 

  • Russell WC, Webster A, Leith IR, Kemp GD (1989) Phosphorylation of adenovirus DNA-binding protein. J Gen Virol 70: 3249–3259

    PubMed  CAS  Google Scholar 

  • Saborio J, Oberg B (1976) In Vivo and in vitro synthesis of adenovirus type 2 early proteins. J Virol 17: 865–875

    PubMed  CAS  Google Scholar 

  • Sasaguri Y, Sanford T, Aguirre P, Padmanabhan R (1987) Immunological analysis of 140-kDa adenovirus-encoded DNA polymerase in adenovirus type-2 infected HeLa cells using antibodies raised against the protein expressed in E. coli. Virology 160: 389–399

    CAS  Google Scholar 

  • Schaack J, Schedl P, Shenk T (1990a) Topoisomerase I and II cleavage of adenovirus DNA in vitro: both topoisomerase activities appear to be required for adenovirus DNA replication. J Virol 64: 78–85

    PubMed  CAS  Google Scholar 

  • Schaak J, Ho WY, Freimuth P, Shenk T (1990b) Adenovirus terminal protein mediates both nuclear matrix attachment and efficient transcription of adenovirus DNA. Genes Dev 4: 1197–1208

    Google Scholar 

  • Schechter NM, Davies W, Anderson CW (1980) Adenovirus coded deoxyribonucleic acid binding protein: isolation physical properties and effects of proteolytic digestion. Biochemistry 19: 2802–2810

    PubMed  CAS  Google Scholar 

  • Scheidtman KH, Buck M, Schneider J, Kalderson D, Fanning E, Smith AE (1991) Biochemical characterization of phosphorylation site mutants of simian virus 40 large T antigen: evidence for interaction between amino and carboxy-terminal domains. J Virol 65: 1479–1490

    Google Scholar 

  • Schneider J, Fanning E (1988) Mutations in the phosphorylation sites of simian virus 40 (SV40) T antigen alter its origin DNA binding specificity for sites I and II affects SV40 DNA replication activity. J Virol 62: 1598–1605

    PubMed  CAS  Google Scholar 

  • Segil N, Roberts SB, Heintz N (1991a) Mitotic phosphorylation of the Oct-1/POU homeodomain and regulation of Oct-1 DNA binding activity. Science 254: 1814–1816

    PubMed  CAS  Google Scholar 

  • Segil N, Roberts SB, Heintz N (1991b) Cell-cycle-regulated phosphorylation of the transcription factor oct-1. Cold Spring Harb Symp Quant Biol 56: 285–292

    PubMed  CAS  Google Scholar 

  • Shi Y, Thomas JO (1992) The transport of proteins into the nucleus requires the 70-kilodalton heat shock protein or its cytosolic cognate. Mol Cell Biol 12: 2186–2192

    PubMed  CAS  Google Scholar 

  • Shinagawa M, Padmanabhan R (1979) Nucleotide sequence at the inverted terminal repetition of adenovirus type 2 DNA. Biochem Biophys Res Commun 87: 671–678

    PubMed  CAS  Google Scholar 

  • Shinagawa M, Padmanabhan R (1980) Comparitive sequence analysis of the inverted terminal repetitions from different adenoviruses. Proc Natl Acad Sci USA 77: 3931–3935

    Google Scholar 

  • Shu L, Hong JS, Wei Y-F, Engler JA (1986) Nucleotide sequence of the genes encoded in early region 2b of human adenovirus type 12. Gene 46: 187–195

    PubMed  CAS  Google Scholar 

  • Shu L, Horwitz MS, Engler JA (1987) Expression of enzymatically active adenovirus DNA polymerase from cloned DNA requires sequences upstream of the main open reading frame. Virology 161: 520–526

    PubMed  CAS  Google Scholar 

  • Shu L, Pettit SC, Engler JA (1988) The precise structure and coding capacity of mRNAs from early region 2B of human adenovirus serotype 2. Virology 165: 348–356

    PubMed  CAS  Google Scholar 

  • Silver PA (1991) How proteins enter the nucleus. Cell 64: 489–497

    PubMed  CAS  Google Scholar 

  • Simmons DT, Chou W, Rodgers K (1986) Phosphorylation downregulates the DNA-binding activity of simian virus 40 antigen. J Virol 60: 888–894

    PubMed  CAS  Google Scholar 

  • Smart JE, Stillman BW (1982) Adeovirus terminal protein precursor: partial amino acid sequence and the site of covalent linkage to virus DNA. J Biol Chem 257: 13499–13506

    PubMed  CAS  Google Scholar 

  • Sobczak-Thepot J, Harper F, Florentin Y, Zindy F, Brechot C, Puvion E (1993) Localizaion of cyclin A at the sites of cellular DNA replication. Exp Cell Res 206: 43–48

    PubMed  CAS  Google Scholar 

  • Sprang SR, Acharya KR, Goldsmith EJ, Stuart DI, Varvill K, Fletterick RJ, Madsen NB, Johnson LN (1988) Structural changes in glycogen Phosphorylase induced by phosphorylation. Nature 336: 215–221

    PubMed  CAS  Google Scholar 

  • Starr CM, Hanover JA (1990) Structure and function of the nuclear pore complex: new perspectives. Bioessays 12: 323–330

    PubMed  CAS  Google Scholar 

  • Stillman BW (1981) Adenovirus DNA replication in vitro: a protein linked to the 5′ end of nascent DNA strands. J Virol 37: 139–147

    PubMed  CAS  Google Scholar 

  • Stillman B (1989) Initiation of eukaryotic DNA replication in vitro. Annu Rev Cell Biol 5: 197–245

    PubMed  CAS  Google Scholar 

  • Stillman BW, Lewis JB, Chow LT, Mathews MB, Smart JE (1981) Identification of the gene and mRNA for the adenovirus terminal protein precursor. Cell 23: 497–508

    PubMed  CAS  Google Scholar 

  • Stillman BW, Topp WC, Engler JA (1982) Conserved sequences at the origin of adenovirus DNA replication. J Virol 44: 530–537

    PubMed  CAS  Google Scholar 

  • Stuiver MH, Van der Vliet PC (1990) Adenovirus DNA binding protein forms multimeric protein complex with double-stranded DNA and enhances binding of nuclear factor I. J Virol 64: 379–386

    PubMed  CAS  Google Scholar 

  • Stunnenberg HG, Lange H, Philipson L, Van Miltenberg RT, Van der Vliet PC (1988) High expression of functional adenovirus DNA polymerase and precursor terminal protein using recombinant vaccinia virus. Nucleic Acids Res 16: 2431–2444

    PubMed  CAS  Google Scholar 

  • Sturm RA, Herr W (1988) The POU domain DNA-binding structure. Nature 336: 601–604

    PubMed  CAS  Google Scholar 

  • Sturzbecher H-W, Maimets T, Chumakov P, Brain R, Addison C, Simanis V, Rudge K, Philp R, Grimaldi M, Court W, Jenkins JR (1990) p53 interacts with p34cdc2 in mammalian cells: implications for cell cycle control and oncogenesis. Oncogene 5: 795–801

    Google Scholar 

  • Sugawara K, Gilead Z, Green M (1977) Purification and molecular characterization of a adenovirus type 2 DNA-binding protein. J Virol 21: 338–346

    PubMed  CAS  Google Scholar 

  • Tamura K, Kanaoka Y, Jinno S, Nagata A, Ogiso Y, Shimizu K, Hayakawa T, Nojima H, Okayama H (1993) Cyclin G: a new mammalian cyclin with homology to fission yeast Cig 1. Oncogene 8: 2113–2118

    PubMed  CAS  Google Scholar 

  • Tanaka M, Herr W (1990) Differential transcriptional activation by oct-1, and oct-2: interdependent activation domains induce oct-2 phosphorylation. Cell 60: 375–386

    PubMed  CAS  Google Scholar 

  • Temperley SM, Hay RT (1992) Recognition of the adenovirus type 2 origin of DNA replication by the virally encoded DNA polymerase and preterminal proteins. EMBO J 11: 761–768

    PubMed  CAS  Google Scholar 

  • Templeton DJ (1992) Nuclear binding of retinoblastoma gene product is determined by cell cyle-regulated phosphorylation. Mol Cell Biol 12: 435–443

    PubMed  CAS  Google Scholar 

  • Thomas G (1992) MAP kinase by any other name smells just as sweet. Cell 68: 3–6

    PubMed  CAS  Google Scholar 

  • Tokunaga O, Shinagawa M, Padmanabhan R (1982) Physical mapping of the genome and sequence analysis at the inverted terminal repetition of adenovirus type 4 DNA. Gene 18: 329–334

    PubMed  CAS  Google Scholar 

  • Tolun A, Alestrom P, Pettersson U (1979) Sequence of inverted terminal repetitions from different adenoviruses: demonstration of conserved sequences and homology between SA-7 termini and SV40 DNA. Cell 17: 705–713

    PubMed  CAS  Google Scholar 

  • Tommasino M, Adamczewski JP, Carlotti F, Barth CF, Manetti R, Contorni M, Cavalieri F, Hunt T, Crawford L (1993) HPV 16 E7 protein associates with the protein kinase p33cdkl and cyclin A. Oncogene 8: 195–202

    PubMed  CAS  Google Scholar 

  • Tsai LH, Harlow E, Meyerson M (1991) Isolation of the human cdk2 gene that encodes the cyclin A and adenovirus E1A-associated p33 kinase. Nature 353: 174–177

    PubMed  CAS  Google Scholar 

  • Tsernoglou D, Tsugita A, Tucker AD, Van der Vliet PC (1985) Characterization of the chymotryptic core of the adenovirus DNA-binding protein. FEBS Lett 188: 248–252

    PubMed  CAS  Google Scholar 

  • Underwood MR, Fried HM (1990) Characterization of nuclear localizing sequences derived from yeast ribosomal protein L29. EMBO J 9: 91–99

    PubMed  CAS  Google Scholar 

  • Van Bergen BGM, Van der Vliet PC (1983) Temperature sensitive initiation and elongation of adenovirus DNA replication in vitro with nuclear extracts from H5ts36- H5ts149- and H5ts125-infected HeLa cells. J Virol 46: 624–648

    Google Scholar 

  • Van der Vliet PC (1990) Adenovirus DNA replication in vitro. In: Strauss PR, Wilson SH (eds) The eukaryotic nucleus, vol 1. Telford, Caldwell pp 1–29

    Google Scholar 

  • Van der Vliet PC, Levine AJ (1973) DNA-binding proteins specific for cells infected by adenovirus. Nature 246: 170–174

    Google Scholar 

  • Van der Vliet PC, Sussenbach JS (1975) An adenovirus type 5 gene function required for initiation of viral DNA replication.Virology 67: 415–426

    CAS  Google Scholar 

  • Van der Vliet PC, Zandberg J, Jansz HS (1977) Evidence for a function of the adenovirus DNA binding protein in initiation of DNA synthesis as well as in elongation on nascent DNA chains. Virology 80: 98–110

    PubMed  Google Scholar 

  • Van der Vliet PC, Keegstra W, Jansz HS (1978) Complex formation between the adenovirus type 5 DNA binding protein and single-stranded DNA. Eur J Biochem 86: 389–398

    PubMed  Google Scholar 

  • Verrijzer CP, Kal AJ, Van der Vliet PC (1990) DNA binding domain (POU domain) of transcription factor oct-1 suffices for stimulation of DNA replication. EMBO J 9: 1883–1888

    PubMed  CAS  Google Scholar 

  • Voelkerding K, Klessig DF (1986) Identification of two nuclear subclasses of the adenovirus type 5 encoded DNA-binding protein. J Virol 60: 353–362

    PubMed  CAS  Google Scholar 

  • Watson CJ, Hay RT (1990) Expression of adenovirus type 2 DNA polymerase in insect cells infected with a recombinant baculovirus. Nucleic Acids Res 18: 1167–1173

    PubMed  CAS  Google Scholar 

  • Weinberg RA (1991) Tumor suppressor genes. Science 254: 1138–1146

    PubMed  CAS  Google Scholar 

  • Wides RJ, Challberg MD, Rawlins DR, Kelly TJ (1987) Adenovirus origin of DNA replication: sequence requirements for replication in vitro. Mol Cell Biol 7: 864–874

    PubMed  CAS  Google Scholar 

  • Wilcock D, Lane DP (1991) Localization of p53, retinoblastoma and host replication proteins at sites of viral DNA replication in herpes-infected cells. Nature 349: 429–431

    PubMed  CAS  Google Scholar 

  • Williams KR, Chase J (1990) Eukaryotic single-stranded nucleic acid binding proteins. In: Revzin A (ed) The biology of nonspecific DNA-protein interactions. CRC, Boca Raton, pp 197–227

    Google Scholar 

  • Williams RT, Carbonaro-Hall DA, Hall FL (1992) Copurification of p34ccfc2/p58 cyclin A proline-directed protein kinase and the retinoblastoma tumor susceptibility gene product: interaction of an oncogenic serine/threonine protein kinase with a tumor-suppressor protein. Oncogene 7: 423–432

    PubMed  CAS  Google Scholar 

  • Xiong Y, Connolly T, Futcher B, Beach D (1991) Human D-type cyclin. Cell 65: 691–699

    PubMed  CAS  Google Scholar 

  • Xiong Y, Zhang H, Beach D (1992) D type cyclin associates with multiple protein kinases and the DNA replication and repair factor PCNA. Cell 71: 505–514

    PubMed  CAS  Google Scholar 

  • Zhao L-J (1990) Expression and nuclear transport of the adenovirus DNA polymerase and preterminal protein. PhD Thesis, University of Kansas, Kansas City, p 66

    Google Scholar 

  • Zhao L-J, Padmanabhan R (1988) Nuclear transport of adenovirus DNA polymerase is facilitated by interaction with preterminal protein. Cell 55: 1005–1015

    PubMed  CAS  Google Scholar 

  • Zhao L-J, Padmanabhan R (1991) Three basic regions in adenovirus DNA polymerase interact differentially depending on the protein context to function as bipartite nuclear localization signals. New Biol 3: 1074–1088

    PubMed  CAS  Google Scholar 

  • Zhao L-J, Irie K, Trirawatanapong T, Nakano R, Nakashima A, Morimatsu M, Padmanabhan R (1991) Synthesis of biologically active adenovirus preterminal protein in insect cells using a baculovirus vector. Gene 100: 147–154

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ramachandra, M., Padmanabhan, R. (1995). Expression, Nuclear Transport, and Phosphorylation of Adenovirus DNA Replication Proteins. In: Doerfler, W., Böhm, P. (eds) The Molecular Repertoire of Adenoviruses II. Current Topics in Microbiology and Immunology, vol 199/2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79499-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79499-5_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79501-5

  • Online ISBN: 978-3-642-79499-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics