Skip to main content

Molecular Interactions During Adenovirus DNA Replication

  • Chapter

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 199/2))

Abstract

Over the past 20 years studies on the replication of adenovirus DNA have contributed not only to an understanding of the mechanics of adenovirus DNA replication, but have also shed light on basic processes such as the assembly of nucleoprotein complexes and virus-host interactions. This subject has been reviewed extensively (Hay and Russell 1989; Stillman 1989; Van Der Vliet 1990; Salas 1991), but a number of recent findings have suggested that the time may be ripe for further evaluation of new developments in the field.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adhya S, Schneidman Hurwitz J (1986) Reconstruction of adenovirus replication origins with a human Nuclear factor 1 binding site. J biol chem 261: 3339–3346

    PubMed  CAS  Google Scholar 

  • Bemad A, Zaballos A, Salas M, Blanco L (1987) Structural and functional relationships between procaryotic and eukaryotic DNA polymerases. EMBO J 6: 4219–4225

    Google Scholar 

  • Bemad A, Blanco L, Lazaro JM, Martin G, Salas M (1989) A conserved 3′-5′ exonuclease active site in prokaryotic and eukaryotic DNA polymerases. Cell 59: 219–228

    Google Scholar 

  • Boehmer PE, Lehman IR (1993) Herpes simplex virus type IICP8: helix-destabilising properties. J Virol 67: 711–715

    PubMed  CAS  Google Scholar 

  • Bosher J, Robinson EC, Hay RT (1990) Interactions between the adenovirus type 2 polymerase and the DNA binding domain of nuclear factor I. New Biol 2: 1083–1090

    PubMed  CAS  Google Scholar 

  • Bosher J, Leith IR, Temperley SM, Wells M, Hay RT (1991) The DNA-binding domain of nuclear factor I is sufficient to cooperate with the adenovirus type 2 DNA-binding protein in viral replication. J Gen Virol 72: 2975–2980

    PubMed  CAS  Google Scholar 

  • Challberg MD, Kelly TJ (1979) Adenovirus DNA replication in vitro. Proc Natl Acad Sci USA 76: 655–659

    PubMed  CAS  Google Scholar 

  • Challberg MD, Rawlins DR (1984) Template requirements for the initiation of adenovirus DNA replication. Proc Natl Acad Sci USA 81: 100–104

    PubMed  CAS  Google Scholar 

  • Challberg MD, Desiderio SV, Kelly TJ (1980) Adenovirus DNA replication in vitro: characterisation of a protein covalently linked to nascent DNA strands. Proc Natl Acad Sci USA 77: 5105–5109

    CAS  Google Scholar 

  • Chen M, Mermod N, Horwitz MS (1990) Protein-protein interactions between adenovirus DNA polymerase and nuclear factor I mediate formation of the DNA replication pre-initiation complex. J Biol Chem 265: 18634–18642

    PubMed  CAS  Google Scholar 

  • Cleat PH, Hay RT (1989) Co-operative interactions between NF-I and the adenovirus DNA binding protein at the origin of DNA replication. EMBO J 8: 1841–1848

    PubMed  CAS  Google Scholar 

  • Cleghorn V, Klessig DF (1992) Characterisation of the nucleic acid binding region of adenovirus DNA binding protein by partial proteolysis and photochemical cross-linking. J Biol Chem 267: 17872–17881

    Google Scholar 

  • De Vries E, van Driel W, Tromp M, van Boom J, Van der Vliet PC (1985) Adenovirus DNA replication in vitro: site directed mutagenesis of the nuclear factor I binding site of the Ad. origin. Nucleic Acids Res 13: 4943–4952

    Google Scholar 

  • De Vries E, van Driel W, van den Heuvel SJL, Van der Vliet PC (1987) Contact point analysis of the HeLa nuclear factor I recognition site reveals symmetrical binding at one side of the helix. EMBO J 6: 161–168

    PubMed  Google Scholar 

  • Eagle PA, Klessig DF (1992) A zinc-binding motif located between amino acids 273 and 286 in the adenovirus DNA-binding protein is necessary for ssDNA binding. Virology 187: 777–787

    PubMed  CAS  Google Scholar 

  • Enomoto T, Lichy JH, Ikeda JE, Hurwitz J (1981) Adenovirus replication in vitro: Purification of the terminal protein in a functional form. Proc Natl Acad Sci USA 78: 6779–6783

    PubMed  CAS  Google Scholar 

  • Field J, Gronostajski RM, Hurwitz J (1984) Properties of the adenovirus DNA polymerase. J Biol Chem 259: 9487–9495

    PubMed  CAS  Google Scholar 

  • Fredman JN, Engler JA (1993) Adenovirus precursor to terminal protein interacts with the nuclear matrix in vivo and in vitro. J Virol 67: 3384–3395

    PubMed  CAS  Google Scholar 

  • Fredman JN, Pettit SC, Horwitz MS, Engler JA (1991) Linker insertion mutations in the adenovirus preterminal protein that affect DNA replication in vivo and in vitro. J Virol 65: 4591–4597

    PubMed  CAS  Google Scholar 

  • Freimuth PI, Ginsberg HS (1986) Codon insertion mutants of the adenovirus terminal protein. Proc Natl Acad Sci USA 83: 7816–7820

    PubMed  CAS  Google Scholar 

  • Friefeld BR, Krevolin MD, Horwitz MS (1983) Effect of the adenovirus H5ts125 and Hts107 DNA binding proteins on DNA replication in vitro. Virology 124: 380–389

    PubMed  CAS  Google Scholar 

  • Georgaki A, Hubscher U (1993) DNA unwinding by replication factor A is a property of the 70KDa subunit and is facilitated by phosphorylation of the 32KDa subunit. Nucleic Acids Res 21: 3659–3665

    PubMed  CAS  Google Scholar 

  • Georgaki A, Strack B, Podust V, Hubscher U (1992) DNA unwinding activity of replication protein A. FEBS Lett 308: 240–244

    PubMed  CAS  Google Scholar 

  • Gounari F, De Francesco R, Schmitt J, Van der Vliet PC, Cortese R, Stunnenberg H (1990) Amino terminal domain of NF-I binds to DNA as a dimer and activates adenovirus DNA replication. EMBO J 9: 559–566

    PubMed  CAS  Google Scholar 

  • Guggenheimer RA, Nagata K, Kenny M, Hurwitz J (1984) Protein primed replication of plasmids containing the terminus of the adenovirus genome 2: purification and characterisation of a host protein required for the replication of DNA templates devoid of the terminal protein. J Biol Chem 259: 7815–7825

    PubMed  CAS  Google Scholar 

  • Harris MPG, Hay RT (1988) DNA sequences required for the initiation of adenovirus type 4 DNA replication J Mol Biol 201: 57–67

    PubMed  CAS  Google Scholar 

  • Hay RT (1985a) The origin of adenovirus DNA replication: minimal DNA sequence in vivo. EMBO J 4: 421–426

    PubMed  CAS  Google Scholar 

  • Hay RT (1985b) The origin of adenovirus DNA replication: role of the nuclear factor I site in vivo. J Mol Biol 186: 129–136

    PubMed  CAS  Google Scholar 

  • Hay RT, McDougall IM (1986) Viable viruses with deletions in the left inverted terminal repeat define the origin of Ad2 DNA replication. J Gen Virol 6: 321–332

    Google Scholar 

  • Hay RT, Russell WC (1989) Recognition mechanisms in the synthesis of animal virus DNA’s. Biochem J 258: 3–16

    PubMed  CAS  Google Scholar 

  • Hay RT, Stow ND, McDougall IM (1984) Replication of adenovirus mini chromosomes. J Mol Biol 175: 493–510

    PubMed  CAS  Google Scholar 

  • Hay RT, Clark L, Cleat PH, Harris MPG, Robertson EC, Watson CJ (1988) Requirements for the initiation of adenovirus types 2 and 4 DNA replication. Cancer Cells 6: 71–75

    CAS  Google Scholar 

  • Huberman JA, Kornberg A (1971) Stimulation of T4 bacteriophage DNA polymerase by the protein product of gene 32. J Mol Biol 62: 39–52

    PubMed  CAS  Google Scholar 

  • Ikeda J-E, Enomoto T, Hurwitz J (1982) Adenovirus protein primed initiation of DNA chains in vitro. Proc Natl Acad Sci USA 79: 2442–2446

    PubMed  CAS  Google Scholar 

  • Jones KA, Kadonaga JT, Rosenfeld PJ, Kelly TJ, Tjian R (1987) A cellular DNA binding protein that activates eukaryotic transcription and DNA replication. Cell 48: 79–89

    PubMed  CAS  Google Scholar 

  • Joung I, Engler JA (1992) Mutations in two cysteine-histidine-rich clusters in adenovirus type 2 DNA polymerase affect DNA binding. J Virol 66: 5788–5796

    PubMed  CAS  Google Scholar 

  • Kenny MK, Hurwitz J (1988) Initiation of adenovirus DNA replication. II. Structural requirements using synthetic oligonucleotide adenovirus templates. J Biol Chem 263: 9801–9808

    PubMed  CAS  Google Scholar 

  • Kenny MK, Balogh LA, Hurwitz J (1988) Initiation of adenovirus DNA replication. I. Mechanism of action of a host protein required for replication of adenovirus DNA templates devoid of the terminal protein. J Biol Chem 263: 9809–9817

    PubMed  CAS  Google Scholar 

  • Kenny MK, Lee S-H, Hurwitz J (1989) Multiple functions of human single-stranded DNA binding protein in simian virus 40 DNA replication: single-strand stabilisation and stimulation of DNA polymerases a and 5. Proc Natl Acad Sci USA 86: 9757–9761

    PubMed  CAS  Google Scholar 

  • Kenny MK, Schlegel U, Furneaux H, Hurwitz J (1990) The role of human single-stranded DNA binding protein and its individual subunits in simian virus 40 DNA replication. J Biol Chem 265: 7693–7700

    PubMed  CAS  Google Scholar 

  • Kitchingman GR (1985) Sequence of the DNA binding protein of a human subgroup E adenovirous (type 4): comparisons with subgroup A (type 12), subgroup B (type 7) and subgroup C (type 5). Virology 146: 90–101

    PubMed  CAS  Google Scholar 

  • Klein H, Maltzman W, Levine AJ (1979) Structure function relationships of the adenovirus DNA binding protein. J Biol Chem 254: 11051–11060

    PubMed  CAS  Google Scholar 

  • Kruijer W, van Schaik FAM, Sussenbach JS (1981) Structure and organisation of the gene coding for the DNA binding protein of adenovirus type 5. Nucleic Acids Res 9: 4439–4450

    PubMed  CAS  Google Scholar 

  • Lally C, Dorper T, Groger W, Antoine G, Winnacker E-L (1984) A size analysis of the adenovirus replicon. EM BO J 3: 333–337

    CAS  Google Scholar 

  • Larder BA, Kemp SD, Darby G (1987) Related functional domains in virus DNA polymerases. EMBO J 6: 169–175

    PubMed  CAS  Google Scholar 

  • Leegwater PAJ, van Driel W, Van der Vliet PC (1985) Recognition site of nuclear factor I, a sequence specific DNA binding protein from HeLa cells that stimulates adenovirus DNA replication. EMBO J 4: 1515–1521

    PubMed  CAS  Google Scholar 

  • Lichy JH, Field J, Horwitz MS, Hurtwitz J (1981) Formation of a covalent complex between the 80kDa adenovirus terminal protein and 5′-dCMP in vitro. Proc Natl Acad Sci USA 78: 2678–2682

    PubMed  CAS  Google Scholar 

  • Lichy JH, Field J, Horwitz MS, Hurwitz J (1982) Separation of the adenovirus terminal protein precursor from its associated DNA polymerase: role of both proteins in the initiation of adenovirus DNA replication. Proc Natl Acad Sci USA 79: 5225–5229

    PubMed  CAS  Google Scholar 

  • Lindenbaum JO, Field J, Hurwitz J (1986) The adenovirus DNA binding protein and adenovirus DNA polymerase interact to catalyse elongation of primed DNA templates. J Biol Chem 261: 10218–10227

    PubMed  CAS  Google Scholar 

  • Mangel WF, McGrath WJ, Toledo D, Anderson CW (1993) Viral DNA and a viral peptide are cofactors of adenovirus virion proteinase activity. Nature 361: 274–275

    PubMed  CAS  Google Scholar 

  • Marcy Al, Yager DR, Coen DM (1990) Engineered herpes simplex virus DNA polymerase point mutants: the most highly conserved region shared among a-like DNA polymerases is involved in substrate recognition. J Virol 64: 2208–2216

    PubMed  CAS  Google Scholar 

  • Meisterernst M, Rogge L, Foeckler R, Karaghiosoff M, Winnacker E-L (1989) Structural and functional organisation of a porcine gene coding for nuclear factor I. Biochemistry 28: 8191–8200

    PubMed  CAS  Google Scholar 

  • Mermod N, O’Neill EA, Kelly TJ, Tjian R (1989) The proline rich transcriptional activator of CTF/NF-I is distinct from the replication and DNA binding domain. Cell 58: 741–753

    PubMed  CAS  Google Scholar 

  • Monaghan A, Hay RT (1994) Pyridoxal phosphate inhibition of the adenovirus DNA polymerase. (submitted for publication) Monaghan A, Webster AG, Hay RT (1994) Adenovirus DNA binding protein: helix destabilising property. Nucleic Acids Res 5: 742–748

    Google Scholar 

  • Mul YM, Van der Vliet PC (1992) Nuclear factor I enhances Adenovirus DNA replication increasing the stability of a preinitiation complex. EMBO J 11: 751–760

    PubMed  CAS  Google Scholar 

  • Mul YM, Van der Vliet PC (1993) The adenovirus DNA binding protein effects the kinetics of DNA replication by a mechanism distinct from NF-I or Oct-1. Nucleic Acids Res 21: 641–647

    PubMed  CAS  Google Scholar 

  • Mul YM, Verrijzer CP, Van der Vliet PC (1990) Transcription factors NF-I and NF-III/Oct-1 function independently, employing different mechanisms to enhance adenovirus DNA replication. J Virol 64: 5510–5518

    PubMed  CAS  Google Scholar 

  • Nagata K, Guggenheimer RA, Enomoto T, Lichy JH, Hurwitz J (1982) Adenovirus DNA replication in vitro: identification of a host factor that stimulates synthesis of the preterminal protein-dCMP complex. Proc Natl Acad Sci USA 79: 6438–6442

    PubMed  CAS  Google Scholar 

  • Nagata K, Guggenheimer RA, Hurwitz J (1983) Specific binding of acellular DNA replication protein to the origin of replication of adenovirus DNA. Proc Natl Acad Sci USA 80: 6177–6181

    PubMed  CAS  Google Scholar 

  • Neale GAM, Kitchingman GR (1990) Conserved region 3 of the adenovirus type 5 DNA binding protein is important for interaction with single-stranded DNA. J Virol 64: 630–638

    PubMed  CAS  Google Scholar 

  • O’Neill EA, Kelly TJ (1988) Purification and characterisation of nuclear factor III (origin recognition protein C), a sequence specific DNA binding protein required for efficient initiation of adenovirus DNA replication. J Biol Chem 263: 931–937

    PubMed  Google Scholar 

  • O’Neill EA, Fletcher C, Burrow CR, Heintz N, Roeder RG, Kelly TJ (1988) The transcription factor OTF-1 is functionally identical to the adenovirus DNA replication factor NF-III. Science 241: 1210–1213

    PubMed  Google Scholar 

  • Paonessa G, Gounari F, Frank R, Cortese R (1988) Purification of an NFI-like binding protein from rat liver and cloning of the corresponding cDNA. EMBO J 7: 3115–3123

    PubMed  CAS  Google Scholar 

  • Pettit SC, Horwitz MS, Engler JA (1988) Adenovirus preterminal protein synthesised in COS cells from cloned DNA is active in DNA replication in vitro. J Virol 62: 496–500

    PubMed  CAS  Google Scholar 

  • Pettit SC, Horwitz MS, Engler JA (1989) Mutations in the precursor to the terminal protein of adenovirus serotypes 2 and 5. J Virol 63: 5344–5350

    Google Scholar 

  • Pronk R, Van der Vliet PC (1993) The adenovirus terminal protein influences binding of replication proteins and changes the origin structure. Nucleic Acids Res 21: 2293–2300

    PubMed  CAS  Google Scholar 

  • Pronk R, Stuiver MH, Van der Vliet PC (1992) Adenovirus DNA replication: the function of the covalently bound terminal protein. Chromosoma 102, 39–45

    Google Scholar 

  • Pruijin GJM, Van Driel W, Van der Vliet PC (1986) A novel sequence specific DNA binding protein from HeLa cells stimulating adenovirus DNA replication. Nature 322: 656–659

    Google Scholar 

  • Pruijin GJM, Van der Vliet PC, Dathan NA, Mattaj IW (1989) Anti-OTF-1 antibodies inhibit NF-III stimulation in vitro adenovirus DNA replication. Nucleic Acids Res 17: 1845–1863

    Google Scholar 

  • Ramachandra M, Padmanabhan R (1993) Adenovirus DNA polymerase is phosphorylated by a stably associated histone H1 kinase. J Biol Chem 268: 17448–17456

    PubMed  CAS  Google Scholar 

  • Ramachandra M, Nakano R, Mohan PM, Rawitch AB, Padmanabhan P (1993) Adenovirus DNA polymerase is a phosphoprotein. J Biol Chem 268: 442–448

    PubMed  CAS  Google Scholar 

  • Rancourt C, Tihanyi K, Bourbonniere M, Weber JM (1994) Identification of active-site residues of the adenovirus endopeptidase. Proc Natl Acad Sci USA 91: 844–847

    PubMed  CAS  Google Scholar 

  • Rawlins DR, Rosenfeld PJ, Wides RJ, Challberg MD, Kelly TJ (1984) Structure and function of the adenovirus origin of DNA replication. Cell 37: 309–319

    PubMed  CAS  Google Scholar 

  • Reuben RC, Getter MC (1973) A DNA-binding protein induced by bacteriophage T7. Proc Natl Acad Sci USA 70: 1864–1870

    Google Scholar 

  • Roovers DJ, van der Lee FM, van der Wees J, Sussenbach JS (1993) Analysis of the adenovirus type 5 terminal protein precursor and DNA polymerase by linker insertion mutagenesis. J Virol 67: 265–276

    PubMed  CAS  Google Scholar 

  • Rosenfeld PJ, O’Neil, EA, Wides RJ, Kelly TJ (1987) Sequence specific interactions between cellular DNA-binding proteins and the adenovirus origin of replication. Mol Cell Biol 7: 875–886

    PubMed  CAS  Google Scholar 

  • Salas M (1991) Protein-priming of DNA replication. Annu Rev Biochem 60: 39–71

    PubMed  CAS  Google Scholar 

  • Santoro C, Mermod N, Andrews PC, Tjian R (1988) A family of human CCAAT box binding proteins active in transcription and DNA replication: cloning and expression of multiple cDNA’s. Nature 334: 218–224

    PubMed  CAS  Google Scholar 

  • Schaak J, Yew-Hai Ho W, Freimuth P, Shenk T (1990) Adenovirus terminal protein mediates both nuclear matrix association and efficient transcription of adenovirus DNA. Genes Dev 4: 1197–1208

    Google Scholar 

  • Schneider R, Gander I, Muller U, Mertz R, Winnacker EL (1986) A sensitive and rapid gel retention assay for nuclear factor I and other DNA binding proteins in crude nuclear extracts. Nucl Acid Res 14: 1303–1317

    CAS  Google Scholar 

  • Shu L, Horwitz MS, Engler JA (1987) Expression of enzymatically active adenovirus DNA polymerase from cloned cDNA requires sequences upstream of the main open reading frame. Virology 161: 520–526

    PubMed  CAS  Google Scholar 

  • Stillman B (1989) Initiation of eukaryotic DNA replication in vitro. Annu Rev Cell Biol 5: 197–245

    PubMed  CAS  Google Scholar 

  • Stillman B, Lewis JB, Chow LT, Mathews MB, Smart JE (1981) Identification of the gene and mRNA for the adenovirus terminal protein precursor. Cell 23: 497–508

    PubMed  CAS  Google Scholar 

  • Stillman B, Tamanoi F, Matthews MB (1982) Purification of an adenovirus-coded DNA polymerase that is required for initiation of DNA replication. Cell 31: 613–623

    PubMed  CAS  Google Scholar 

  • Stow ND (1982) The infectivity of adenovirus genomes lacking DNA sequence from their left hand termini. Nucleic Acids Res 10: 5105–5119

    PubMed  CAS  Google Scholar 

  • Strum RA, Herr W (1988) The POU domain is a bipartite DNA-binding structure. Nature 336: 601–604

    Google Scholar 

  • Strum RA, Das G, Herr W (1988) The ubiquitous octamer binding protein oct-1 contains a POU domain and a homeobox subdomain. Genes Dev 2: 1582–1599

    Google Scholar 

  • Stuiver MH, Van der Vliet PC (1990) Adenovirus DNA binding protein forms a multimeric protein complex with double-stranded DNA and enhances binding of nuclear factor I. J Virol 65: 379–389

    Google Scholar 

  • Stuiver MH, Bergsma WG, Arnberg AC, Van Amerongen H, Van Grondelle R, Van der Vliet PC (1992) Structural alterations of double-stranded DNA in a complex with the adenovirus DNA-binding protein: implications for its function in DNA replication. J Mol Biol 225: 99–1011

    Google Scholar 

  • Stunnberg HG, Lange H, Philipson L. Van Miltenburg RT, Van der Vliet PC (1988) High expression of functional adenovirus DNA polymerase and precursor terminal protein using recombinant vaccinia virus. Nucleic Acids Res 16: 2431–2444

    Google Scholar 

  • Tarmanoi F, Stillman B (1982) Function of adenovirus terminal protein in the initiation of DNA replication. Proc Natl Acad Sci USA 79: 2221–2225

    Google Scholar 

  • Tamanoi F, Stillman B (1983) Initiation of adenovirus DNA replication in vitro requires a specific DNA sequence. Proc Natl Acad Sci USA 80: 6446–6450

    PubMed  CAS  Google Scholar 

  • Temperley SM, Hay RT (1991) Replication of adenovirus type 4 DNA by a purified fraction from infected cells. Nucleic Acids 19: 3243–3249

    CAS  Google Scholar 

  • Tempereley SM, Hay RT (1992) Recognition of the adenovirus type 2 origin of replication by the virally encoded DNA polymerase and preterminal proteins. EMBO J 11: 761–768

    Google Scholar 

  • Temperely SM, Burrow CR, Kelly TJ, Hay RT (1991) Identification of two distinct regions within the adenovirus minimal origin of replication that are required for adenovirus type 4 DNA replication in vitro. J Virol 65: 5037–5044

    Google Scholar 

  • Tucker PA, Tsernoglou D, Tucker AD, Coenjaerts FEJ, Leenders H, Van der Vliet PC (1994) X-Ray crystal structure of the 39KDa C-terminal adenovirus DNA binding protein. EMBO J 13: 2994–3002

    PubMed  CAS  Google Scholar 

  • Van Bergen BGM, Van der Ley PA, Van Driel W, Van Mansfeld ADM, Van der Vliet PC (1983) Replication of origin containing adenovirus DNA fragments that do not carry the terminal protein. Nucleic Acids Res 11: 1975–1989

    PubMed  Google Scholar 

  • Van der Vliet PC (1990) Adenovirus DNA replication in vitro. In: Straus P, Wilson SH (eds) The eukaryotic nucleus. Telford, Caldwell

    Google Scholar 

  • Van der Vliet PC, Levine AJ (1973) DNA binding proteins specific for cells infected by adenovirus Nature New Biol 246: 170–174

    PubMed  Google Scholar 

  • Van der Vliet PC, Sussenbach JS (1975) An adenovirus type 5 gene function required for initiation of viral DNA replication. Virology 67: 415–426

    PubMed  CAS  Google Scholar 

  • Van der Vliet PC, Zandberg J, Jansz HS (1977) Evidence for the function of the adenovirus DNA binding protein in initiation of DNA synthesis as well as in elongation on nascent DNA chains. Virology 80: 98–110

    PubMed  Google Scholar 

  • Verrijzer CP, Kal AJ, Van der Vliet PC (1990) The DNA binding domain (POU domain) of transcription factor Oct-1 suffices for stimulation of DNA replication. EMBO J 9: 1883–1888

    PubMed  CAS  Google Scholar 

  • Verrijzer CP, Van Oosterhout JAW, Van Weperen WW, Van der Vliet PC (1991) POU Proteins bend DNA via the POU-specific domain. EMBO J 10: 3007–3014

    PubMed  CAS  Google Scholar 

  • Verrijzer CP, Van Oosterhout JAW, Van der Vliet PC (1992) The Oct-1 POU domain mediates interactions between Oct-1 and other POU proteins. Mol Cell Biol 12: 542–551

    PubMed  CAS  Google Scholar 

  • Vos HL, van der Lee FM, Reemst AMCB, van Loon AE, Sussenbach JS (1988) The genes encoding the DNA binding protein and the 23 K protease of adenovirus types 40 and 41. Virology 163: 1–10

    PubMed  CAS  Google Scholar 

  • Watson CJ, Hay RT (1990) Expression of adenovirus type 2 DNA polymerase in insect cells infected with a recombinant baculovirus. Nucleic Acids Res 18: 1167–1173

    PubMed  CAS  Google Scholar 

  • Weber J (1990) The adenovirus proteinases. Semin Virol 1: 379–384

    CAS  Google Scholar 

  • Webster A, Russell S, Talbot P, Russell WC, Kemp GD (1989) Characterisation of the adenovirus protease: substrate specificity J Gen Virol 70: 3225–3234

    PubMed  CAS  Google Scholar 

  • Webster A, Hay RT, Kemp G (1993) The adenovirus protease is activated by a virus-coded disulphide-linked peptide. Cell 72: 97–104

    PubMed  CAS  Google Scholar 

  • Webster A, Leith I, Hay RT (1994) Activation of the adenovirus coded protease and processing of the preterminal protein. J Virol (in press)

    Google Scholar 

  • Wides RJ, Challberg MD, Rawlins DR, Kelly TJ (1987) Adenovirus origin of replication: sequence requirements for replication in vitro Mol Cell Biol 7: 864–874

    PubMed  CAS  Google Scholar 

  • Zijderveld DC, Van der Vliet PC (1994) Helix-destablizing properties of the adenovirus DNA-binding protein. J Virol 68: 1158–1164

    PubMed  CAS  Google Scholar 

  • Zijderveld DC, Stuiver MH, Van der Vliet PC (1993) The adenovirus DNA binding protein enhances intermolecular renaturation but inhibits intramolecular DNA renaturation. Nucleic Acids Res 21: 641–647

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hay, R.T., Freeman, A., Leith, I., Monaghan, A., Webster, A. (1995). Molecular Interactions During Adenovirus DNA Replication. In: Doerfler, W., Böhm, P. (eds) The Molecular Repertoire of Adenoviruses II. Current Topics in Microbiology and Immunology, vol 199/2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79499-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79499-5_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79501-5

  • Online ISBN: 978-3-642-79499-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics