Adenovirus DNA Replication

Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 199/2)


Studies on the replication of adenovirus DNA were initiated more than two decades ago and quickly led to a novel displacement model for DNA replication (Sussenbach et al. 1972). These studies were mainly performed using intact infected cells or isolated nuclei. It was only after the development of a system to study replication in vitro (Challberg and Kelly 1979) that detailed information could be obtained about the protein-priming mechanism for initiation and about the replication proteins. The last decade has been characterized by the discovery of transcription factors as participants in initiation (Nagata et al. 1982; Pruijn et al. 1986), by complete reconstitution of the system with purified recombinant proteins, and by structural information on some of the replication proteins. After the previous review in this series (Sussenbach and Van der Vliet 1983), several reviews on adenovirus replication have appeared (Kelly1984; Campbell 1986; Van der Vliet et al. 1988; Challberg Kelly 1989; Stillman 1989; Hay and Russell 1989; Van der Vliet 1990, 1991; Salas 1991; De Pamphilis 1993a).


Adenovirus Type Preinitiation Complex Terminal Protein Displace Strand Viral Replication Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adhya S, Shneidman PS, Hurwitz J (1986) Reconstruction of adenovirus replication origins with a human nuclear factor I binding site. J Biol Chem 261: 3339–3346PubMedGoogle Scholar
  2. Anderson KP, Klessig DF (1984) Altered mRNA splicing in monkey cells abortively infected with human adenovirus may be responsible for inefficient synthesis of the virion fiber polypeptide. Proc Natl Acad Sci USA 81: 4023–4027PubMedGoogle Scholar
  3. Assa-Munt N, Mortishire-Smith RJ, Aurora R, Herr W, Wright PE (1993) The solution structure of the Oct-1 POU-specific domain reveals a striking similarity to the bacteriophage 434 repressor DNA-binding domain. Cell 73: 193–205PubMedGoogle Scholar
  4. Beese LS, Derbyshire V, Steitz TA (1993) Structure of DNA polymerase I Klenow fragment bound to duplex DNA. Science 260: 352–355PubMedGoogle Scholar
  5. Bodnar JW, Hanson PI, Polvino-Bodnar IGM, Zempsky W, Ward DC (1989) The terminal regions of adenovirus and minute virus of mouse DNAs are preferentially associated with the nuclear matrix in infected cells. J Virol 63: 4344–4353PubMedGoogle Scholar
  6. Bosher J, Clare Robinson E, Hay RT (1990) Interactions between the adenovirus type 2 DNA polymerase and the DNA binding of nuclear factor I. New Biol 2: 1083–1090PubMedGoogle Scholar
  7. Bosher J, Leith IR, Temperley SM, Wells M, Hay RT (1991) The DNA-binding domain of nuclear factor I is sufficient to cooperate with the adenovirus type 2 DNA-binding protein in viral DNA replication. J Gen Virol 72: 2975–2980PubMedGoogle Scholar
  8. Bosher J, Dawson A, Hay RT (1992) Nuclear factor I is specifically targeted to discrete subnuclear sites in adenovirus type 2-infected cells. J Virol 66: 3140–3150PubMedGoogle Scholar
  9. Caldentey J, Blanco L, Bamford DH, Salas M (1993) In vitro replication of bacteriophage PRD1 DNA. Characterization of the protein-primed initiation site. Nucleic Acids Res 21: 3725–3730PubMedGoogle Scholar
  10. Campbell JL (1986) Eukaryotic DNA replication. Annu Rev Biochem 55: 733–771PubMedGoogle Scholar
  11. Challberg MD, Kelly TJ (1979) Adenovirus DNA replication in vitro. Proc Natl Acad Sci USA 76: 655–659PubMedGoogle Scholar
  12. Challberg MD, Kelly TJ (1989) Animal virus DNA replication. Annu Rev Biochem 58: 671–717PubMedGoogle Scholar
  13. Challberg MD, Rawlins DR (1984) Template requirements for the initiation of adenovirus DNA replication. Proc Natl Acad Sci USA 81: 100–104PubMedGoogle Scholar
  14. Challberg MD, Desiderio SV, Kelly TJ (1980) Adenovirus DNA replication in vitro: characterization of a protein covalently linked to nascent DNA strands. Proc Natl Acad Sci USA 77: 5105–5109PubMedGoogle Scholar
  15. Chase JW, Williams KR (1986) Single-stranded DNA-binding proteins required for DNA replication. Annu Rev Biochem 55: 103–136PubMedGoogle Scholar
  16. Chen M, Horwitz MS (1989) Dissection of functional domains of adenovirus DNA polymerase by linker insertion mutagenesis. Proc Natl Acad Sci USA 86: 6116–6120PubMedGoogle Scholar
  17. Chen M, Horwitz MS (1990) Replication of an adenovirus type 34 mutant DNA containing tandem reiterations of the inverted terminal repeat. Virology 179: 567–575PubMedGoogle Scholar
  18. Chen M, Mermod N, Horwitz MS (1990) Protein-protein interactions between adenovirus DNA polymerase and nuclear factor-1 mediate formation of the DNA replication preinitiation complex. J Biol Chem 265: 18634–18642PubMedGoogle Scholar
  19. Cleat PH, Hay RT (1989) Co-operative interactions between NFI and the adenovirus DNA binding protein at the adenovirus origin of replication. EMBO J 8: 1841–1848PubMedGoogle Scholar
  20. Cleghon V, Klessig DF (1992) Characterization of the nucleic acid binding region of adenovirus DNA-binding protein by partial proteolysis and photochemical cross-linking. J Biol Chem 267: 17872–17881PubMedGoogle Scholar
  21. Coenjaerts FEJ, De Vries E, Pruijn GJM, Van Driel W, Bloemers SM, Van der Lugt NMT, Van der Vliet PC (1991) Enhancement of DNA replication by transcription factor NFI and NFIII/Oct-1 depends critically on the positions of their binding sites in the adenovirus origin of replication. Biochim Biophys Acta 1090: 61–69PubMedGoogle Scholar
  22. Coenjaerts FEJ, Van der Vliet PC (1994) Early dissociation of nuclear factor I from the origin during initiation of adenovirus DNA replication studied by origin immobilization. Nucl Acids Res 22: 5235–5240PubMedGoogle Scholar
  23. Coenjaerts FEJ, Van Oosterhout JAWM, Van der Vliet PC (1994) The Oct-1 POU domain stimulates adenovirus DNA replication by a direct interaction between the viral precursor terminal protein- DNA polymerase complex and the POU homeodomain. EMBO J 13: 5401–5409PubMedGoogle Scholar
  24. Cox M, Van Tilborg PJA, de Laat W, Van Leeuwen HC, Van der Vliet PC, Kaptein R (1995) Solution structure of the Oct-1 POU-homeodomain determined by NMR and restrained Molecular dynamics. J Biomol NMR (in press)Google Scholar
  25. De Jong PJ, Kwant MM, Van Driel W, Jansz HS, Van der Vliet PC (1983) The ATP requirements of adenovirus type 5 DNA replication and cellular DNA replication. Virology 124: 45–58PubMedGoogle Scholar
  26. Dekker N, Cox M, Boelens R, Verrijzer CP, Van der Vliet PC, Kaptein R (1993) Solution structure of the POU-specific DNA-binding domain of Oct-1. Nature 362: 852–855PubMedGoogle Scholar
  27. DePamphilis ML (1993a) Eukaryotic DNA replication: anatomy of an origin. Annu Rev Biochem 62: 29–62PubMedGoogle Scholar
  28. DePamphilis ML (1993b) How transcription factors regulate origins of DNA replication in eukaryotic cells. Trends Cell Biol 3: 161–167Google Scholar
  29. De Vries E, Van Driel W, Van den Heuvel SJ, Van der Vliet PC (1987) Contact point analysis of the nuclear factor I recognition site reveals symmetric binding at one side of the DNA helix. EMBO J 6: 161–168PubMedGoogle Scholar
  30. De Vries EW, Van Driel W, Bergsma WG, Arnberg AC, Van der Vliet PC (1989) HeLa nuclear protein recognizing DNA termini and translocating on DNA forming a regular DNA-multimeric protein complex. J Mol Biol 208: 65–78PubMedGoogle Scholar
  31. Dobbs L, Zhao LJ, Scipad G, Padmanabhan R (1990) Mutational analysis of single-stranded DNA templates active in the in vitro initiation assay for adenovirus DNA replication. Virology 178: 43–51PubMedGoogle Scholar
  32. Eagle PA, Klessig DF (1992) A zinc-binding motif located between amino acids 273 and 286 in the adenovirus DNA-binding protein is necessary for ssDNA binding. Virology 187: 777–787PubMedGoogle Scholar
  33. Ensinger MG, Ginsberg HS (1972) Selection and preliminary characterisation of temperature sensitive mutants of type 5 adenovirus. J Virol 10: 328–339PubMedGoogle Scholar
  34. Field J, Gronostajski RM, Hurwitz J (1984) Properties of the adenovirus DNA polymerase J Biol Chem 259: 9487–9495PubMedGoogle Scholar
  35. Fredman JN, Engler JA (1993) Adenovirus precursor to terminal protein interacts with the nuclear matrix in vivo and in vitro. J Virol 67: 3384–3395PubMedGoogle Scholar
  36. Fredman JN, Pettit SC, Horwitz MS, Engler JA (1991) Linker insertion mutations in the adenovirus preterminal protein that affect DNA replication activity in vivo and in vitro J Virol 65: 4591–4597PubMedGoogle Scholar
  37. Freimuth PI, Ginsberg HS (1986) Codon insertion mutants of the adenovirus terminal protein. Proc Natl Acad Sci USA 83: 7816–7820PubMedGoogle Scholar
  38. Friefeld BR, Korn R, De Jong PJ, Sninsky JJ, Horwitz MS (1985) The 140-kDa adenovirus DNA polymerase is recognized by antibodies to Escherichia coil-synthesized determinants predicted from an open reading frame on the adenovirus genome. Proc Natl Acad Sci USA 82: 2652–2656PubMedGoogle Scholar
  39. Georgaki A, Strack B, Podust V, Hubscher U (1992) DNA unwinding activity of replication protein A. FEBS Lett 308: 240–244PubMedGoogle Scholar
  40. Gounari F, De Francesco R, Schmidt J, Van der Vliet PC, Cortese R, Stunnenberg HG (1990) Amino terminal domain of NFI binds to DNA as a dimer and activates adenovirus DNA replication. EMBO J 9: 559–556PubMedGoogle Scholar
  41. Graham FL, Rudy J, Brinkley P (1989) Infectious circular DNA of human adenovirus type 5: regeneration of viral DNA termini from molecules lacking terminal sequences. EMBO J 8: 2077–2085PubMedGoogle Scholar
  42. Guggenheimer RA, Nagata K, Lindenbaum J, Hurwitz J (1984) Protein-primed replication of plasmids containing the terminus of the adenovirus genome. J Biol Chem 259: 7807–7814PubMedGoogle Scholar
  43. Hatfield L, Hearing P (1993) The NFIII/Oct-1 binding site stimulates adenovirus DNA replication in vivo and is functionally redundant with adjacent sequences. J Virol 67: 3931–3939PubMedGoogle Scholar
  44. Hay RT (1985) Origin of adenovirus DNA replication. Role of nuclear factor I binding site in vivo. J Mol Biol 186: 129–136PubMedGoogle Scholar
  45. Hay RT, McDougall IM (1986) Viable viruses with deletions in the left inverted terminal repeat define the adenovirus origin of DNA replication. J Gen Virol 67: 321–332PubMedGoogle Scholar
  46. Hay RT, Russell WC (1989) Recognition mechanisms in the synthesis of animal virus DNA. Biochem J 258: 3–16PubMedGoogle Scholar
  47. Hay RT, Stow ND, McDougall IM (1984) Replication of adenovirus mini-chromosomes. J Mol Biol 175: 493–510PubMedGoogle Scholar
  48. Herr W, Sturm RA, Clerc RG, Corcoran LM, Baltimore D, Sharp PA, Ingraham HA, Rosenfeld MG, Finney M, Ruvkun G, Horvitz HR (1988) The POU domain: a large conserved region in the mammalian pit-1, oct-1, oct-2 and Caenorhabditis elegans unc-86 gene products. Genes Dev 2: 1513–1516PubMedGoogle Scholar
  49. Ingraham HA, Flynn SE, Voss JW, Albert VR, Kapiloff MS, Wilson L, Rosenfeld MG (1990) The POU-specific domain of pit-1 is essential for sequence-specific, high affinity DNA binding and DNA-dependent pit-1—pit-1 interactions. Cell 61: 1021–1033PubMedGoogle Scholar
  50. Itoh T, Tomizawa J-l (1977) Involvement of DNA gyrase in bacteriophage T7 DNA replication. Nature 270: 79–80Google Scholar
  51. Jones KA, Kadonaga JT, Rosenfeld PJ, Kelly TJ, Tjian R (1987) A cellular DNA-binding protein that activates eukaryotic transcription and DNA replication. Cell 48: 79–89PubMedGoogle Scholar
  52. Jones NC, Shenk T (1979) Isolation of adenovirus type 5 host range deletion mutants defective for transformation of rat embryo cells. Cell 17: 683–689PubMedGoogle Scholar
  53. Joung I, Engler JA (1992) Mutations in two cysteine-histidine-rich clusters in adenovirus type 2 DNA polymerase affect DNA binding. J Virol 66: 5788–5796PubMedGoogle Scholar
  54. Joung I, Horwitz MS, Engler JA (1991) Mutagenesis of conserved region I in the DNA polymerase from human adenovirus serotype 2. Virology 184: 235–241PubMedGoogle Scholar
  55. Kelly TJ (1984) Adenovirus DNA replication. In: Ginsberg HS (ed) The adenoviruses Plenum,New York, pp 271–308Google Scholar
  56. Kenny MK, Hurwitz J (1988) Initiation of adenovirus DNA replication II. Structural requirements using synthetic oligonucleotide adenovirus templates. J Biol Chem 263: 9809–9817PubMedGoogle Scholar
  57. Kenny MK, Balogh LA, Hurwitz J (1988) Initiation of adenovirus replication I. Mechanism of action of a host protein required for replication of adenovirus DNA templates devoid of the terminal protein. J Biol Chem 263: 9801–9808PubMedGoogle Scholar
  58. King AJ, Van der Vliet PC (1994) A precursor terminal protein-trinucleotide intermediate during initiation of adenovirus DNA replication: regeneration of molecular ends in vitro by a jumping back mechanism EMBO J 13: 5786–5792PubMedGoogle Scholar
  59. Kitchingman GR (1985) Sequence of the DNA binding protein of a human subgroup E adenovirus (type 4): comparisons with subgroup A (type 12), subgroup B (type 7) and subgroup C (type 5). Virology 146: 90–101PubMedGoogle Scholar
  60. Kruijer W, Van Schaik FMA, Sussenbach JS (1981) Structure and organization of the gene coding for the DNA binding protein of adenovirus type 5. Nucleic Acids Res 9: 4439–4457PubMedGoogle Scholar
  61. Kuil ME, Van Amerongen H, Van der Vliet PC, Van Grondelle R (1989) Complex formation between the adenovirus DNA-binding protein and single-stranded poly (rA). Biochemistry 28: 9795–9800PubMedGoogle Scholar
  62. Lally C, Dörper T, Gröger W, Antoine G, Winnacker E-L (1984) A size analysis of the adenovirus replicón. EMBO J 3: 333–337PubMedGoogle Scholar
  63. Leegwater AJ, Rombouts RFA, Van der Vliet PC (1988) Adenovirus DNA replication in vitro: duplication of single-stranded DNA containing a panhandle structure. Biochim Biophys Acta 951: 403–410PubMedGoogle Scholar
  64. Lindenbaum JD, Field J, Hurwitz J (1986) The adenovirus DNA-binding protein and adenovirus DNA polymerase interact to catalyze elongation of primed DNA templates. J Biol Chem 261: 10218–10227PubMedGoogle Scholar
  65. Mangel WF, McGrath WJ, Toledo DL, Anderson CW (1993) Viral DNA and a viral peptide can act as cofactors of adenovirus virion proteinase activity. Nature 361: 274–275PubMedGoogle Scholar
  66. Meisterernst M, Rogge L, Foechler R, Karaghiosoff M, Winnacker EL (1989) Structural and functional organization of a porcine gene coding for nuclear factor I. Biochemistry 28: 8191–8200PubMedGoogle Scholar
  67. Mendez J, Blanco L, Esteban JA, Bemad A, Salas M (1992) Initiation of 029 DNA replication occurs at the second 3′ nucleotide of the linear template: a sliding-back mechanism for protein-primed DNA replication. Proc Natl Acad Sci USA 89: 9579–9583PubMedGoogle Scholar
  68. Mermod N, O’Neill EA, Kelly TJ, Tjian R (1989) The proline-rich transcriptional activator of CTF/NFI is distinct from the replication and DNA binding domain. Cell 58: 741–753PubMedGoogle Scholar
  69. Monaghan A, Webster A, Hay RT (1994) Adenovirus DNA binding protein: helix destabilizing properties. Nucl Acids Res 22: 742–748PubMedGoogle Scholar
  70. Morin N, Delsert C, Klessig DF (1989) Nuclear localization of the adenovirus DNA-binding protein: requirement of two signals and complementation during viral infection. Mol Cell Biol 9: 4372–4380PubMedGoogle Scholar
  71. Mul YM, Van der Vliet PC (1992) Nuclear factor I enhances adenovirus DNA replication by increasing the stability of a preinitiation complex. EMBO J 11: 751–760PubMedGoogle Scholar
  72. Mul YM, Van der Vliet PC (1993) The adenovirus DNA binding protein effects the kinetics of DNA replication by a mechanism distinct from NFI or Oct-1. Nucleic Acids Res 21: 641–647PubMedGoogle Scholar
  73. Mul YM, Van Miltenburg RT, De Clercq E, Van der Vliet PC (1989) The mechanism of inhibition of adenovirus DNA replication by the acyclic nucleoside triphosphate analogue (S)-HPMPApp: influence of the adenovirus DNA binding protein. Nucleic Acids Res 17: 8917–8929PubMedGoogle Scholar
  74. Mul YM, Verrijzer CP, Van der Vliet PC (1990) Transcription factors NFI and NFIII/oct-1 function independently, employing different mechanisms to enhance adenovirus DNA replication. J Virol 64: 5510–5518PubMedGoogle Scholar
  75. Nagata K, Guggenheimer RA, Enomoto T, Lichy JH, Hurwitz J (1982) Adenovirus DNA replication in vitro: identification of a host factor that stimulates synthesis of the preterminal protein-dCMP complex. Proc Natl Acad Sci USA 79: 6438–6442PubMedGoogle Scholar
  76. Nagata K, Guggenheimer RA, Hurwitz J (1983) Adenovirus DNA replication in vitro: synthesis of full-length DNA with purified proteins. Proc Natl Acad Sci USA 80: 4266–4270PubMedGoogle Scholar
  77. Nakano R, Zhao LJ, Padmanabhan R (1991) Overproduction of adenovirus DNA polymerase and preterminal protein in HeLa cells. Gene 105: 173–178PubMedGoogle Scholar
  78. Novak A, Goyal N, Gronostajski RM (1992) Four conserved cysteine residues are required for the DNA binding activity of nuclear factor I. J Biol Chem 267: 12986–12990PubMedGoogle Scholar
  79. O’Hare P (1993) The virion transactivator of herpes simplex virus. Semin Virol 4: 145–155Google Scholar
  80. O’Neill EA, Fletcher C, Burrow CR, Heintz N, Roeder RG, Kelly TJ (1988) Transcriptional factor OTF-1 is functionally identical to the DNA replication factor NFIII. Science 241: 1210–1213PubMedGoogle Scholar
  81. Paonessa G, Gounari F, Frank R, Córtese R (1988) Purification of a NFI-like DNA-binding protein from at liver and cloning of the corresponding cDNA. EMBO J 7: 3115–3123PubMedGoogle Scholar
  82. Pettit SC, Horwitz MS, Engler JA (1988) Adenovirus preterminal protein synthesized in COS cells from cloned DNA is active in DNA replication in vitro. J Virol 62: 496–500PubMedGoogle Scholar
  83. Pettit SC, Horwitz MS, Engler JA (1989) Mutations of the precursor to the terminal protein of adenovirus serotypes 2 and 5. J Virol 63: 5244–5250PubMedGoogle Scholar
  84. Pronk R, Van der Vliet PC (1993) The adenovirus terminal protein influences binding of replication proteins and changes the origin structure. Nucleic Acids Res 21: 2293–2300PubMedGoogle Scholar
  85. Pronk R, Stuiver MH, Van der Vliet PC (1992) Adenovirus DNA replication: the function of the covalently bound terminal protein. Chromosoma 102: 39–45Google Scholar
  86. Pronk R, Van Driel W, Van der Vliet PC (1994) Adenovirus DNA replication is ATP-independent. FEBS Lett 337: 33–38PubMedGoogle Scholar
  87. Pruijn GJM, Van Driel W, Van der Vliet PC (1986) Nuclear factor III, a novel sequence-specific DNA-binding protein from HeLa cells stimulating adenovirus DNA replication. Nature 322: 656–659PubMedGoogle Scholar
  88. Pruijn GJM, Van Miltenburg RT, Claessens AJ, Van der Vliet PC (1988) Interaction between the octamer-binding protein nuclear factor III and the adenovirus origin of DNA replication. J Virol 62: 3092–3102PubMedGoogle Scholar
  89. Pruijn GJM, Van der Vliet PC, Dathan NA, Matta] IW (1989) Anti-OTF-1 antibodies inhibit NFIII stimulation of in vitro adenovirus DNA replication. Nucleic Acids Res 17: 1845–1863PubMedGoogle Scholar
  90. Ramachandra M, Nakano R, Mohan PM, Rawitch AB, Padmanabhan R (1993) Adenovirus DNA polymerase is a phosphoprotein. J Biol Chem 268: 442–448PubMedGoogle Scholar
  91. Rekosh DMK, Russell WC, Bellett AJD, Robinson AJ (1977) Identification of a protein linked to the ends of adenovirus. Cell 11: 283–295PubMedGoogle Scholar
  92. Rekosh D, Lindenbaum J, Brewster J, Mertz LM, Hurwitz J, Prestine L (1985) Expression in Escherichia coli of a fusion protein product containing a region of the adenovirus DNA polymerase. Proc Natl Acad Sci USA 82: 2354–2358PubMedGoogle Scholar
  93. Rijnders AWM, Van Bergen BGM, Van der Vliet PC, Sussenbach JS (1983) Specific binding of the adenovirus terminal protein precursor-DNA polymerase complex to the origin of DNA replication. Nucleic Acids Res 11: 8777–8789PubMedGoogle Scholar
  94. Robinson AJ, Younghusband HB, Bellet AJD (1973) A circular DNA-protein complex for adenoviruses. Virology 56: 54–59PubMedGoogle Scholar
  95. Roovers DJ, Overman PF, Chen XQ, Sussenbach JS (1991) Linker mutation scanning of the genes encoding the adenovirus type 5 terminal protein precursor and DNA polymerase. Virology 180: 273–284PubMedGoogle Scholar
  96. Roovers DJ, Van der Lee FM, Van der Wees J, Sussenbach JS (1993) Analysis of the adenovirus type 5 terminal protein precursor and DNA polymerase by linker insertion mutagenesis. J Virol 67: 265–276PubMedGoogle Scholar
  97. Rosenfeld PJ, O’Neill EA, Wides RJ, Kelly TJ (1987) Sequence-specific interactions between cellular DNA-binding proteins and the adenovirus origin of DNA replication. Mol Cell Biol 7: 875–886PubMedGoogle Scholar
  98. Salas M (1991) Protein-priming of DNA replication. Annu Rev Biochem 60: 39–71PubMedGoogle Scholar
  99. Santoro C, Mermod N, Andrews PC, Tjian R (1988) A family of human CAAT-box-binding proteins active in transcription and DNa replication: cloning and expression of multiple cDNAs. Nature 334: 218–224PubMedGoogle Scholar
  100. Schaack J, Schedl P, Shenk T (1990a) Topoisomerase I and II cleavage of adenovirus DNA in vivo: both topoisomerase activities appear to be required for adenovirus DNA replication. J Virol 56: 78–85Google Scholar
  101. Schaack J, Yew-Wai Ho J, Freimuth P, Shenk T (1990b) Adenovirus terminal protein mediates both nuclear matrix association and efficient transcription of adenovirus DNA. Gene 4: 1197–1208Google Scholar
  102. Shu L, Horwitz MS, Engler JA (1987) Expression of enzymatically active adenovirus DNA polymerase from cloned DNA requires sequences upstream of the main open reading frame. Virology 161: 520–526PubMedGoogle Scholar
  103. Steenbergh PH, Sussenbach JS, Roberts RJ, Jansz HS (1975) the 3′-terminal nucleotide sequences of adenovirus types 2 and 5 DNa. J Virol 15: 268–272Google Scholar
  104. Stillman BW (1989) Initiation of eukaryotic DNA replication in vitro. Annu Rev Cell Biol 5: 197–245PubMedGoogle Scholar
  105. Stillman BW, Topp WC, Engler JA (1982a) Conserved sequences at the origin of adenovirus DNA replication. J Virol 44: 530–537PubMedGoogle Scholar
  106. Stillman BW, Tamanoi F, Mathews MB (1982b) Purification of an adenovirus-coded DNA polymerase that is required for initiation of DNA replication. Cell 31: 613–623PubMedGoogle Scholar
  107. Stow ND (1981) The infectivity of adenovirus genomes lacking DNA sequences from their left-hand termini. Nucleic Acids Res 10: 5105–5119Google Scholar
  108. Stuiver MH, Van der Vliet PC (1990) The adenovirus DNA binding protein forms a multimeric protein complex with double-stranded DNA and enhances binding of nuclear factor I. J Virol 64: 379–386PubMedGoogle Scholar
  109. Stuiver MH, Bergsma WG, Arnberg AC, Van Amerongen H, Van Grondelle R, Van der Vliet PC (1992) Structural alterations of double-stranded DNA in complex with the adenovirus DNA-binding protein. Implications for its function in DNA replication. J Mol Biol 225: 999–1011PubMedGoogle Scholar
  110. Stunnenberg HG, Lange H, Philipson L, Van Miltenburg RT, Van der Vliet PC (1988) High expression of functional adenovirus DNA polymerase and precursor terminal protein using recombinant vaccinia virus. Nucleic Acids Res 16: 2431–2444PubMedGoogle Scholar
  111. Sussenbach JS, Van der Vliet PC (1983) The mechanism of adenovirus DNA replication and the characterization of replication proteins. In: Doerfler W (ed) The molecular biology of adenoviruses. Springer, Berlin Heidelberg New York, pp 53–73 (Current topics in microbiology and immunology, vol 109 )Google Scholar
  112. Sussenbach JS, Van der Vliet PC, Ellens DJ, Jansz HS (1972) Linear intermediates in the replication of adenovirus DNA. Nature New Biol 239: 47–49PubMedGoogle Scholar
  113. Tamanoi F, Stillman BM (1982) Function of the adenovirus terminal protein in DNA replication. Proc Natl Acad Sci USA 79: 2221–2225PubMedGoogle Scholar
  114. Temperley SM, Hay RT (1992) Recognition of the adenovirus type 2 origin of DNA replication by the virally encoded DNA polymerase and preterminal proteins. EMBO J 11: 761–768PubMedGoogle Scholar
  115. Temperley SM, Burrow CR, Kelly TJ, Hay RT (1991) Identification of two distinct regions within the adenovirus minimal origin of replication that are required for adenovirus type 4 DNA replication in vitro. J Virol 65: 5037–5044PubMedGoogle Scholar
  116. Tolun A, Alestrom P, Pettersson U (1979) Sequence of inverted terminal repetitions from different adenoviruses: demonstration of conserved sequences and homology between SA-7 termini and SV40-DNA. Cell 17: 705–713PubMedGoogle Scholar
  117. Tsemoglou D, Tucker AD, Van der Vliet PC (1984) Crystallization of a fragment of the adenovirus DNA binding protein. J Mol Biol 172: 237–239Google Scholar
  118. Tsemoglou D, Tsugita A, Tucker AD, Van der Vliet PC (1985) Characterization of the chymotryptic core of the adenovirus DNA-binding protein. FEBS Lett 188: 248–252Google Scholar
  119. Tucker PA, Tsemoglou D, Tucker AD, Coenjaerts FEJ, Leenders H, Van der Vliet PC (1994) Crystal structure of the adenovirus DNA binding protein reveals a hook-on model for cooperative DNA binding. EMBO J 13: 2994–3002PubMedGoogle Scholar
  120. Van Amerongen H, Van Grondelfe R, Van der Vliet PC (1987) The interaction between the adenovirus DNA binding protein and single-stranded polynucleotides studied by circular dichroism and ultraviolet absorption. Biochemistry 26: 4646–4652PubMedGoogle Scholar
  121. Van Bergen BGM, Van der Ley PA, Van Driel W, Van Mansfeld ADM, Van der Vliet PC (1983) Replication of origin containing fragments that do not carry the terminal protein. Nucleic Acids Res 11: 1975–1989PubMedGoogle Scholar
  122. Van der Vliet PC (1990) Adenovirus DNA replication in vitro. In: Straus P, Wilson SH (eds) The eukaryotic nucleus, vol 1, Telford, Caldwell, pp 1–32Google Scholar
  123. Van der Vliet PC (1991) The role of cellular transcription factors in the enhancement of adenovirus DNA replication. Semin Virol 2: 271–280Google Scholar
  124. Van der Vliet PC, Levine AJ (1973) DNA binding proteins specific for cells infected by adenovirus. Nature New Biol 246: 170–174PubMedGoogle Scholar
  125. Van der Vliet PC, Levine AJ, Ensinger MJ,Ginsberg HS (1975) Thermolabile DNA binding proteins from cells infected with a temperature-sensitive mutant of adenovirus defective in viral DNA synthesis. J Virol 15: 348–354Google Scholar
  126. Van der Vliet PC, Keegstra W, Jansz HS (1978) Complex formation between the adenovirus type 5 DNA-binding protein and single-stranded DNA. Eur J Biochem 86: 389–398PubMedGoogle Scholar
  127. Van der Vliet PC, Claessens J, De Vries E, Leegwater PAJ, Pruijn GJM, Van Miltenburg RT (1988) Interaction of cellular proteins with the adenovirus origin of DNA replication. Cancer Cells 6: 61–70Google Scholar
  128. Verrijzer CP, Kal AJ, Van der Vliet PC (1990a) The oct-1 homeo domain contacts only part of the octamer sequence and full oct-1 DNA binding activity requires the POU-specific domain. Genes Dev 4: 1964–1974PubMedGoogle Scholar
  129. Verrijzer CP, Kal AJ, Van der Vliet PC (1990b) The DNA binding domain (POU domain) of transcription factor oct-1 sufficers for stimulation of DNA replication. EMBO J 9: 1883–1888PubMedGoogle Scholar
  130. Verrijzer CP, Van Oosterhout JAWM, Van Weperen W, Van der Vliet PC (1991) POU proteins bend DNA via the POU-specific domain. EMBO J 10: 3007–3014PubMedGoogle Scholar
  131. Verrijzer CP, Alkema MJ, Van Weperen WW, Van Leeuwen HC, Strating MJ, Van der Vliet PC (1992a) The DNA binding specificity of the bipartite POU domain and its subdomains. EMBO J 11: 4993–5003PubMedGoogle Scholar
  132. Verrijzer CP, Strating M, Mul YM, Van der Vliet PC (1992b) POU domain transcription factors from different subclasses stimulate adenovirus DNA replication. Nucleic Acids Res 20: 6369–6375PubMedGoogle Scholar
  133. Verrijzer CP, Van Oosterhout JAWM, Van der Vliet PC (1992c) The Oct-1 POU domain mediates interactions between Oct-1 and other POU proteins. Mol Cell Biol 12: 542–551PubMedGoogle Scholar
  134. Voelkerding K, Klessig DF (1986) Identification of two nuclear subclasses of the adenovirus type 5-encoded DNA-binding protein. J Virol 60: 353–362PubMedGoogle Scholar
  135. Vos HL, Van der Lee FM, Sussenbach JS (1988) The binding of in vitro synthesized adenovirus DNA-binding protein to single-stranded DNA is stimulated by zinc ions. FEBS Lett 239: 251–254PubMedGoogle Scholar
  136. Wang K, Pearson GD (1985) Adenovirus sequences required for replication in vivo. Nucleic Acids Res 13: 5173–5178PubMedGoogle Scholar
  137. Wang TS-F, Wong SW, Korn D (1989) Human DNA polymerase alpha: predicted functional domains and relationships with viral DNA polymerases. FASEB J 3: 14–21PubMedGoogle Scholar
  138. Watson CJ, Hay RT (1990) Expression of adenovirus type 2 DNA polymerase in insect cells infected with a recombinant baculovirus. Nucleic Acids Res 18: 1167–1173PubMedGoogle Scholar
  139. Webster A, Hay RT, Kemp G (1993) The adenovirus protease is activated by a virus-coded disulphide- linked peptide. Cell 72: 97–104PubMedGoogle Scholar
  140. Wides RJ, Challberg MD, Rawlins DR, Kelly TJ (1987) Adenovirus origins of DNA replication: sequence requirements for replication in vitro. Mol Cell Biol 7: 864–874PubMedGoogle Scholar
  141. Wilson AC, LaMarco K, Peterson MG, Herr W (1993) The VP16 accessory protein HCF is a family of polypeptides processed from a large precursor protein. Cell 74: 115–125PubMedGoogle Scholar
  142. Zhao L-J, Padmanabhan R (1988) Nuclear transport of adenovirus DNA polymerase is facilitated by interaction with preterminal protein. Cell 55: 1005–1015PubMedGoogle Scholar
  143. Zhao L-J, Irie K, Trirawatanapong T, Nakano R, Nakashima A, Morimatsu M, Padmanabhan R (1991) Synthesis of biologically active adenovirus preterminal protein in insect cells using a baculovirus vector. Gene 100: 147–154PubMedGoogle Scholar
  144. Zijderveld DC, Van der Vliet PC (1994) Helix-destabilizing properties of the adenovirus DNA-binding protein. J Virol 68: 1158–1164PubMedGoogle Scholar
  145. Zijderveld DC, Stuiver MH, Van der Vliet PC (1993) The adenovirus DNA binding protein enhances intermolecular renaturation but inhibits intramolecular DNA renaturation. Nucleic Acids Res 21: 2591–2598PubMedGoogle Scholar
  146. Zorbas H, Rogge L, Meisterernst M,Winnacker EL (1989) Hydroxyl radical footprints reveal novel structural features around the NFI binding site in adenovirus DNA. Nucleic Acids Res 17: 7735–7748PubMedGoogle Scholar
  147. Zorbas H, Rein T, Krause A, Hoffmann K, Winnacker E-L (1992) Nuclear factor I ( NFI) binds to an NF I- type site but not to the CCAAT site in the human a-globin gene promoter. J Biol Chem 267: 8478–8484PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  1. 1.Laboratory for Physiological ChemistryUniversity of UtrechtUtrechtThe Netherlands

Personalised recommendations