Skip to main content

Adenovirus DNA Replication

  • Chapter

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 199/2))

Abstract

Studies on the replication of adenovirus DNA were initiated more than two decades ago and quickly led to a novel displacement model for DNA replication (Sussenbach et al. 1972). These studies were mainly performed using intact infected cells or isolated nuclei. It was only after the development of a system to study replication in vitro (Challberg and Kelly 1979) that detailed information could be obtained about the protein-priming mechanism for initiation and about the replication proteins. The last decade has been characterized by the discovery of transcription factors as participants in initiation (Nagata et al. 1982; Pruijn et al. 1986), by complete reconstitution of the system with purified recombinant proteins, and by structural information on some of the replication proteins. After the previous review in this series (Sussenbach and Van der Vliet 1983), several reviews on adenovirus replication have appeared (Kelly1984; Campbell 1986; Van der Vliet et al. 1988; Challberg Kelly 1989; Stillman 1989; Hay and Russell 1989; Van der Vliet 1990, 1991; Salas 1991; De Pamphilis 1993a).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adhya S, Shneidman PS, Hurwitz J (1986) Reconstruction of adenovirus replication origins with a human nuclear factor I binding site. J Biol Chem 261: 3339–3346

    PubMed  CAS  Google Scholar 

  • Anderson KP, Klessig DF (1984) Altered mRNA splicing in monkey cells abortively infected with human adenovirus may be responsible for inefficient synthesis of the virion fiber polypeptide. Proc Natl Acad Sci USA 81: 4023–4027

    PubMed  CAS  Google Scholar 

  • Assa-Munt N, Mortishire-Smith RJ, Aurora R, Herr W, Wright PE (1993) The solution structure of the Oct-1 POU-specific domain reveals a striking similarity to the bacteriophage 434 repressor DNA-binding domain. Cell 73: 193–205

    PubMed  CAS  Google Scholar 

  • Beese LS, Derbyshire V, Steitz TA (1993) Structure of DNA polymerase I Klenow fragment bound to duplex DNA. Science 260: 352–355

    PubMed  CAS  Google Scholar 

  • Bodnar JW, Hanson PI, Polvino-Bodnar IGM, Zempsky W, Ward DC (1989) The terminal regions of adenovirus and minute virus of mouse DNAs are preferentially associated with the nuclear matrix in infected cells. J Virol 63: 4344–4353

    PubMed  CAS  Google Scholar 

  • Bosher J, Clare Robinson E, Hay RT (1990) Interactions between the adenovirus type 2 DNA polymerase and the DNA binding of nuclear factor I. New Biol 2: 1083–1090

    PubMed  CAS  Google Scholar 

  • Bosher J, Leith IR, Temperley SM, Wells M, Hay RT (1991) The DNA-binding domain of nuclear factor I is sufficient to cooperate with the adenovirus type 2 DNA-binding protein in viral DNA replication. J Gen Virol 72: 2975–2980

    PubMed  CAS  Google Scholar 

  • Bosher J, Dawson A, Hay RT (1992) Nuclear factor I is specifically targeted to discrete subnuclear sites in adenovirus type 2-infected cells. J Virol 66: 3140–3150

    PubMed  CAS  Google Scholar 

  • Caldentey J, Blanco L, Bamford DH, Salas M (1993) In vitro replication of bacteriophage PRD1 DNA. Characterization of the protein-primed initiation site. Nucleic Acids Res 21: 3725–3730

    PubMed  CAS  Google Scholar 

  • Campbell JL (1986) Eukaryotic DNA replication. Annu Rev Biochem 55: 733–771

    PubMed  CAS  Google Scholar 

  • Challberg MD, Kelly TJ (1979) Adenovirus DNA replication in vitro. Proc Natl Acad Sci USA 76: 655–659

    PubMed  CAS  Google Scholar 

  • Challberg MD, Kelly TJ (1989) Animal virus DNA replication. Annu Rev Biochem 58: 671–717

    PubMed  CAS  Google Scholar 

  • Challberg MD, Rawlins DR (1984) Template requirements for the initiation of adenovirus DNA replication. Proc Natl Acad Sci USA 81: 100–104

    PubMed  CAS  Google Scholar 

  • Challberg MD, Desiderio SV, Kelly TJ (1980) Adenovirus DNA replication in vitro: characterization of a protein covalently linked to nascent DNA strands. Proc Natl Acad Sci USA 77: 5105–5109

    PubMed  CAS  Google Scholar 

  • Chase JW, Williams KR (1986) Single-stranded DNA-binding proteins required for DNA replication. Annu Rev Biochem 55: 103–136

    PubMed  CAS  Google Scholar 

  • Chen M, Horwitz MS (1989) Dissection of functional domains of adenovirus DNA polymerase by linker insertion mutagenesis. Proc Natl Acad Sci USA 86: 6116–6120

    PubMed  CAS  Google Scholar 

  • Chen M, Horwitz MS (1990) Replication of an adenovirus type 34 mutant DNA containing tandem reiterations of the inverted terminal repeat. Virology 179: 567–575

    PubMed  CAS  Google Scholar 

  • Chen M, Mermod N, Horwitz MS (1990) Protein-protein interactions between adenovirus DNA polymerase and nuclear factor-1 mediate formation of the DNA replication preinitiation complex. J Biol Chem 265: 18634–18642

    PubMed  CAS  Google Scholar 

  • Cleat PH, Hay RT (1989) Co-operative interactions between NFI and the adenovirus DNA binding protein at the adenovirus origin of replication. EMBO J 8: 1841–1848

    PubMed  CAS  Google Scholar 

  • Cleghon V, Klessig DF (1992) Characterization of the nucleic acid binding region of adenovirus DNA-binding protein by partial proteolysis and photochemical cross-linking. J Biol Chem 267: 17872–17881

    PubMed  CAS  Google Scholar 

  • Coenjaerts FEJ, De Vries E, Pruijn GJM, Van Driel W, Bloemers SM, Van der Lugt NMT, Van der Vliet PC (1991) Enhancement of DNA replication by transcription factor NFI and NFIII/Oct-1 depends critically on the positions of their binding sites in the adenovirus origin of replication. Biochim Biophys Acta 1090: 61–69

    PubMed  CAS  Google Scholar 

  • Coenjaerts FEJ, Van der Vliet PC (1994) Early dissociation of nuclear factor I from the origin during initiation of adenovirus DNA replication studied by origin immobilization. Nucl Acids Res 22: 5235–5240

    PubMed  CAS  Google Scholar 

  • Coenjaerts FEJ, Van Oosterhout JAWM, Van der Vliet PC (1994) The Oct-1 POU domain stimulates adenovirus DNA replication by a direct interaction between the viral precursor terminal protein- DNA polymerase complex and the POU homeodomain. EMBO J 13: 5401–5409

    PubMed  CAS  Google Scholar 

  • Cox M, Van Tilborg PJA, de Laat W, Van Leeuwen HC, Van der Vliet PC, Kaptein R (1995) Solution structure of the Oct-1 POU-homeodomain determined by NMR and restrained Molecular dynamics. J Biomol NMR (in press)

    Google Scholar 

  • De Jong PJ, Kwant MM, Van Driel W, Jansz HS, Van der Vliet PC (1983) The ATP requirements of adenovirus type 5 DNA replication and cellular DNA replication. Virology 124: 45–58

    PubMed  Google Scholar 

  • Dekker N, Cox M, Boelens R, Verrijzer CP, Van der Vliet PC, Kaptein R (1993) Solution structure of the POU-specific DNA-binding domain of Oct-1. Nature 362: 852–855

    PubMed  CAS  Google Scholar 

  • DePamphilis ML (1993a) Eukaryotic DNA replication: anatomy of an origin. Annu Rev Biochem 62: 29–62

    PubMed  CAS  Google Scholar 

  • DePamphilis ML (1993b) How transcription factors regulate origins of DNA replication in eukaryotic cells. Trends Cell Biol 3: 161–167

    CAS  Google Scholar 

  • De Vries E, Van Driel W, Van den Heuvel SJ, Van der Vliet PC (1987) Contact point analysis of the nuclear factor I recognition site reveals symmetric binding at one side of the DNA helix. EMBO J 6: 161–168

    PubMed  Google Scholar 

  • De Vries EW, Van Driel W, Bergsma WG, Arnberg AC, Van der Vliet PC (1989) HeLa nuclear protein recognizing DNA termini and translocating on DNA forming a regular DNA-multimeric protein complex. J Mol Biol 208: 65–78

    PubMed  Google Scholar 

  • Dobbs L, Zhao LJ, Scipad G, Padmanabhan R (1990) Mutational analysis of single-stranded DNA templates active in the in vitro initiation assay for adenovirus DNA replication. Virology 178: 43–51

    PubMed  CAS  Google Scholar 

  • Eagle PA, Klessig DF (1992) A zinc-binding motif located between amino acids 273 and 286 in the adenovirus DNA-binding protein is necessary for ssDNA binding. Virology 187: 777–787

    PubMed  CAS  Google Scholar 

  • Ensinger MG, Ginsberg HS (1972) Selection and preliminary characterisation of temperature sensitive mutants of type 5 adenovirus. J Virol 10: 328–339

    PubMed  CAS  Google Scholar 

  • Field J, Gronostajski RM, Hurwitz J (1984) Properties of the adenovirus DNA polymerase J Biol Chem 259: 9487–9495

    PubMed  CAS  Google Scholar 

  • Fredman JN, Engler JA (1993) Adenovirus precursor to terminal protein interacts with the nuclear matrix in vivo and in vitro. J Virol 67: 3384–3395

    PubMed  CAS  Google Scholar 

  • Fredman JN, Pettit SC, Horwitz MS, Engler JA (1991) Linker insertion mutations in the adenovirus preterminal protein that affect DNA replication activity in vivo and in vitro J Virol 65: 4591–4597

    PubMed  CAS  Google Scholar 

  • Freimuth PI, Ginsberg HS (1986) Codon insertion mutants of the adenovirus terminal protein. Proc Natl Acad Sci USA 83: 7816–7820

    PubMed  CAS  Google Scholar 

  • Friefeld BR, Korn R, De Jong PJ, Sninsky JJ, Horwitz MS (1985) The 140-kDa adenovirus DNA polymerase is recognized by antibodies to Escherichia coil-synthesized determinants predicted from an open reading frame on the adenovirus genome. Proc Natl Acad Sci USA 82: 2652–2656

    PubMed  CAS  Google Scholar 

  • Georgaki A, Strack B, Podust V, Hubscher U (1992) DNA unwinding activity of replication protein A. FEBS Lett 308: 240–244

    PubMed  CAS  Google Scholar 

  • Gounari F, De Francesco R, Schmidt J, Van der Vliet PC, Cortese R, Stunnenberg HG (1990) Amino terminal domain of NFI binds to DNA as a dimer and activates adenovirus DNA replication. EMBO J 9: 559–556

    PubMed  CAS  Google Scholar 

  • Graham FL, Rudy J, Brinkley P (1989) Infectious circular DNA of human adenovirus type 5: regeneration of viral DNA termini from molecules lacking terminal sequences. EMBO J 8: 2077–2085

    PubMed  CAS  Google Scholar 

  • Guggenheimer RA, Nagata K, Lindenbaum J, Hurwitz J (1984) Protein-primed replication of plasmids containing the terminus of the adenovirus genome. J Biol Chem 259: 7807–7814

    PubMed  CAS  Google Scholar 

  • Hatfield L, Hearing P (1993) The NFIII/Oct-1 binding site stimulates adenovirus DNA replication in vivo and is functionally redundant with adjacent sequences. J Virol 67: 3931–3939

    PubMed  CAS  Google Scholar 

  • Hay RT (1985) Origin of adenovirus DNA replication. Role of nuclear factor I binding site in vivo. J Mol Biol 186: 129–136

    PubMed  CAS  Google Scholar 

  • Hay RT, McDougall IM (1986) Viable viruses with deletions in the left inverted terminal repeat define the adenovirus origin of DNA replication. J Gen Virol 67: 321–332

    PubMed  CAS  Google Scholar 

  • Hay RT, Russell WC (1989) Recognition mechanisms in the synthesis of animal virus DNA. Biochem J 258: 3–16

    PubMed  CAS  Google Scholar 

  • Hay RT, Stow ND, McDougall IM (1984) Replication of adenovirus mini-chromosomes. J Mol Biol 175: 493–510

    PubMed  CAS  Google Scholar 

  • Herr W, Sturm RA, Clerc RG, Corcoran LM, Baltimore D, Sharp PA, Ingraham HA, Rosenfeld MG, Finney M, Ruvkun G, Horvitz HR (1988) The POU domain: a large conserved region in the mammalian pit-1, oct-1, oct-2 and Caenorhabditis elegans unc-86 gene products. Genes Dev 2: 1513–1516

    PubMed  CAS  Google Scholar 

  • Ingraham HA, Flynn SE, Voss JW, Albert VR, Kapiloff MS, Wilson L, Rosenfeld MG (1990) The POU-specific domain of pit-1 is essential for sequence-specific, high affinity DNA binding and DNA-dependent pit-1—pit-1 interactions. Cell 61: 1021–1033

    PubMed  CAS  Google Scholar 

  • Itoh T, Tomizawa J-l (1977) Involvement of DNA gyrase in bacteriophage T7 DNA replication. Nature 270: 79–80

    Google Scholar 

  • Jones KA, Kadonaga JT, Rosenfeld PJ, Kelly TJ, Tjian R (1987) A cellular DNA-binding protein that activates eukaryotic transcription and DNA replication. Cell 48: 79–89

    PubMed  CAS  Google Scholar 

  • Jones NC, Shenk T (1979) Isolation of adenovirus type 5 host range deletion mutants defective for transformation of rat embryo cells. Cell 17: 683–689

    PubMed  CAS  Google Scholar 

  • Joung I, Engler JA (1992) Mutations in two cysteine-histidine-rich clusters in adenovirus type 2 DNA polymerase affect DNA binding. J Virol 66: 5788–5796

    PubMed  CAS  Google Scholar 

  • Joung I, Horwitz MS, Engler JA (1991) Mutagenesis of conserved region I in the DNA polymerase from human adenovirus serotype 2. Virology 184: 235–241

    PubMed  CAS  Google Scholar 

  • Kelly TJ (1984) Adenovirus DNA replication. In: Ginsberg HS (ed) The adenoviruses Plenum,New York, pp 271–308

    Google Scholar 

  • Kenny MK, Hurwitz J (1988) Initiation of adenovirus DNA replication II. Structural requirements using synthetic oligonucleotide adenovirus templates. J Biol Chem 263: 9809–9817

    PubMed  CAS  Google Scholar 

  • Kenny MK, Balogh LA, Hurwitz J (1988) Initiation of adenovirus replication I. Mechanism of action of a host protein required for replication of adenovirus DNA templates devoid of the terminal protein. J Biol Chem 263: 9801–9808

    PubMed  CAS  Google Scholar 

  • King AJ, Van der Vliet PC (1994) A precursor terminal protein-trinucleotide intermediate during initiation of adenovirus DNA replication: regeneration of molecular ends in vitro by a jumping back mechanism EMBO J 13: 5786–5792

    PubMed  CAS  Google Scholar 

  • Kitchingman GR (1985) Sequence of the DNA binding protein of a human subgroup E adenovirus (type 4): comparisons with subgroup A (type 12), subgroup B (type 7) and subgroup C (type 5). Virology 146: 90–101

    PubMed  CAS  Google Scholar 

  • Kruijer W, Van Schaik FMA, Sussenbach JS (1981) Structure and organization of the gene coding for the DNA binding protein of adenovirus type 5. Nucleic Acids Res 9: 4439–4457

    PubMed  CAS  Google Scholar 

  • Kuil ME, Van Amerongen H, Van der Vliet PC, Van Grondelle R (1989) Complex formation between the adenovirus DNA-binding protein and single-stranded poly (rA). Biochemistry 28: 9795–9800

    PubMed  CAS  Google Scholar 

  • Lally C, Dörper T, Gröger W, Antoine G, Winnacker E-L (1984) A size analysis of the adenovirus replicón. EMBO J 3: 333–337

    PubMed  CAS  Google Scholar 

  • Leegwater AJ, Rombouts RFA, Van der Vliet PC (1988) Adenovirus DNA replication in vitro: duplication of single-stranded DNA containing a panhandle structure. Biochim Biophys Acta 951: 403–410

    PubMed  CAS  Google Scholar 

  • Lindenbaum JD, Field J, Hurwitz J (1986) The adenovirus DNA-binding protein and adenovirus DNA polymerase interact to catalyze elongation of primed DNA templates. J Biol Chem 261: 10218–10227

    PubMed  CAS  Google Scholar 

  • Mangel WF, McGrath WJ, Toledo DL, Anderson CW (1993) Viral DNA and a viral peptide can act as cofactors of adenovirus virion proteinase activity. Nature 361: 274–275

    PubMed  CAS  Google Scholar 

  • Meisterernst M, Rogge L, Foechler R, Karaghiosoff M, Winnacker EL (1989) Structural and functional organization of a porcine gene coding for nuclear factor I. Biochemistry 28: 8191–8200

    PubMed  CAS  Google Scholar 

  • Mendez J, Blanco L, Esteban JA, Bemad A, Salas M (1992) Initiation of 029 DNA replication occurs at the second 3′ nucleotide of the linear template: a sliding-back mechanism for protein-primed DNA replication. Proc Natl Acad Sci USA 89: 9579–9583

    PubMed  CAS  Google Scholar 

  • Mermod N, O’Neill EA, Kelly TJ, Tjian R (1989) The proline-rich transcriptional activator of CTF/NFI is distinct from the replication and DNA binding domain. Cell 58: 741–753

    PubMed  CAS  Google Scholar 

  • Monaghan A, Webster A, Hay RT (1994) Adenovirus DNA binding protein: helix destabilizing properties. Nucl Acids Res 22: 742–748

    PubMed  CAS  Google Scholar 

  • Morin N, Delsert C, Klessig DF (1989) Nuclear localization of the adenovirus DNA-binding protein: requirement of two signals and complementation during viral infection. Mol Cell Biol 9: 4372–4380

    PubMed  CAS  Google Scholar 

  • Mul YM, Van der Vliet PC (1992) Nuclear factor I enhances adenovirus DNA replication by increasing the stability of a preinitiation complex. EMBO J 11: 751–760

    PubMed  CAS  Google Scholar 

  • Mul YM, Van der Vliet PC (1993) The adenovirus DNA binding protein effects the kinetics of DNA replication by a mechanism distinct from NFI or Oct-1. Nucleic Acids Res 21: 641–647

    PubMed  CAS  Google Scholar 

  • Mul YM, Van Miltenburg RT, De Clercq E, Van der Vliet PC (1989) The mechanism of inhibition of adenovirus DNA replication by the acyclic nucleoside triphosphate analogue (S)-HPMPApp: influence of the adenovirus DNA binding protein. Nucleic Acids Res 17: 8917–8929

    PubMed  CAS  Google Scholar 

  • Mul YM, Verrijzer CP, Van der Vliet PC (1990) Transcription factors NFI and NFIII/oct-1 function independently, employing different mechanisms to enhance adenovirus DNA replication. J Virol 64: 5510–5518

    PubMed  CAS  Google Scholar 

  • Nagata K, Guggenheimer RA, Enomoto T, Lichy JH, Hurwitz J (1982) Adenovirus DNA replication in vitro: identification of a host factor that stimulates synthesis of the preterminal protein-dCMP complex. Proc Natl Acad Sci USA 79: 6438–6442

    PubMed  CAS  Google Scholar 

  • Nagata K, Guggenheimer RA, Hurwitz J (1983) Adenovirus DNA replication in vitro: synthesis of full-length DNA with purified proteins. Proc Natl Acad Sci USA 80: 4266–4270

    PubMed  CAS  Google Scholar 

  • Nakano R, Zhao LJ, Padmanabhan R (1991) Overproduction of adenovirus DNA polymerase and preterminal protein in HeLa cells. Gene 105: 173–178

    PubMed  CAS  Google Scholar 

  • Novak A, Goyal N, Gronostajski RM (1992) Four conserved cysteine residues are required for the DNA binding activity of nuclear factor I. J Biol Chem 267: 12986–12990

    PubMed  CAS  Google Scholar 

  • O’Hare P (1993) The virion transactivator of herpes simplex virus. Semin Virol 4: 145–155

    Google Scholar 

  • O’Neill EA, Fletcher C, Burrow CR, Heintz N, Roeder RG, Kelly TJ (1988) Transcriptional factor OTF-1 is functionally identical to the DNA replication factor NFIII. Science 241: 1210–1213

    PubMed  Google Scholar 

  • Paonessa G, Gounari F, Frank R, Córtese R (1988) Purification of a NFI-like DNA-binding protein from at liver and cloning of the corresponding cDNA. EMBO J 7: 3115–3123

    PubMed  CAS  Google Scholar 

  • Pettit SC, Horwitz MS, Engler JA (1988) Adenovirus preterminal protein synthesized in COS cells from cloned DNA is active in DNA replication in vitro. J Virol 62: 496–500

    PubMed  CAS  Google Scholar 

  • Pettit SC, Horwitz MS, Engler JA (1989) Mutations of the precursor to the terminal protein of adenovirus serotypes 2 and 5. J Virol 63: 5244–5250

    PubMed  CAS  Google Scholar 

  • Pronk R, Van der Vliet PC (1993) The adenovirus terminal protein influences binding of replication proteins and changes the origin structure. Nucleic Acids Res 21: 2293–2300

    PubMed  CAS  Google Scholar 

  • Pronk R, Stuiver MH, Van der Vliet PC (1992) Adenovirus DNA replication: the function of the covalently bound terminal protein. Chromosoma 102: 39–45

    Google Scholar 

  • Pronk R, Van Driel W, Van der Vliet PC (1994) Adenovirus DNA replication is ATP-independent. FEBS Lett 337: 33–38

    PubMed  CAS  Google Scholar 

  • Pruijn GJM, Van Driel W, Van der Vliet PC (1986) Nuclear factor III, a novel sequence-specific DNA-binding protein from HeLa cells stimulating adenovirus DNA replication. Nature 322: 656–659

    PubMed  CAS  Google Scholar 

  • Pruijn GJM, Van Miltenburg RT, Claessens AJ, Van der Vliet PC (1988) Interaction between the octamer-binding protein nuclear factor III and the adenovirus origin of DNA replication. J Virol 62: 3092–3102

    PubMed  CAS  Google Scholar 

  • Pruijn GJM, Van der Vliet PC, Dathan NA, Matta] IW (1989) Anti-OTF-1 antibodies inhibit NFIII stimulation of in vitro adenovirus DNA replication. Nucleic Acids Res 17: 1845–1863

    PubMed  CAS  Google Scholar 

  • Ramachandra M, Nakano R, Mohan PM, Rawitch AB, Padmanabhan R (1993) Adenovirus DNA polymerase is a phosphoprotein. J Biol Chem 268: 442–448

    PubMed  CAS  Google Scholar 

  • Rekosh DMK, Russell WC, Bellett AJD, Robinson AJ (1977) Identification of a protein linked to the ends of adenovirus. Cell 11: 283–295

    PubMed  CAS  Google Scholar 

  • Rekosh D, Lindenbaum J, Brewster J, Mertz LM, Hurwitz J, Prestine L (1985) Expression in Escherichia coli of a fusion protein product containing a region of the adenovirus DNA polymerase. Proc Natl Acad Sci USA 82: 2354–2358

    PubMed  CAS  Google Scholar 

  • Rijnders AWM, Van Bergen BGM, Van der Vliet PC, Sussenbach JS (1983) Specific binding of the adenovirus terminal protein precursor-DNA polymerase complex to the origin of DNA replication. Nucleic Acids Res 11: 8777–8789

    PubMed  CAS  Google Scholar 

  • Robinson AJ, Younghusband HB, Bellet AJD (1973) A circular DNA-protein complex for adenoviruses. Virology 56: 54–59

    PubMed  CAS  Google Scholar 

  • Roovers DJ, Overman PF, Chen XQ, Sussenbach JS (1991) Linker mutation scanning of the genes encoding the adenovirus type 5 terminal protein precursor and DNA polymerase. Virology 180: 273–284

    PubMed  CAS  Google Scholar 

  • Roovers DJ, Van der Lee FM, Van der Wees J, Sussenbach JS (1993) Analysis of the adenovirus type 5 terminal protein precursor and DNA polymerase by linker insertion mutagenesis. J Virol 67: 265–276

    PubMed  CAS  Google Scholar 

  • Rosenfeld PJ, O’Neill EA, Wides RJ, Kelly TJ (1987) Sequence-specific interactions between cellular DNA-binding proteins and the adenovirus origin of DNA replication. Mol Cell Biol 7: 875–886

    PubMed  CAS  Google Scholar 

  • Salas M (1991) Protein-priming of DNA replication. Annu Rev Biochem 60: 39–71

    PubMed  CAS  Google Scholar 

  • Santoro C, Mermod N, Andrews PC, Tjian R (1988) A family of human CAAT-box-binding proteins active in transcription and DNa replication: cloning and expression of multiple cDNAs. Nature 334: 218–224

    PubMed  CAS  Google Scholar 

  • Schaack J, Schedl P, Shenk T (1990a) Topoisomerase I and II cleavage of adenovirus DNA in vivo: both topoisomerase activities appear to be required for adenovirus DNA replication. J Virol 56: 78–85

    Google Scholar 

  • Schaack J, Yew-Wai Ho J, Freimuth P, Shenk T (1990b) Adenovirus terminal protein mediates both nuclear matrix association and efficient transcription of adenovirus DNA. Gene 4: 1197–1208

    CAS  Google Scholar 

  • Shu L, Horwitz MS, Engler JA (1987) Expression of enzymatically active adenovirus DNA polymerase from cloned DNA requires sequences upstream of the main open reading frame. Virology 161: 520–526

    PubMed  CAS  Google Scholar 

  • Steenbergh PH, Sussenbach JS, Roberts RJ, Jansz HS (1975) the 3′-terminal nucleotide sequences of adenovirus types 2 and 5 DNa. J Virol 15: 268–272

    Google Scholar 

  • Stillman BW (1989) Initiation of eukaryotic DNA replication in vitro. Annu Rev Cell Biol 5: 197–245

    PubMed  CAS  Google Scholar 

  • Stillman BW, Topp WC, Engler JA (1982a) Conserved sequences at the origin of adenovirus DNA replication. J Virol 44: 530–537

    PubMed  CAS  Google Scholar 

  • Stillman BW, Tamanoi F, Mathews MB (1982b) Purification of an adenovirus-coded DNA polymerase that is required for initiation of DNA replication. Cell 31: 613–623

    PubMed  CAS  Google Scholar 

  • Stow ND (1981) The infectivity of adenovirus genomes lacking DNA sequences from their left-hand termini. Nucleic Acids Res 10: 5105–5119

    Google Scholar 

  • Stuiver MH, Van der Vliet PC (1990) The adenovirus DNA binding protein forms a multimeric protein complex with double-stranded DNA and enhances binding of nuclear factor I. J Virol 64: 379–386

    PubMed  CAS  Google Scholar 

  • Stuiver MH, Bergsma WG, Arnberg AC, Van Amerongen H, Van Grondelle R, Van der Vliet PC (1992) Structural alterations of double-stranded DNA in complex with the adenovirus DNA-binding protein. Implications for its function in DNA replication. J Mol Biol 225: 999–1011

    PubMed  CAS  Google Scholar 

  • Stunnenberg HG, Lange H, Philipson L, Van Miltenburg RT, Van der Vliet PC (1988) High expression of functional adenovirus DNA polymerase and precursor terminal protein using recombinant vaccinia virus. Nucleic Acids Res 16: 2431–2444

    PubMed  CAS  Google Scholar 

  • Sussenbach JS, Van der Vliet PC (1983) The mechanism of adenovirus DNA replication and the characterization of replication proteins. In: Doerfler W (ed) The molecular biology of adenoviruses. Springer, Berlin Heidelberg New York, pp 53–73 (Current topics in microbiology and immunology, vol 109 )

    Google Scholar 

  • Sussenbach JS, Van der Vliet PC, Ellens DJ, Jansz HS (1972) Linear intermediates in the replication of adenovirus DNA. Nature New Biol 239: 47–49

    PubMed  CAS  Google Scholar 

  • Tamanoi F, Stillman BM (1982) Function of the adenovirus terminal protein in DNA replication. Proc Natl Acad Sci USA 79: 2221–2225

    PubMed  CAS  Google Scholar 

  • Temperley SM, Hay RT (1992) Recognition of the adenovirus type 2 origin of DNA replication by the virally encoded DNA polymerase and preterminal proteins. EMBO J 11: 761–768

    PubMed  CAS  Google Scholar 

  • Temperley SM, Burrow CR, Kelly TJ, Hay RT (1991) Identification of two distinct regions within the adenovirus minimal origin of replication that are required for adenovirus type 4 DNA replication in vitro. J Virol 65: 5037–5044

    PubMed  CAS  Google Scholar 

  • Tolun A, Alestrom P, Pettersson U (1979) Sequence of inverted terminal repetitions from different adenoviruses: demonstration of conserved sequences and homology between SA-7 termini and SV40-DNA. Cell 17: 705–713

    PubMed  CAS  Google Scholar 

  • Tsemoglou D, Tucker AD, Van der Vliet PC (1984) Crystallization of a fragment of the adenovirus DNA binding protein. J Mol Biol 172: 237–239

    Google Scholar 

  • Tsemoglou D, Tsugita A, Tucker AD, Van der Vliet PC (1985) Characterization of the chymotryptic core of the adenovirus DNA-binding protein. FEBS Lett 188: 248–252

    Google Scholar 

  • Tucker PA, Tsemoglou D, Tucker AD, Coenjaerts FEJ, Leenders H, Van der Vliet PC (1994) Crystal structure of the adenovirus DNA binding protein reveals a hook-on model for cooperative DNA binding. EMBO J 13: 2994–3002

    PubMed  CAS  Google Scholar 

  • Van Amerongen H, Van Grondelfe R, Van der Vliet PC (1987) The interaction between the adenovirus DNA binding protein and single-stranded polynucleotides studied by circular dichroism and ultraviolet absorption. Biochemistry 26: 4646–4652

    PubMed  Google Scholar 

  • Van Bergen BGM, Van der Ley PA, Van Driel W, Van Mansfeld ADM, Van der Vliet PC (1983) Replication of origin containing fragments that do not carry the terminal protein. Nucleic Acids Res 11: 1975–1989

    PubMed  Google Scholar 

  • Van der Vliet PC (1990) Adenovirus DNA replication in vitro. In: Straus P, Wilson SH (eds) The eukaryotic nucleus, vol 1, Telford, Caldwell, pp 1–32

    Google Scholar 

  • Van der Vliet PC (1991) The role of cellular transcription factors in the enhancement of adenovirus DNA replication. Semin Virol 2: 271–280

    Google Scholar 

  • Van der Vliet PC, Levine AJ (1973) DNA binding proteins specific for cells infected by adenovirus. Nature New Biol 246: 170–174

    PubMed  Google Scholar 

  • Van der Vliet PC, Levine AJ, Ensinger MJ,Ginsberg HS (1975) Thermolabile DNA binding proteins from cells infected with a temperature-sensitive mutant of adenovirus defective in viral DNA synthesis. J Virol 15: 348–354

    Google Scholar 

  • Van der Vliet PC, Keegstra W, Jansz HS (1978) Complex formation between the adenovirus type 5 DNA-binding protein and single-stranded DNA. Eur J Biochem 86: 389–398

    PubMed  Google Scholar 

  • Van der Vliet PC, Claessens J, De Vries E, Leegwater PAJ, Pruijn GJM, Van Miltenburg RT (1988) Interaction of cellular proteins with the adenovirus origin of DNA replication. Cancer Cells 6: 61–70

    Google Scholar 

  • Verrijzer CP, Kal AJ, Van der Vliet PC (1990a) The oct-1 homeo domain contacts only part of the octamer sequence and full oct-1 DNA binding activity requires the POU-specific domain. Genes Dev 4: 1964–1974

    PubMed  CAS  Google Scholar 

  • Verrijzer CP, Kal AJ, Van der Vliet PC (1990b) The DNA binding domain (POU domain) of transcription factor oct-1 sufficers for stimulation of DNA replication. EMBO J 9: 1883–1888

    PubMed  CAS  Google Scholar 

  • Verrijzer CP, Van Oosterhout JAWM, Van Weperen W, Van der Vliet PC (1991) POU proteins bend DNA via the POU-specific domain. EMBO J 10: 3007–3014

    PubMed  CAS  Google Scholar 

  • Verrijzer CP, Alkema MJ, Van Weperen WW, Van Leeuwen HC, Strating MJ, Van der Vliet PC (1992a) The DNA binding specificity of the bipartite POU domain and its subdomains. EMBO J 11: 4993–5003

    PubMed  CAS  Google Scholar 

  • Verrijzer CP, Strating M, Mul YM, Van der Vliet PC (1992b) POU domain transcription factors from different subclasses stimulate adenovirus DNA replication. Nucleic Acids Res 20: 6369–6375

    PubMed  CAS  Google Scholar 

  • Verrijzer CP, Van Oosterhout JAWM, Van der Vliet PC (1992c) The Oct-1 POU domain mediates interactions between Oct-1 and other POU proteins. Mol Cell Biol 12: 542–551

    PubMed  CAS  Google Scholar 

  • Voelkerding K, Klessig DF (1986) Identification of two nuclear subclasses of the adenovirus type 5-encoded DNA-binding protein. J Virol 60: 353–362

    PubMed  CAS  Google Scholar 

  • Vos HL, Van der Lee FM, Sussenbach JS (1988) The binding of in vitro synthesized adenovirus DNA-binding protein to single-stranded DNA is stimulated by zinc ions. FEBS Lett 239: 251–254

    PubMed  CAS  Google Scholar 

  • Wang K, Pearson GD (1985) Adenovirus sequences required for replication in vivo. Nucleic Acids Res 13: 5173–5178

    PubMed  CAS  Google Scholar 

  • Wang TS-F, Wong SW, Korn D (1989) Human DNA polymerase alpha: predicted functional domains and relationships with viral DNA polymerases. FASEB J 3: 14–21

    PubMed  CAS  Google Scholar 

  • Watson CJ, Hay RT (1990) Expression of adenovirus type 2 DNA polymerase in insect cells infected with a recombinant baculovirus. Nucleic Acids Res 18: 1167–1173

    PubMed  CAS  Google Scholar 

  • Webster A, Hay RT, Kemp G (1993) The adenovirus protease is activated by a virus-coded disulphide- linked peptide. Cell 72: 97–104

    PubMed  CAS  Google Scholar 

  • Wides RJ, Challberg MD, Rawlins DR, Kelly TJ (1987) Adenovirus origins of DNA replication: sequence requirements for replication in vitro. Mol Cell Biol 7: 864–874

    PubMed  CAS  Google Scholar 

  • Wilson AC, LaMarco K, Peterson MG, Herr W (1993) The VP16 accessory protein HCF is a family of polypeptides processed from a large precursor protein. Cell 74: 115–125

    PubMed  CAS  Google Scholar 

  • Zhao L-J, Padmanabhan R (1988) Nuclear transport of adenovirus DNA polymerase is facilitated by interaction with preterminal protein. Cell 55: 1005–1015

    PubMed  CAS  Google Scholar 

  • Zhao L-J, Irie K, Trirawatanapong T, Nakano R, Nakashima A, Morimatsu M, Padmanabhan R (1991) Synthesis of biologically active adenovirus preterminal protein in insect cells using a baculovirus vector. Gene 100: 147–154

    PubMed  CAS  Google Scholar 

  • Zijderveld DC, Van der Vliet PC (1994) Helix-destabilizing properties of the adenovirus DNA-binding protein. J Virol 68: 1158–1164

    PubMed  CAS  Google Scholar 

  • Zijderveld DC, Stuiver MH, Van der Vliet PC (1993) The adenovirus DNA binding protein enhances intermolecular renaturation but inhibits intramolecular DNA renaturation. Nucleic Acids Res 21: 2591–2598

    PubMed  CAS  Google Scholar 

  • Zorbas H, Rogge L, Meisterernst M,Winnacker EL (1989) Hydroxyl radical footprints reveal novel structural features around the NFI binding site in adenovirus DNA. Nucleic Acids Res 17: 7735–7748

    PubMed  CAS  Google Scholar 

  • Zorbas H, Rein T, Krause A, Hoffmann K, Winnacker E-L (1992) Nuclear factor I ( NFI) binds to an NF I- type site but not to the CCAAT site in the human a-globin gene promoter. J Biol Chem 267: 8478–8484

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Van der Vliet, P.C. (1995). Adenovirus DNA Replication. In: Doerfler, W., Böhm, P. (eds) The Molecular Repertoire of Adenoviruses II. Current Topics in Microbiology and Immunology, vol 199/2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79499-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79499-5_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79501-5

  • Online ISBN: 978-3-642-79499-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics