Skip to main content

Virus Assembly

  • Chapter

Part of the book series: Current Topics in 199/I Microbiology and Immunology ((CT MICROBIOLOGY,volume 199/1))

Abstract

The basic structure of all virions is a nucleic acid molecule enclosed in a capsid. The capsid structures must be built of multiple copies of one or a few protein subunits, since viruses do not have enough genetic information to code for a great variety of proteins (Crick and Watson 1957). There are two ways in which identical asymmetrical subunits can assemble to build stable regular capsids: by forming closed shells or through helical assemblies. The assembly of animal viruses has benefited from bacteriophage studies. In bacteriophage systems, all virion proteins and other late proteins, such as scaffolding proteins, required for assembly are synthesized simultaneously and accumulate in a precursor pool. From the pool, they are withdrawn by specific interactions to form assembly intermediates that in turn are assembled into complete virions, a process that in many cases involves several enzymatic steps such as precursor cleavages. Some examples are provided by the T-even bacteriophags λ and p22; in vivo studies with conditional lethal mutants first showed the general pathway, but an in vitro assembly system of complementation was required to delineate the molecular details (Edgar and Wood 1966; Earnshaw and Casjens 1980; Fuller and King 1980, 1982).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akusjärvi G, Persson H (1981) Gene and mRNA for precursor polypeptide VI from adenovirus type 2. J Virol 38: 469–482

    PubMed  Google Scholar 

  • Akusjärvi G, Zabielski J, Perricaudet M, Pettersson U (1981) The sequence of the 3’ non-coding region of the hexon mRNA discloses a novel adenovirus gene. Nucleic Acids Res 9: 1–17

    Article  PubMed  Google Scholar 

  • Anderson CW (1990) The proteinase polypeptide of adenovirus serotype 2 virions. Virology 177: 259–272

    Article  CAS  PubMed  Google Scholar 

  • Anderson CW, Baum PR, Gesteland RF (1973) Processing of adenovirus type 2 proteins: hexon, fiber, component IX, early protein 1B-15K. Virology 104: 27–41

    Article  Google Scholar 

  • Anderson CW, Young ME, Flint SJ (1989) Characterization of the adenovirus 2 virion protein, mu. Virology 172: 506–512

    Article  CAS  PubMed  Google Scholar 

  • Bhatti AR, Weber J (1979) Protease of adenovirus type 2. Subce!lular localization. J Biol Chem 254: 12265–12268

    CAS  PubMed  Google Scholar 

  • Black BC, Center MS (1979) DNA-binding properties of the major core protein of adenovirus 2. Nucleic Acids Res 6: 2329–2353

    Google Scholar 

  • Boudin ML, Boulanger PA (1981) Antibody-triggered dissociation of adenovirus penton capsomer. Virology 113: 781–786

    Article  CAS  PubMed  Google Scholar 

  • Boudin ML, Boulanger PA (1982) Assembly of adenovirus penton base and fiber. Virology 116: 589–604

    Article  CAS  PubMed  Google Scholar 

  • Boudin ML, Moncany M, D’Halluin JC, Boulanger PA (1979) Isolation and characterization of adenovirus type 2 vertex capsomer (penton base). Virology 92: 125–128

    Article  CAS  PubMed  Google Scholar 

  • Boudin ML, D’Halluin JC, Cousin C, Boulanger PA (1980) Human adenovirus type 2 protein IIIa. Maturation and encapsidation. Virology 101: 144–156

    Article  CAS  PubMed  Google Scholar 

  • Boudin ML, Rigolet M, Lemay P, Galibert F, Boulanger P (1983) Biochemical and genetical characterization of a fiber-defective temperature-sensitive mutant of type 2 adenovirus. EMBO J 2: 1921–1927

    CAS  PubMed  Google Scholar 

  • Boulanger PA (1975) Adenovirus assembly: self-assembly of partially digested hexons. J Virol 16: 1678–1682

    CAS  PubMed  Google Scholar 

  • Boulanger PA, Lemay P, Blair GE, Russell WC (1979) Characterization of adenovirus protein IX. J Gen Virol 44: 783–800

    Article  CAS  PubMed  Google Scholar 

  • Brown DT, Westphal M, Burlingham BT, Winterhoff U, Doerfler W (1975) Structure and composition of the adenovirus type 2 core. J Virol 16: 366–387

    CAS  PubMed  Google Scholar 

  • Brown M, Weber J (1980) Virion core-like organisation of intranuclear adenovirus chromatin late in infection. Virology 107: 306–310

    Article  CAS  PubMed  Google Scholar 

  • Burlingham BT, Brown DT, Doerfler W (1974) Incomplete particles of adenovirus. I. Characteristics of the DNA associated with incomplete adenovirions of types 2 and 12. Virology 60: 419–430

    Article  CAS  PubMed  Google Scholar 

  • Caillet-Boudin ML (1989) Complementary peptide sequences in partner proteins of the adenovirus capsid. J Mol Biol 208: 195–198

    Article  CAS  PubMed  Google Scholar 

  • Cepko CL, Sharp PA (1982) Assembly of adenovirus major capsid protein is mediated by a non-virion protein. Cell 31: 407–415

    Article  CAS  PubMed  Google Scholar 

  • Cepko CL, Changelian PA, Sharp PA (1981) Immunoprecipitation with two-dimensional pools as a hybridoma screening technique: production and characterization of monoclonal antibodies against adenovirus 2 proteins. Virology 110: 385–401

    Article  CAS  PubMed  Google Scholar 

  • Challberg MD, Desiderio SV, Kelly TJ Jr (1980) Adenovirus DNA replication in vitro: characterization of a protein covalently linked to nascent DNA strands. Proc Natl Acad Sci USA 77: 5105–5109

    Article  CAS  PubMed  Google Scholar 

  • Chatterjee PK, Flint SJ (1987) Adenovirus type 2 endopeptidase: an unusual phosphoprotein enzyme matured by autocatalysis. Proc Natl Acad Sci USA 84: 714–718

    Article  CAS  PubMed  Google Scholar 

  • Chatterjee PK, Vayda ME, Flint SJ (1986a) Identification of proteins and protein domains that contact DNA within adenovirus nucleoprotein cores by ultraviolet light crosslinking of oligonucleotides 32P-labelled in vivo. J Mol Biol 188: 23–37

    Article  CAS  PubMed  Google Scholar 

  • Chatterjee PK, Yang UC, Flint SJ (1986b) Comparison of the interactions of the adenovirus type 2 major core protein and its precursor with DNA. Nucleic Acids Res 14: 2721–2735

    Article  CAS  PubMed  Google Scholar 

  • Chee-Sheung CC, Ginsberg HS (1982) Characterization of a temperature-sensitive fiber mutant of type 5 adenovirus and effect of the mutation on virion assembly. J Virol 42: 932–950

    CAS  PubMed  Google Scholar 

  • Chroboczek J, Viard F, D’Halluin JC (1987) Human adenovirus temperature-sensitive mutant 112 contains three mutations in the protein IIIa gene. Gene 49: 157–160

    Article  Google Scholar 

  • Colby WW, Shenk T (1981) Adenovirus type 5 virions can be assembled in vivo in the absence of detectable polypeptide IX. J Virol 39: 977–980

    CAS  PubMed  Google Scholar 

  • Corden J, Engelking M, Pearson GD (1976) Chromatin like organization of the adenovirus chromosome. Proc Natl Acad Sci USA 73: 401–404

    Article  CAS  PubMed  Google Scholar 

  • Crick FHC, Watson JD (1957) Structure of small viruses. Nature 177: 473–476

    Article  Google Scholar 

  • Cuillel M, Milleville M, D’Halluin JC (1987) Expression of the human Ad2 IIIa protein in E coli. Gene 55: 295–301

    Article  CAS  PubMed  Google Scholar 

  • Daniell E (1976) Genome structure of incomplete particles of adenovirus. J Virol 19: 685–708

    CAS  PubMed  Google Scholar 

  • Daniell E, Mullenbach T (1978) Synthesis of defective viral DNA in HeLa cells infected with adenovirus type 3. J Virol 26: 61–70

    CAS  PubMed  Google Scholar 

  • Daniell E, Groff DE, Fedor MJ (1981) Adenovirus chromatin structure at different stages of infection. Mol Cell Biol: 1094–1105

    Google Scholar 

  • Dery CV, Toth M, Brown M, Horvath J, Allaire S, Weber JM (1985) The structure of adenovirus chromatin in infected cells. J Gen Virol 66: 2671–2684

    Article  CAS  PubMed  Google Scholar 

  • Devaux C, Boulanger P (1980) Reactive serine in human adenovirus hexon polypeptide. Virology 102: 94–106

    Article  CAS  PubMed  Google Scholar 

  • Devaux C, Caillet-Boudin ML, Jacrot B, Boulanger P (1987) Crystallization, enzymatic cleavage, and the polarity of the adenovirus type 2 fiber. Virology 161: 121–128

    Article  CAS  PubMed  Google Scholar 

  • D’Halluin JC (1980) Génétique de I'adénovirus. Bull Pasteur Paris 78: 347–405

    Google Scholar 

  • D’Halluin JC, Martin GR, Torpier G, Boulanger PA (1978a) Adenovirus type 2 assembly analyzed by reversible cross-linking of labile intermediates. J Virol 26: 357–363

    PubMed  Google Scholar 

  • D’Halluin JC, Milleville M, Boulanger PA, Martin GR (1978b) Temperature-sensitive mutant of adenovirus type 2 blocked in virion assembly: accumulation of light intermediate particles. J Virol 26: 344–356

    PubMed  Google Scholar 

  • D’Halluin JC, Milleville M, Martin GR, Boulanger PA (1980a) Morphogenesis of human adenovirus 2. Study with fiber and fiber-penton base defective temperature-sensitive mutants. J Virol 33: 88–99

    PubMed  Google Scholar 

  • D’Halluin JC, Milleville M, Boulanger PA (1980b) Effects of novobiocin on adenovirus DNA synthesis and encapsidation. Nucleic Acids Res 8: 88–99

    Google Scholar 

  • D’Halluin JC, Cousin C, Boulanger PA (1982) Physical mapping of adenovirus type 2 ts mutations by restriction nuclease analysis of interserotypic recombinants. J Virol 41: 410–413

    Google Scholar 

  • EarnshawWC, Casjens SR (1980) DNA packaging by the double-stranded DNA bacteriophages. Cell 21: 319–331

    Article  Google Scholar 

  • Edgar RS, Wood WB (1966) Morphogenesis of bacteriophage T4 in extracts of mutant-infected cells. Proc Natl Acad Sci USA 55: 498–502

    Article  CAS  PubMed  Google Scholar 

  • Edvardsson B, Everitt E, Jörnvall H, Prage L, Philipson L (1976) Intermediates in adenovirus assembly. J Virol 19: 533–547

    CAS  PubMed  Google Scholar 

  • Edvardsson B, Ustacelebi S, Williams J, Philipson L (1978) Assembly intermediates among adenovirus type 5 temperature-sensitive mutants. J Virol 25: 641–651

    CAS  PubMed  Google Scholar 

  • Everitt E, Lutter L, Philipson L (1975) Structural proteins of adenoviruses. XII. Location and neighbor relationship among proteins of adenovirion type 2 as revealed by enzymatic iodination, immunoprecipitation and chemical cross-linking. Virology 67: 197–208

    Article  CAS  PubMed  Google Scholar 

  • Everitt ES, Meador A, Levine AS (1977) Synthesis and processing of the precursor to the major core protein of adenovirus type 2. J Virol 21: 199–214

    CAS  PubMed  Google Scholar 

  • Falgout B, Ketner G (1987) Adenovirus early region 4 is required for efficient virus particle assembly. J Virol 61: 3759–3768

    CAS  PubMed  Google Scholar 

  • Falgout B, Ketner G (1988) Characterization of adenovirus particles made by deletion mutants lacking the fiber gene. J Virol 62: 622–625

    CAS  PubMed  Google Scholar 

  • Feiss M (1986) Terminase and the recognition, cutting and packaging of lambda chromosomes. Trends Genet 2: 100–104

    Article  CAS  Google Scholar 

  • Flint SJ, Broker TR (1981) Lytic infection by adenoviruses. In: Tooze J (ed) The molecular biology of tumor viruses, DNA tumor viruses, 2nd rev edn. Cold Spring Harbor Press, Cold Spring Harbor NY, pp 443–546

    Google Scholar 

  • Freimuth P, Anderson CW (1993) Human adenovirus serotype 12 virion precursors pMu and pVI are cleaved at amino-terminal and carboxy-terminal sites that conform to the adenovirus 2 endo- proteinase cleavage consensus sequence. Virology 193: 348–355

    Article  CAS  PubMed  Google Scholar 

  • Frost E, Williams J (1978) Mapping temperature-sensitive and host-range mutations of adenovirus type 5 by marker rescue. Virology 91: 39–50

    Article  CAS  PubMed  Google Scholar 

  • Fuller MT, King J (1980) Regulation of coat protein polymerisation by the scaffolding protein of bacteriophage P22. Biophys J 32: 381–401

    Article  CAS  PubMed  Google Scholar 

  • Fuller MT, King J (1982) Assembly in vitro of bacteriophage P22 procapsids from purified coat and scaffolding subunits. J Mol Biol 156: 633–665

    Article  CAS  PubMed  Google Scholar 

  • Ginsberg HS, Young CHS (1977) Genetics of adenoviruses. Compr Virol 9: 27–88.

    CAS  Google Scholar 

  • Gräble M, Hearing P (1990) Adenovirus type 5 packaging domain is composed of a repeated element that is functionally redundant. J Virol 64: 2047–2056

    PubMed  Google Scholar 

  • Gräble M, Hearing P (1992) cis and trans requirements for the selective packaging of adenovirus type 5 DNA. J Virol 66: 723–731

    PubMed  Google Scholar 

  • Green NM, Wrigley NG, Russell WC, Martin SR, McLahlan AD (1983) Evidence for a repeating cross ß-sheet structure in the adenovirus fibre. EM BO J 2: 1357–1366

    CAS  Google Scholar 

  • Hammarskjöld ML, Winberg G (1980) Encapsidation of adenovirus 16 DNA is directed by a small DNA sequences at the left end of the genome. Cell 20: 787–795

    Article  PubMed  Google Scholar 

  • Hammarskjöld ML, Winberg G, Norrby E, Wadell G (1977) Isolation of incomplete adenovirus 16 particles containing viral and host cell DNA. Virology 82: 449–461

    Article  PubMed  Google Scholar 

  • Hannan C, Raptis LH, Dery CV, Weber J (1983) Biological and structural studies with an adenovirus type 2 temperature-sensitive mutant defective for uncoating. Intervirology 19: 213–223

    Article  CAS  PubMed  Google Scholar 

  • Hassell JA, Weber J (1978) Genetic analysis of adenovirus type 2 VIII. Physical locations of temperature- sensitive mutations. J Virol 28: 671–678

    CAS  PubMed  Google Scholar 

  • Hassori TB, Soloway PD, Ornelles DA, Doerfler W, Shenk T (1989) Adenovirus L1 52-and 55-kilodation proteins are required for assembly of virions. J Virol 63: 3612–3621

    Google Scholar 

  • Hasson TB, Ornelles DA, Shenk T (1992) Adenovirus L1 52- and 55-kilodalton proteins are present within assembling virions and colocalize with nuclear structures distinct from replication centers. J Virol 66: 6133–6142

    CAS  PubMed  Google Scholar 

  • Hearing P, Shenk T (1983) The adenovirus type 5 E1A transcriptional control region contains a duplicated enhancer element. Cell 3: 695–703

    Article  Google Scholar 

  • Hearing P, Samulski RJ, Wishart WL, Shenk T (1987) Identification of a repeated sequence element required for efficient encapsidation of the adenovirus type 5 chromosome. J Virol 61: 2555–2558

    CAS  PubMed  Google Scholar 

  • Heysen A, Verwaerde P, D’Halluin JC (1991) Nucleotide sequence and regulation of the adenovirus type 3 E2A early promoter. Virology 181: 241–250

    Article  CAS  PubMed  Google Scholar 

  • Horwitz MS, Scharff MD, Maizel JV (1969) Synthesis and assembly of adenovirus 2. I. Polypeptide synthesis, assembly of capsomers and morphogenesis of the virion. Virology 39: 682–694

    Article  CAS  PubMed  Google Scholar 

  • Igarishi K, Niiyama Y, Tsukamoto K, Kurokawa T, Sugino Y (1975) Biochemical studies on bovine adenovirus type 3. II. Incomplete virus. J Virol 16: 634–641

    Google Scholar 

  • Ishibashi M, Maizel JV Jr (1974) The polypeptides of adenovirus. V. Young virions, structural intermediate between top components and aged virions. Virology 57: 409–424

    Article  CAS  PubMed  Google Scholar 

  • Ishiyama T, Shinagawa M, Sato G, Fujinaga K, Padmanabhan R (1986) Generation of packaging- defective DNA molecules of equine adenovirus. Virology 151: 66–76

    Article  CAS  PubMed  Google Scholar 

  • Kauffman RS, Ginsberg HS (1976) Characterization of a ts, hexon transport mutant of type 5 adenovirus. J Virol 19: 643–658

    CAS  PubMed  Google Scholar 

  • Khittoo G, Weber J (1977) Genetic analysis of adenovirus type 2. VI. A temperature-sensitive mutant defective for DNA encapsidation. Virology 81: 126–137

    Article  CAS  PubMed  Google Scholar 

  • Khitoo G, Weber J (1981) The nature of the DNA associated with incomplete particles of adenovirus type 2. J Gen Virol 54: 343–355

    Article  Google Scholar 

  • Khitoo G, Delorme L, Dery CV, Tremblay ML, Weber JM, Bibor-Hardy V, Simard R (1986) Role of the nuclear matrix in adenovirus maturation. Virus Res 4: 391–403

    Article  Google Scholar 

  • Kosturko LD, Sharnick SV, Tibbetts C (1982) Polar encapsidation of adenovirus DNA: cloning and DNA sequence of the left end of adenovirus type 3. J Virol 43: 1132–1137

    CAS  PubMed  Google Scholar 

  • Kruijer W, van Schaik FMA, Sussenbach JS (1980) Nucleotide sequence analysis of a region of adenovirus 5 DNA encoding a hitherto unidentified gene. Nucleic Acids Res 8: 6033–6042

    Article  CAS  PubMed  Google Scholar 

  • Leibowitz J, Horwitz MS (1975) Synthesis and assembly of adenovirus polypeptides. III. Reversible inhibition of hexon assembly in adenovirus type 5 temperature-sensitive mutants. Virology 66: 10–24

    Article  CAS  PubMed  Google Scholar 

  • Lewis JB, Mathews M (1980) Control of adenovirus early gene expression: a class of immediate early products. Cell 21: 303–313

    Article  CAS  PubMed  Google Scholar 

  • Lewis JB, Fahnestock ML, Hardy MM, Anderson C (1985) Presence in infected cells of nonvirion proteins encoded by adenovirus messenger RNAs of the major late transcription regions L0 and L1. Virology 143: 452–466

    Article  CAS  PubMed  Google Scholar 

  • Liu GQ, Babiss LE, Volkert FC, Young CS, Ginsberg HS (1985) A thermolabile mutant of adenovirus 5 resulting from a substitution mutation in the protein VIII gene. J Virol 53: 920–925

    CAS  PubMed  Google Scholar 

  • Maizel JV Jr, White DO, Sharff MD (1968) The polypeptides of adenovirus. II. Soluble proteins, cores, top components and the structure of the virion. Virology 36: 126–136

    Article  CAS  PubMed  Google Scholar 

  • Mak S (1971) Defective virions in human adenovirus type 12. J Virol 7: 426–433

    CAS  PubMed  Google Scholar 

  • Mak I, Ezoe H, Mak S (1979) Structure and function of adenovirus type 12 defective virions. J Virol 32: 240–250

    CAS  PubMed  Google Scholar 

  • Mangell WF, McGrath WJ, Toledo DL, Anderson CW (1993) Viral DNA and a viral peptide can act as cofactors of adenovirus virion proteinase activity. Nature 361: 274–275

    Article  Google Scholar 

  • Martin GR, Waroquier R, Cousin C, D’Halluin JC, Boulanger PA (1978) Isolation and phenotypic characterization of adenovirus type 2 temperature sensitive mutants. J Gen Virol 41: 303–314

    Article  CAS  PubMed  Google Scholar 

  • Miller JS, Ricciardi RP, Roberts BE, Patterson BM, Mathews MB (1980) Arrangement of messenger RNAs and protein coding sequences in the major late transcription unit of adenovirus 2. J Mol Biol 142: 455–488

    Article  CAS  PubMed  Google Scholar 

  • Mirza MA, Weber J (1977) Genetic analysis of adenovirus type 2. VII. Cleavage modified affinity for DNA of internal virion proteins. Virology 80: 83–97

    Article  CAS  PubMed  Google Scholar 

  • Mirza MA, Weber J (1979) Uncoating of adenovirus type 2. J Virol 30: 462–471

    CAS  PubMed  Google Scholar 

  • Mirza MA, Weber JM (1981) Structure of adenovirus chromatin as probed with restriction endonucleases. Virology 108: 351–360

    Article  CAS  PubMed  Google Scholar 

  • Mirza MA, Weber J (1982) Structure of adenovirus chromatin. Biochim Biophys Acts 696: 76–86

    CAS  Google Scholar 

  • Moncany ML, Revet B, Girard M (1980) Characterization of a new adenovirus type 5 assembly intermediate. J Gen Virol 50: 33–37

    Article  CAS  PubMed  Google Scholar 

  • Morin N, Boulanger P (1984) Morphogenesis of human adenovirus type 2: sequence of entry of proteins into previral and viral particles. Virology 136: 153–167

    Article  CAS  PubMed  Google Scholar 

  • Nermut MV (1978) Structural elements in adenovirus cores. Studies by means of freeze-fracturing and ultrathin sectioning. Arch Virol 57: 323–337

    Article  CAS  PubMed  Google Scholar 

  • Newcomb WW, Boring JW, Brown JC (1984) Ion etching of human adenovirus 2: structure of the core. J Virol 51: 52–56

    CAS  PubMed  Google Scholar 

  • Niiyama Y, Igarishi K, Tsukamoto K, Kurokawa T, Sugino Y (1975) Biochemical studies on bovine adenovirus type 3: I. Purification and properties. J Virol 28: 236–248

    Google Scholar 

  • Novelli A, Boulanger PA (1991) Assembly of adenovirus type 2 fiber synthesized in cell-free translation system. J Biol Chem 266: 9299–9303

    CAS  PubMed  Google Scholar 

  • Öberg B, Saborio J, Persson T, Everitt E, Philipson L (1975) Identification of the in vitro translation products of adenovirus mRNA by immunoprecipitation. J Virol 15: 199–207

    PubMed  Google Scholar 

  • Oosterom-Dragon EA, Ginsberg HS (1981) Characterization of two temperature-sensitive mutants of type 5 adenovirus with mutations in the 100,000-dalton protein gene. J Virol 40: 491–500

    CAS  PubMed  Google Scholar 

  • Pereira HG, Wrigley NG (1974) In vitro reconstitution, hexon bonding and handedness of incomplete adenovirus capsid. J Mol Biol 85: 617–631

    Article  CAS  PubMed  Google Scholar 

  • Persson H, Öberg B, Philipson L (1977) In vitro translation with adenovirus polyribosomes. J Virol 21:187–198

    CAS  PubMed  Google Scholar 

  • Persson H, Mathisen B, Philipson L, Pettersson U (1979) A maturation protein in adenovirus morphogenesis. Virology 93: 198–208

    Article  CAS  PubMed  Google Scholar 

  • Pettersson U (1971) Structural proteins of adenoviruses. VI. On the antigenic determinants of the hexon. Virology 93: 198–208

    Article  Google Scholar 

  • Philipson L (1984) Adenovirus assembly. In: Ginsberg HS (ed) The adenoviruses Plenum, New York, pp 309–337

    Google Scholar 

  • Prage L, Höglund S, Philipson L (1972) Structural proteins of adenoviruses. III. Characterization of incomplete particles of adenovirus type 3. Virology 49: 745–757

    Article  CAS  PubMed  Google Scholar 

  • Puvion-Dutilleul F, Pédron J, Cajean-Feroldi C (1984) Identification of intranuclear structures containing the 72K DNA-binding protein of human adenovirus type 5. Eur J Cell Biol 34: 313–322

    CAS  PubMed  Google Scholar 

  • Rainbow AJ, Mak S (1970) Functional heterogeneity of virions of human adenovirus types 2 and 12. J Virol 5: 188–197

    CAS  PubMed  Google Scholar 

  • Rosenwith B, Tija S, Westphal M, Doerfler W (1974) Incomplete particles of adenovirus. II. Kinetics of formation and polypeptide composition of adenovirus type 2. Virology 60: 431–437

    Article  Google Scholar 

  • Sato K, Hosokawa K (1981) The structure of adenovirion chromatin revealed by ultraviolet light-induced cross-linking. Biochem Biophys Res Commun 101: 1318–1323

    Article  CAS  PubMed  Google Scholar 

  • Schaack J, Ho WY-W, Freimuth P, Shenk T (1990) Adenovirus terminal protein mediates both nuclear matrix association and efficient transcription of adenovirus DNA. Gene Dev 4: 1197–1208

    Article  CAS  PubMed  Google Scholar 

  • Schaller JP, Yohn DS (1974) Transformation potentials of the non-infectious (defective) component in pools of adenoviruses type 12 and simian adenovirus 7. J Virol 14: 392–401

    CAS  PubMed  Google Scholar 

  • Sergeant A, Tigges MA, Raskas HJ (1979) Nucleosome-like structural subunits of intranuclear parental adenovirus type 2 DNA. J Virol 29: 888–898

    CAS  PubMed  Google Scholar 

  • Sira S, Dobbs M, Abouhaidar MG, Campbell JB (1989) Incomplete particles of canine adenovirus type 1: occurrence and structure. Virology 173: 188–195

    Article  CAS  PubMed  Google Scholar 

  • Smart JE, Stillman BW (1982) Adenovirus terminal protein precursor: partial amino acid sequence and the site of covalent linkage to DNA. J Biol Chem 257: 13499–13506

    CAS  PubMed  Google Scholar 

  • Stewart PL, Burnett RM, Cyrklaff M, Fuller SD (1991) Image reconstruction reveals the complex molecular organization of adenovirus. Cell 67: 145–154

    Article  CAS  PubMed  Google Scholar 

  • Stillman BW, Lewis JB, Chow LT, Mathews MB, Smart JE (1981) Identification of the gene and mRNA for the adenovirus terminal protein precursor. Cell 23: 497–508

    Article  CAS  PubMed  Google Scholar 

  • Stinski MF, Ginsberg HS (1974) Antibody to the type 5 adenovirus hexon polypeptide: detection of nascent polypeptides in cytoplasm of infected KB cells. Intervirology 4: 226–236

    CAS  PubMed  Google Scholar 

  • Sundquist B, Pettersson U, Thelander L, Philipson L (1973a) Structural proteins of adenoviruses. IX. Molecular weight and subunit composition of adenovirus type 2 fiber. Virology 51: 252–256

    Article  CAS  Google Scholar 

  • Sundquist B, Everitt E, Philipson L, Höglund S (1973b) Assembly of adenoviruses. J Virol 11: 449–459

    CAS  PubMed  Google Scholar 

  • Sung MT, Lischwe MA, Richards JC, Hosokawa K (1977) Adenovirus chromatin I. Isolation and characterization of the major core protein VII and precursor pro-VII. J Biol Chem 252: 4981–4987

    CAS  PubMed  Google Scholar 

  • Sung MT, Cao TM, Coleman RT, Budelier KA (1983) Gene and protein sequences of adenovirus protein VII, a hybrid basic chromosomal protein. Proc Natl Acad Sci USA 80: 2902–2906

    Article  CAS  PubMed  Google Scholar 

  • Tate V, Philipson L (1979) Parental adenovirus DNA accumulates in nuclesome-like structures in infected cells. Nucleic Acids Res 6: 2769–2785

    Article  CAS  PubMed  Google Scholar 

  • Tibbetts C (1977) Viral DNA sequences from incomplete particles of human adenovirus type 7. Cell 12: 243–249

    Article  CAS  PubMed  Google Scholar 

  • Tibbetts C, Giam CZ (1979) In vitro association of empty adenovirus capsids with double-stranded DNA. J Virol 32: 995–1005

    CAS  PubMed  Google Scholar 

  • Tija S, Fanning E, Schick J, Doerfler W (1977) Incomplete particles of adenovirus type 2. III. Viral and cellular DNA sequences in incomplete particles. Virology 76: 365–379

    Article  Google Scholar 

  • Toth M, Weber J (1984) Nuclease sensitivity of adenovirus type 2 chromatin in lytic infection. J Gen Virol 65: 1611–1615

    Article  CAS  PubMed  Google Scholar 

  • Tremblay ML, Dery CV, Talbot BG, Weber J (1983) In vitro cleavage specificity of the adenovirus type 2 proteinase. Biochim Biophys Acta 743: 239–245

    Article  CAS  PubMed  Google Scholar 

  • Van Oostrum J, Burnett RM (1985) Molecular composition of the adenovirus type 2 virion. J Virol 56: 439–448

    PubMed  Google Scholar 

  • Van Oostrum J, Smith PR, Mohraz M, Burnett RM (1987) The structure of the adenovirus capsid. III. Hexon packing determined from electron micrografs of capsid fragments. J Mol Biol 198: 73–89

    Article  PubMed  Google Scholar 

  • Vayda ME, Rogers AE, Flint SJ (1983) The structure of nucleoprotein cores released from adenovirions. Nucleic Acids Res 11: 441–460

    Article  CAS  PubMed  Google Scholar 

  • Velicer LF, Ginsberg HS (1970) Synthesis, transport and morphogenesis of type 5 adenovirus capsid proteins. J Virol 5: 338–352

    CAS  PubMed  Google Scholar 

  • Wadell G, Hammarskjöld ML, Varsanyi T (1973) Incomplete particles of adenovirus type 16. J Gen Virol 20: 287–302

    Article  CAS  PubMed  Google Scholar 

  • Weber J (1976) Genetic analysis of adenovirus type 2. III. Temperature-sensitivity of processing of viral proteins. J Virol 17: 462–471

    CAS  PubMed  Google Scholar 

  • Weber JM, Khittoo G (1983) The role of phosphorylation and core protein V in adenovirus assembly. J Gen Virol 64: 2063–2068

    Article  CAS  PubMed  Google Scholar 

  • Weber JM, Philipson L (1984) Protein composition of adenovirus nucleoprotein complexes extracted from infected cells. Virology 135: 321–327. 18

    Article  Google Scholar 

  • Weber JM, Begin M, Khittoo G (1975) Genetic analysis of adenovirus type 2. II. Preliminary phenotypic characterization of temperature sensitive mutants. J Virol 15: 1049–1056

    CAS  PubMed  Google Scholar 

  • Weber JM, Khittoo G, Bhatti R (1983) Adenovirus core proteins. Can J Microbiol 29: 235–241

    Article  CAS  PubMed  Google Scholar 

  • Weber JM, Dery CV, Mirza MA, Horvath J (1985) Adenovirus DNA synthesis is coupled to virus assembly. Virology 140: 351–359

    Article  CAS  PubMed  Google Scholar 

  • Webster A, Russell S, Talbot P, Russell WC, Kemp GD (1989) Characterization of the adenovirus proteinase: substrate specificity. J Gen Virol 70: 3225–3234

    Article  CAS  PubMed  Google Scholar 

  • Winberg G, Wadell G (1977) Structural polypeptides of adenovirus type 16 incomplete particles. J Virol 22: 389–401

    CAS  PubMed  Google Scholar 

  • Winter N, D’Halluin JC (1991) Regulation of the biosynthesis of subgroup C adenovirus protein IVa2. J Virol 65: 5250–5259

    CAS  PubMed  Google Scholar 

  • Wong ML, Hsu M (1989) Linear adenovirus DNA is organized into supercoiled domains in virus particles. Nucleic Acids Res 17: 3535–3550

    Article  CAS  PubMed  Google Scholar 

  • Wouters-Tyrou D, Chartier-Harlin MC, Martin-Panthieu A, Boutillon C, van Dorsselare A, Sautière P (1991) Cuttlefish spermatid-specific protein T. Molecular characterization of two variants T1 and T2, putative precursors of protamine variants Sp1 and Sp2. J Biol Chem 266: 17388–17395

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

D’Halluin, J.C. (1995). Virus Assembly. In: Doerfler, W., Böhm, P. (eds) The Molecular Repertoire of Adenoviruses I. Current Topics in 199/I Microbiology and Immunology, vol 199/1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79496-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79496-4_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79498-8

  • Online ISBN: 978-3-642-79496-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics