Skip to main content

Structure of Parallel-Stranded Guanine Tetraplexes

  • Chapter
Nucleic Acids and Molecular Biology

Part of the book series: Nucleic Acids and Molecular Biology ((NUCLEIC,volume 9))

Abstract

Oligonucleotides rich in guanine possess a distinctive ability to self-associate, even in the absence of any sequence complementarity of the Watson-Crick kind (see review by Sundquist 1991 in Volume 5 of this Series). At the macroscopic level, this property is manifested in a propensity to form semicrystalline gels, which are even formed by the free guanine mononucleoside. It is now appreciated that this macroscopic property originates from the ability of guanine bases to form base-base interactions through multidentate hydrogen bonding interactions. More than 30 years ago (Geliert et al. 1962), it was proposed that this ability may permit four guanine bases to selfassociate by forming cyclic tetrads (sometimes termed G-quartets). The tetrad arrangement brings four strands together into a quadruple helix, and such structures have been characterised by fibre diffraction studies (Tougard et al. 1973; Arnott et al. 1974; Zimmerman et al. 1975). The tetrad model also explained the observation that proton exchange rates are very slow in guanine gels (Pinnavaia et al. 1975).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aboul-Ela F, Murchie AIH, Lilley DMJ (1992) NMR study of parallel-stranded tetraplex formation by dTG4T. Nature 360:280–282

    Article  PubMed  CAS  Google Scholar 

  • Aboul-Ela F, Murchie AIH, Norman DG, Lilley DMJ (1994) Solution structure of a parallel-stranded tetraplex formed by d(TG4T) in the presence of sodium ions by nuclear magnetic resonance spectroscopy. J Mol Biol (in press)

    Google Scholar 

  • Arnott S, Chandrasekaran R, Marttila CM (1974) Structures for polyinosinic acid and polyguanylic acid. Biochem J 141:537–543

    PubMed  CAS  Google Scholar 

  • Awang G, Sen D (1993) Mode of dimerization of HIV-1 genomic RNA. Biochemistry 32:11453–11457

    Article  PubMed  CAS  Google Scholar 

  • Balagurumoorthy P, Bramachari SK, Mohanty D, Bansal M, Sasisekharan V (1992) Hairpin and parallel quartet structures for telomeric sequences. Nucleic Acids Res 20:4061–4067

    Article  PubMed  CAS  Google Scholar 

  • Bernards R, Schackleford GM, Gerber MR, Horowitz JM, Friend SH, Schartl M, Bogenmann E, Rapaport JM, McGee T, Dryja TP, Weinberg RA (1989) Structure and expression of the murine retinoblastoma gene and characterisation of the protein. Proc Natl Acad Sci USA 86:6474–6478

    Article  PubMed  CAS  Google Scholar 

  • Blackburn EH (1991) Structure and function of telomeres. Nature 350:569–573

    Article  PubMed  CAS  Google Scholar 

  • Cheong C, Moore PB (1992) Solution structure of an unusually stable RNA tetraplex containing G-and U-quartet structures. Biochemistry 31:8406–8414

    Article  PubMed  CAS  Google Scholar 

  • Chittenden T, Livingston DM, Kaelin WG Jr (1991) The T/E1A-binding domain of the retinoblastoma product can interact selectively with a sequence-specific DNA-binding protein. Cell 65:1073–1082

    Article  PubMed  CAS  Google Scholar 

  • Darlix J-L, Gabus C, Nugeyre M-T, Clavel F, Barré-Sinoussi F (1990) Cis elements and trans-acting factors involved in the RNA dimerization of the human immunodeficiency virus HIV-1. J Mol Biol 216:689–699

    Article  PubMed  CAS  Google Scholar 

  • Dykstra CC, Kitada K, Clark AB, Hamatake RK, Sugino A (1991) Cloning and characterization of DST2, the gene for NDA strand transfer protein β from Saccharomyces cerevisiae. Mol Cell Biol 11:2583–2592

    PubMed  CAS  Google Scholar 

  • Fang GW, Cech TR (1993a) The β subunit of Oxytricha telomere-binding protein promotes G-quartet formation by telomeric DNA. Cell 74:875–885

    Article  PubMed  CAS  Google Scholar 

  • Fang GW, Cech TR (1993b) Characterization of a G-quartet formation reaction promoted by the β-subunit of the Oxytricha telomere-binding protein. Biochemistry 32:11646–11657

    Article  PubMed  CAS  Google Scholar 

  • Friend SH, Bernards R, Rogeli S, Weinberg RA, Rapaport JM, Alberts DM, Dryja TP (1986) A human DNA segment with properties of the gene that predisposes to retinoblastoma and osteosarcoma. Nature 323:643–646

    Article  PubMed  CAS  Google Scholar 

  • Gaffney BL, Wang C, Jones RA (1992) Nitrogen-15-labeled oligodeoxynucleotides. 4. Tetraplex formation of d[G(15N7)GTTTTTGG] and d[T(15N7)GGGT] monitored by proton-detected nitrogen-15 NMR. J Am Chem Soc 114:4047–4050

    Article  CAS  Google Scholar 

  • Geliert M, Lipsett MN, Davies DR (1962) Helix formation by guanylic acid. Proc Natl Acad Sci USA 48:2013–2018

    Article  Google Scholar 

  • Giraldo R, Rhodes D (1994) The yeast telomere-binding protein RAP1 binds to and promotes the formation of DNA quadruplexes in telomeric DNA. EMBO J 13:2411–2420

    PubMed  CAS  Google Scholar 

  • Gokel G (1991) Crown ethers and cryptands. Royal Society of Chemistry, London

    Google Scholar 

  • Guo Q, Lu M, Kallenbach NR (1993) Effect of thymine tract length on the structure and stability of model telomeric sequences. Biochemistry 32:3596–3603

    Article  PubMed  CAS  Google Scholar 

  • Gupta G, Garcia AE, Guo Q, Lu M, Kallenbach NR (1993) Structure of a parallelstranded tetramer of the Oxytricha telomeric DNA sequence dT4G4. Biochemistry 32:7098–7103

    Article  PubMed  CAS  Google Scholar 

  • Hammond-Kosack MCU, Docherty K (1992) A consensus repeat sequence from the human insulin gene linked polymorphic region adopts multiple quadriplex DNA structure in vitro. FEBS Lett 301:79–82

    Article  PubMed  CAS  Google Scholar 

  • Hardin CC, Henderson E, Watson T, Prosser JK (1991) Monvalent cation induced structural transitions in telomeric DNAs: G-DNA folding intermediates. Biochemistry 30:4460–4472

    Article  PubMed  CAS  Google Scholar 

  • Hardin CC, Watson T, Corregan M, Prosser, JK (1992) Cation-dependent transition between the quadruplex and Watson-Crick hairpin forms of d(CGCG3GCG). Biochemistry 31:833–841

    Article  PubMed  CAS  Google Scholar 

  • Henderson E, Hardin CC, Wolk SK, Tinoco I Jr, Blackburn E (1987) Telomeric DNA oligonucleotides form novel intramolecular structures containing guanineguanine basepairs. Cell 51:899–908

    Article  PubMed  CAS  Google Scholar 

  • Howard FB, Miles HT (1982) Poly(inosinic acid) helices:essential chelation of alkali metal ions in the axial channel. Biochemistry 21:6736–6745

    Article  PubMed  CAS  Google Scholar 

  • Jin RZ, Gaffney BL, Wang C, Jones RA, Breslauer KJ (1992) Thermodynamics and structure of a DNA tetraplex — a spectroscopic and calorimetric study of the tetramolecular complexes of d(TG3T) and d(TG3T2G3T). Proc Natl Acad Sci USA 89:8832–8836

    Article  PubMed  CAS  Google Scholar 

  • Kang C, Zhang X, Ratliff R, Moyzis R, Rich, A (1992) Crystal structure of fourstranded Oxytricha telomeric DNA. Nature 356:126–131

    Article  PubMed  CAS  Google Scholar 

  • Karle IL (1974) The conformation of the sodium complex of a biologically active analog of antamanide in the crystalline state. Biochemistry 13:2155–2162

    Article  PubMed  CAS  Google Scholar 

  • Kim J, Cheong C, Moore PB (1991) Tetramerization of an RNA oligonucleotide containing a GGGG sequence. Nature 351:331–332

    Article  PubMed  CAS  Google Scholar 

  • Kim J, Ljungdahl PO, Fink GR (1990). kem mutations affect nuclear fusion in Saccharomyces cerevisiae. Genetics 126:799–812

    PubMed  CAS  Google Scholar 

  • Kim S-J, Lee H-D, Robbins PD, Busam K, Sporn MB, Roberts, AB (1991) Regulation of transforming growth factor β1 gene expression by the product of the retinoblastoma-susceptibility gene. Proc Natl Acad Sci USA 88:3052–3056

    Article  PubMed  CAS  Google Scholar 

  • Kochoyan M, Leroy J-L, Guéron M (1990) Processes of basepair opening and proton exchange in Z-DNA. Biochemistry 29:4799–4805

    Article  PubMed  CAS  Google Scholar 

  • Lamzin VS, Wilson KS (1993) Automated refinement of protein models. Acta Crystallogr D49:129–147

    CAS  Google Scholar 

  • Laughlan G, Murchie AIH, Norman DG, Moore MH, Moody PCE, Lilley DMJ, Luisi B (1994) The high-resolution crystal structure of a parallel-stranded guanine tetraplex. Science 265:520–524

    Article  PubMed  CAS  Google Scholar 

  • Lee EY-HP, To S, Shew JY, Bookstein R, Scully P, Lee WH (1988) Inactivation of the retinoblastoma susceptibility gene in human breast cancers. Science 241:218–221

    Article  PubMed  CAS  Google Scholar 

  • Lee W-H, Shew JY, Hong FD, Sery TW, Donoso LA, Yong L-J, Bookstein R, Lee EY-HP (1987) The retinoblastoma susceptibility gene enclodes a nuclear phosphoprotein associated with DNA binding activity. Nature 329:642–645

    Article  PubMed  CAS  Google Scholar 

  • Liu Z, Gilbert W (1994) The yeast KEM1 gene encodes a nuclease specific for G4 tetraplex DNA: implication of in vivo functions for this novel DNA structure. Cell 77:1083–1092

    Article  PubMed  CAS  Google Scholar 

  • Liu Z, Frantz JD, Gilbert W, Tye B-K (1993) Identification and characterization of a nuclease activity specific for G4 tetrastranded DNA. Proc Natl Acad Sci USA 90:3157–3161

    Article  PubMed  CAS  Google Scholar 

  • Lu M, Guo Q, Kallenbach NR (1992) Structure and stability of sodium and potassium complexes of dT4G4 and dT4G4T. Biochemistry 31:2455–2459

    Article  PubMed  CAS  Google Scholar 

  • Lu M, Guo Q, Kallenbach NR (1993) Thermodynamics of G-tetraplex formation by telomeric DNAs. Biochemistry 32:598–601

    Article  PubMed  CAS  Google Scholar 

  • Macaya RF, Schultze P, Smith FW, Roe J A, Feigon J (1993) Thrombin-binding DNA aptamer forms a unimolecular quadruplex structure in solution. Proc Natl Acad Sci USA 90:3745–3749

    Article  PubMed  CAS  Google Scholar 

  • Maxam AM, Gilbert W, (1980) Sequencing end-labelled DNA with base-specific chemical cleavages. Methods Enzymol 65:499–560

    Article  PubMed  CAS  Google Scholar 

  • Murchie AIH, Lilley DMJ (1992) Retinoblastoma susceptibility genes contain 5′ sequences with a high propensity to form guanine-tetrad structures. Nucleic Acids Res 20:49–53

    Article  PubMed  CAS  Google Scholar 

  • Oka Y, Thomas CA (1987) The cohering telomeres of Oxytricha. Nucleic Acids Res 15:8877–8898

    Article  PubMed  CAS  Google Scholar 

  • Pearson AM, Rich A, Krieger M (1993) Polynucleotide binding to macrophage scavenger receptors depends on the formation of base-quartet-stabilized fourstranded helices. J Biol Chem 268:3546–3554

    PubMed  CAS  Google Scholar 

  • Pinnavaia TJ, Miles HT, Becker ED (1975) Self-assembled 5′-guanosine monophosphate. Nuclear magnetic resonance evidence for a regular, ordered structure and slow chemical exchange. J Am Chem Soc 97:7198–7200

    Article  PubMed  CAS  Google Scholar 

  • Rippe K, Fritsch V, Westhof E, Jovin TM (1992) Alternating d(G-A) sequences form a parallel-stranded DNA homoduplex. EMBO J 11:3777–3786

    PubMed  CAS  Google Scholar 

  • Robbins PD, Horowitz JM, Mulligan RC (1990) Negative regulation of human c-fos expression by the retinoblastoma gene product. Nature 346:668–671

    Article  PubMed  CAS  Google Scholar 

  • Schierer T, Henderson E (1994) A protein from Tetrahymena thermophila that specifically binds parallel-stranded G4-DNA. Biochemistry 33:2240–2246

    Article  PubMed  CAS  Google Scholar 

  • Sen D, Gilbert W (1988) Formation of parallel four-stranded complexes by guaninerich motifs in DNA and its implications for meiosis. Nature 334:364–366

    Article  PubMed  CAS  Google Scholar 

  • Sen D, Gilbert W (1990) A sodium-potassium switch in the formation of fourstranded G4-DNA. Nature 344:410–414

    Article  PubMed  CAS  Google Scholar 

  • Smith FW, Feigon J (1992) Quadruplex structure of Oxytricha telomeric DNA oligonucleotides. Nature 356:164–168

    Article  PubMed  CAS  Google Scholar 

  • Smith FW, Feigon J (1993) Strand orientation in the DNA quadruplex formed from the Oxytricha telomere repeat oligonucleotide d(G4T4G4) in solution. Biochemistry 32:8682–8692

    Article  PubMed  CAS  Google Scholar 

  • Sundquist WI (1991) The structures of telomeric DNA. In: Eckstein F, Lilley DMT (eds) Nucleic Acids and Molecular Biology, vol 5. Springer, Berlin Heidelberg New York, pp 1–24

    Chapter  Google Scholar 

  • Sundquist WI, Heaphy S (1993) Evidence for interstrand quadruplex formation in the dimerization of human immunodeficiency virus-1 genomic RNA. Proc Natl Acad Sci USA 90:3393–3397

    Article  PubMed  CAS  Google Scholar 

  • Sundquist WI, Klug A (1989) Telomeric DNA dimerizes by formation of guanine tetrads between hairpin loops. Nature 342:825–829

    Article  PubMed  CAS  Google Scholar 

  • Tishkoff DX, Johnson AW, Kolodner R (1991) Molecular and genetic analysis of the gene encoding the Saccharomyces cerevisiae strand exchange protein SEP1. Mol Cell Biol 11:2593–2608

    PubMed  CAS  Google Scholar 

  • Tougard P, Chantot J-F, Guschlbauer W (1973) Nucleoside conformations X. An X-ray fibre diffraction study of the gels of guanine dinucleosides. Biochem Biophys Acta 308:9–16

    PubMed  CAS  Google Scholar 

  • Walsh K, Gualberto A (1992) MyoD binds to the guanine tetrad nucleic acid structure. J Biol Chem 267:13714–13718

    PubMed  CAS  Google Scholar 

  • Wang KY, McCurdy S, Shea RG, Swaminathan SL, Bolton PH (1993) A DNA aptamer which binds to and inhibits thrombin exhibits a new structure motif for DNA. Biochemistry 32:1899–1904

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Patel DJ (1992) Guanine residues in d(T2AG3) and d(T2G4) form parallelstranded potassium cation stabilized G-quadruplexes with anti glycosidic torsion angles in solution. Biochemistry 31:8112–8119

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Patel DJ (1993a) Solution structure of a parallel-stranded G-quadruplex DNA. J Mol Biol 234:1171–1183

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Patel DJ (1993b) Solution structure of the human telomeric repeat d[AG3(T2AG3)3] G-tetraplex. Structure 1:263–282

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, de los Santos C, Gao X, Greene K, Live D, Patel DJ (1991a) Multinuclear nuclear magnetic resonance studies of Na cation-stabilised complex formed by d(G-G-T-T-T-T-C-G-G) in solution. J Mol Biol 222:819–832

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Jin R, Gaffney B, Jones RA, Breslauer KJ (1991b) Characterization by 1H NMR of glycosidic conformations in the tetramolecular complex formed by d(GGTTTTTGG). Nucleic Acids Res 19:4619–4622

    Article  PubMed  CAS  Google Scholar 

  • Weisman-Shomer P, Fry M (1993) QUAD, a protein from hepatocyte chromatin that binds selectively to guanine-rich quadruplex DNA. J Biol Chem 268:3306–3312

    PubMed  CAS  Google Scholar 

  • Williamson JR, Raghuraman MK, Cech TR (1989) Monovalent cation-induced structure of telomeric DNA: the G-quartet model. Cell 59:871–880

    Article  PubMed  CAS  Google Scholar 

  • Wüthrich K (1986) NMR of proteins and nucleic acids. Wiley, New York

    Google Scholar 

  • Wyatt JR, Vickers TA, Robertson JL, Buckheit RWJ, Klimkait T, DeBaets E, Davis PW, Rayner B, Imbach JL, Ecker DJ (1994) Combinatorially selected guanosine-quartet structure is a potent inhibitor of human immunodeficiency virus envelope-mediated cell fusion. Proc Natl Acad Sci USA 91:1356–1360

    Article  PubMed  CAS  Google Scholar 

  • Zakian VA (1989) Structure and function of telomeres. Annu Rev Genet 23:579–604

    Article  PubMed  CAS  Google Scholar 

  • Zimmerman SB, Cohen GH, Davies DR (1975) X-ray fibre diffraction and model building studies of polyguanylic acid and polyinosinic acid. J Mol Biol 92:181–192

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Murchie, A.I.H., Aboul-Ela, F., Laughlan, G., Luisi, B., Lilley, D.M.J. (1995). Structure of Parallel-Stranded Guanine Tetraplexes. In: Eckstein, F., Lilley, D.M.J. (eds) Nucleic Acids and Molecular Biology. Nucleic Acids and Molecular Biology, vol 9. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79488-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79488-9_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79490-2

  • Online ISBN: 978-3-642-79488-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics