Skip to main content

Chromatin Structure and Transcription

  • Chapter
Nucleic Acids and Molecular Biology

Part of the book series: Nucleic Acids and Molecular Biology ((NUCLEIC,volume 9))

  • 718 Accesses

Abstract

Within the eukaryotic nucleus, DNA is progressively compacted through the assembly of nucleosomes, the organization of the nucleosomal array into the chromatin fiber, and finally the folding of the fiber into yet more complex structures. This compaction of DNA presents many impediments for transacting factors seeking access to the double helix. Many studies have sought insight into how this access might be achieved for proteins directing metabolic processes that require chromosomal DNA as a substrate. The interpretation of all of these experiments requires knowledge of chromatin structure. Significant progress was made during the late 1970s towards the definition of the nucleosome as the fundamental subunit of chromatin (van Holde 1989). More recently, recognition that histones can have highly selective interactions with DNA in the nucleosome, so that nucleosomes can be positioned with respect to DNA sequence, has considerably accelerated progress in the field (Simpson 1991). The availability of purified transcription factors and molecular genetic approaches to histone function have rapidly led to a new functional appreciation of the role of chromatin structure in transcriptional regulation (Wolffe 1994a, b).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Almouzni G, Mechali M, Wolffe AP (1991) Transcription complex disruption caused by a transition in chromatin structure. Mol Cell Biol 11:655–665

    PubMed  CAS  Google Scholar 

  • Archer TK, Cordingley MG, Wolford RG, Hager GL (1991) Transcription factor access is mediated by accurately positioned nucleosomes on the mouse mammory tumor virus promoter. Mol Cell Biol 11:688–698

    PubMed  CAS  Google Scholar 

  • Archer TK, Lefebvre P, Wolford RG, Hager GL (1992) Transcription factor loading on the MMTV promoter: a bimodal mechanism for promoter activation. Science 255:1573–1576

    Article  PubMed  CAS  Google Scholar 

  • Ausio J, van Holde KE (1986) Histone hyperacetylation: its effects on nucleosome conformation and stability. Biochemistry 25:1421–1428

    Article  PubMed  CAS  Google Scholar 

  • Ausio J, Dong F, van Holde KE (1989) Use of selectively trypsinized nucleosome core particles to analyze the role of the histone “tails” in the stabilization of the nucleosome. J Mol Biol 206:451–463

    Article  PubMed  CAS  Google Scholar 

  • Bauer WR, Hayes JJ, White JH, Wolffe AP (1994) Nucleosome structural changes due to acetylation. J Mol Biol 236:685–690

    Article  PubMed  CAS  Google Scholar 

  • Bogenhagen DF, Wormington WM, Brown DD (1982) Stable transcription complexes of Xenopus 5S RNA genes: a means to maintain the differentiated state. Cell 28:413–421

    Article  PubMed  CAS  Google Scholar 

  • Bouvet P, Dimitrov S, Wolffe AP (1994) Specific regulation of chromosomal 5S rRNA gene transcription in vivo by histone H1. Genes Dev 8:1147–1159

    Article  PubMed  CAS  Google Scholar 

  • Braunstein M, Rose AB, Holmes SG, Allis CD, Broach JR (1993) Transcriptional silencing in yeast is associated with reduced histone acetylation. Genes Dev 7:592–604

    Article  PubMed  CAS  Google Scholar 

  • Bresnick EH, Bustin M, Marsaud V, Richard-Foy H, Hager GL (1992) The transcriptionally active MMTV promoter is depleted of histone H1. Nucleic Acids Res 20:273–278

    Article  PubMed  CAS  Google Scholar 

  • Brown DD (1982) How a simple animal gene works. Harvey Lect 76:27–44

    Google Scholar 

  • Brown DD (1994) Some genes were isolated and their structure studied before the recombinant DNA era. BioEssays 16:139–143

    Article  PubMed  CAS  Google Scholar 

  • Burkhoff AM, Tullius TD (1987) The unusual conformation adopted by the adenine tracts in kinetoplast DNA. Cell 48:935–943

    Article  PubMed  CAS  Google Scholar 

  • Butler PJG (1984) A defined structure of the 30 nm chromatin fiber which accommodates different nucleosomal repeat spacings. EMBO J 3:2599–2607

    PubMed  CAS  Google Scholar 

  • Calladine CR, Drew HR (1986) Principles of sequence-dependent flexure of DNA. J Mol Biol 192:907–918

    Article  PubMed  CAS  Google Scholar 

  • Clark DJ, Kimura T (1990) Electrostatic mechanism of chromatin folding. J Mol Biol 211:883–896

    Article  PubMed  CAS  Google Scholar 

  • Clark DJ, Thomas JO (1986) Self-dependent co-operative interaction of histone H1 with linear DNA. J Mol Biol 187:569–580

    Article  PubMed  CAS  Google Scholar 

  • Clark DJ, Wolffe AP (1991) Superhelical stress and nucleosome mediated repression of 5S RNA gene transcription in vitro. EMBO J 10:3419–3428

    PubMed  CAS  Google Scholar 

  • Clemens KR, Liao X, Wolf V, Wright PE, Gottesfeld JM (1992) Definition of the binding sites of individual zinc fingers in the TFIIIA-5S RNA gene complex. Proc Natl Acad Sci USA 89:10822–10826

    Article  PubMed  CAS  Google Scholar 

  • Dong F, Hansen JC, van Holde KE (1990) DNA and protein determinants of nucleosome positioning on sea urchin 5S rRNA gene sequence in vitro. Proc Natl Acad Sci USA 87:5724–5728

    Article  PubMed  CAS  Google Scholar 

  • Drew HR, Travers AA (1985) DNA Bending and its relation to nucleosome positioning. J Mol Biol 186:773–790

    Article  PubMed  CAS  Google Scholar 

  • Durrin LK, Mann RK, Kayne PS, Grunstein M (1991) Yeast histone H4 N-terminal sequence is required for promoter activation in vivo. Cell 65:1023–1031

    Article  PubMed  CAS  Google Scholar 

  • Fascher K-D, Schmitz J, Horz W (1990) Role of trans-activating proteins in the generation of active chromatin at the PHO5 promoter in S.cerevisiae. EMBO J 9:2523–2528

    PubMed  CAS  Google Scholar 

  • Felsenfeld G (1992) Chromatin as an essential part of the transcriptional mechanism. Nature 355:219–224

    Article  PubMed  CAS  Google Scholar 

  • Felts SJ, Weil PA, Chalkley R (1990) Transcription factor requirements for in vitro formation of transcriptionally competent 5S rRNA gene chromatin. Mol Cell Biol 10:2390–2401

    PubMed  CAS  Google Scholar 

  • Finch JT, Klug A (1976) Solenoid model for superstructure in chromatin. Proc Natl Acad Sci USA 73:1897–1901

    Article  PubMed  CAS  Google Scholar 

  • FitzGerald PC, Simpson RT (1985) Effect of sequence alterations in a DNA segment containing the 5S RNA gene from Lytechinus variegatus on positioning of a nucleosome core particle in vitro. J Biol Chem 260:15318–15324

    PubMed  CAS  Google Scholar 

  • Gale JM, Smerdon MJ (1989) Photo footprinting of nucleosome core DNA in intact chromatin having different structural states. J Mol Biol 204:949–958

    Article  Google Scholar 

  • Garcia-Ramirez M, Dong F, Ausio J (1992) Role of the histone “tails” in the folding of oligonucleosomes depleted of histone H1. J Biol Chem 267:19587–19595

    PubMed  CAS  Google Scholar 

  • Gottesfeld JM, Bloomer LS (1982) Assembly of transcriptionally active 5S RNA gene chromatin in vitro. Cell 28:781–791

    Article  PubMed  CAS  Google Scholar 

  • Graziano V, Gerchman SE, Schneider DK, Ramakrishnan V (1994) Histone H1 is located in the interior of the chromatin 30-nm filament. Nature 368:351–354

    Article  PubMed  CAS  Google Scholar 

  • Grunstein M (1992) Histones as regulators of genes. Sci Am 267:68–74

    Article  PubMed  CAS  Google Scholar 

  • Han M, Grunstein M (1988) Nucleosome loss activates yeast downstream promoters in vivo. Cell 55:1137–1145

    Article  PubMed  CAS  Google Scholar 

  • Hansen JC, Ausio J, Stanik VH, van Holde KE (1989) Homogeneous reconstituted oligonucleosomes, evidence for salt-dependent folding in the absence of histone H1. Biochemistry 28:9129–9136

    Article  PubMed  CAS  Google Scholar 

  • Hayes JJ, Tullius TD (1992) The structure of the TFIIIA/5S DNA complex. J Mol Biol 227:407–417

    Article  PubMed  CAS  Google Scholar 

  • Hayes JJ, Wolffe AP (1992a) Histones H2A/H2B inhibit the interaction of TFIIIA with a nucleosome including the Xenopus borealis somatic 5S RNA gene. Proc Natl Acad Sci USA 89:1229–1233

    Article  PubMed  CAS  Google Scholar 

  • Hayes JJ, Wolffe AP (1992b) Transcription factor interaction with nucleosomal DNA. Bioessays 14:597–603

    Article  PubMed  CAS  Google Scholar 

  • Hayes JJ, Wolffe AP (1993) Preferential and asymmetric interaction of linker histones with 5S DNA in the nucleosome. Proc Natl Acad Sci USA 90:6415–6419

    Article  PubMed  CAS  Google Scholar 

  • Hayes JJ, Tullius TD, Wolffe AP (1990) The structure of DNA in a nucleosome. Proc Natl Acad Sci USA 87:7405–7409

    Article  PubMed  CAS  Google Scholar 

  • Hayes JJ, Clark D, Wolffe AP (1991a) Histone contributions to the structure of DNA in the nucleosome. Proc Natl Acad Sci USA 88:6829–6833

    Article  PubMed  CAS  Google Scholar 

  • Hayes JJ, Bashkin J, Tullius TD, Wolffe AP (1991b) The histone core exerts a dominant constraint on the DNA in a Nucleosome. Biochemistry 30:8434–8440

    Article  PubMed  CAS  Google Scholar 

  • Hayes JJ, Pruss D, Wolffe AP (1994) Histone domains required to assemble a chromatosome including the Xenopus borealis somatic 5S rRNA gene. Proc Natl Acad Sci USA Proc Natl Acad Sci USA 91:7817–7821

    CAS  Google Scholar 

  • Hebbes TR, Thorne AW, Crane-Robinson C (1988) A direct link between core histone acetylation and transcriptionally active chromatin. EMBO J 7:1395–1402

    PubMed  CAS  Google Scholar 

  • Hogan ME, Rooney TF, Austin RH (1987) Evidence for kinks in DNA folding in the nucleosome. Nature 328:554–557

    Article  PubMed  CAS  Google Scholar 

  • Horowitz DS, Wang JC (1984) Torsional rigidity of DNA and length dependence of the free energy of DNA supercoiling. J Mol Biol 173:75–91

    Article  PubMed  CAS  Google Scholar 

  • Huang RC, Bonner J (1962) Histone, a suppressor of chromosomal RNA synthesis. Proc Natl Acad Sci USA 48:1216–1222

    Article  PubMed  CAS  Google Scholar 

  • Jayasena SD, Behe MJ (1989) Competitive reconstitution of polydeoxynucleotides containing oligoguanosine tracts. J Mol Biol 208:297–306

    Article  PubMed  CAS  Google Scholar 

  • Kayne PS, Kim UJ, Han M, Mullen JR, Yoshizaki F, Grunstein M (1988) Extremely conserved histone H4 N-terminus is dispensible for growth but essential for repressing the silent mating loci in yeast. Cell 55:27–39

    Article  PubMed  CAS  Google Scholar 

  • Lee D, Hayes JJ, Pruss D, Wolffe AP (1993) A positive role for histone acetylation in transcription factor binding to Nucleosomal DNA. Cell 72:73–84

    Article  PubMed  CAS  Google Scholar 

  • Lu Q, Wallrath LL, Granock H, Elgin SCR (1993) Repeats and heat shock elements have distinct roles in chromatin structure and transcriptional activation of the Drosophila hsp26 Gene. Mol Cell Biol 13:2808–2814

    Google Scholar 

  • McGhee JD, Nikol JM, Felsenfeld G, Rau DC (1983) Higher order structure of chromatin: orientation of nucleosomes within the 30 nm chromatin solenoid is independent of species and spacer length. Cell 33:834–841

    Article  Google Scholar 

  • Meersseman G, Pennings S, Bradbury EM (1991) Chromatosome positioning on assembled long chromatin. Linker histones affect nucleosome placement on 5S rDNA. J Mol Biol 220:89–100

    Article  PubMed  CAS  Google Scholar 

  • Mirsky AE, Silverman B (1972) Blocking by histones of accessibility to DNA in chromatin. Proc Natl Acad Sci USA 69:2115–2119

    Article  PubMed  CAS  Google Scholar 

  • Morse RH (1989) Nucleosomes inhibit both transcriptional initiation and elongation by RNA Polymerase III in vitro. EMBO J 8:2343–2351

    PubMed  CAS  Google Scholar 

  • Norton VG, Imia BS, Yau P, Bradbury EM (1990) Histone acetylation reduces nucleosome core particle linking number change. Cell 57:449–457

    Article  Google Scholar 

  • Oliva R, Bazett-Jones DP, Locklear L, Dixon GH (1990) Histone hyperacetylation can induce unfolding of the nucleosome core particle. Nucleic Acids Res 18:2739–2747

    Article  PubMed  CAS  Google Scholar 

  • Park EC, Szostak JW (1990) Point mutations in the yeast histone H4 gene prevent silencing of the silent mating locus HML. Mol Cell Biol 10:4932–4934

    PubMed  CAS  Google Scholar 

  • Pavletich NP, Pabo CO (1991) Zinc finger-DNA recognition: crystal structure of a Zif268-DNA complex at 2.1 Å. Science 252:809–817

    Article  PubMed  CAS  Google Scholar 

  • Pehrson JR (1989) Thymine dimer formation as a probe of the path of DNA in and between nucleosomes in intact chromatin. Proc Natl Acad Sci USA 86:9149–9153

    Article  PubMed  CAS  Google Scholar 

  • Pruss D, Wolffe AP (1993) Histone-DNA contacts in a nucleosome core containing a Xenopus 5S RNA gene. Biochemistry 32:6810–6814

    Article  PubMed  CAS  Google Scholar 

  • Pruss D, Bushman FD, Wolffe AP (1994a) HIV integrase directs integration to sites of severe DNA distortion within the nucleosome core. Proc Natl Acad Sci USA 91:5913–5917

    Article  PubMed  CAS  Google Scholar 

  • Pruss D, Hayes JJ, Wolffe AP (1994b) Nucleosomal anatomy — implications for chromatin structure and function. BioEssays (in press)

    Google Scholar 

  • Rhodes D (1985) Structural analysis of a triple complex between the histone octamer, a Xenopus gene for 5S RNA and transcription factor IIIA. EMBO J 4:3473–3482

    PubMed  CAS  Google Scholar 

  • Richard-Foy H, Hager GL (1987) Sequence-specific positioning of nucleosomes over the steroid-inducible MMTV promoter. EMBO J 6:2321–2328

    PubMed  CAS  Google Scholar 

  • Richmond TJ, Finch JT, Rushton B, Rhodes D, Klug A (1984) Structure of the nucleosome core particle at 7 Å resolution. Nature 311:532–536

    Article  PubMed  CAS  Google Scholar 

  • Sakonju S, Brown DD (1982) Contact points between a positive transcription factor and the Xenopus 5S RNA gene. Cell 31:395–405

    Article  PubMed  CAS  Google Scholar 

  • Satchwell SC, Drew HR, Travers AA (1986) Sequence periodicities in chicken nucleosome core DNA. J Mol Biol 191:659–675

    Article  PubMed  CAS  Google Scholar 

  • Schild C, Claret F-X, Wahli W, Wolffe AP (1993) A nucleosome-dependent static loop potentiates estrogen-regulated transcription from the Xenopus vitellogenin B1 promoter in vitro. EMBO J 12:423–433

    PubMed  CAS  Google Scholar 

  • Shrader TE, Crothers DM (1989) Artificial nucleosome positioning sequences. Proc Natl Acad Sci USA 86:7418–7422

    Article  PubMed  CAS  Google Scholar 

  • Simpson RT (1978) Structure of the chromatosome, a chromatin particle containing 160 base pairs and all the histones. Biochemistry 17:5524–5531

    Article  PubMed  CAS  Google Scholar 

  • Simpson RT (1991) Nucleosome positioning: occurrence, mechanisms and functional consequences. Prog Mol Biol Nucleic Acids Res 40:143–184

    Article  CAS  Google Scholar 

  • Simpson RT, Thoma F, Brubaker JM (1985) Chromatin reconstituted from tandemly repeated cloned DNA fragments and core histones: a model system for study of higher order structure. Cell 42:799–808

    Article  PubMed  CAS  Google Scholar 

  • Smith S, Stillman B (1991) Stepwise assembly of chromatin during DNA replication in vitro. EMBO J 10:971–980

    PubMed  CAS  Google Scholar 

  • Straka C, Horz WA (1991) Functional role for nucleosomes in the repression of a yeast promoter. EMBO J 10:361–368

    PubMed  CAS  Google Scholar 

  • Tatchell K, van Holde KE (1977) Reconstitution of chromatin core particles. Biochemistry 16:5295–5303

    Article  PubMed  CAS  Google Scholar 

  • Thoma F, Koller T, Klug A (1979) Involvement of histone H1 in the organization of the nucleosome and the salt-dependent superstructures of chromatin. J Cell Biol 83:403–427

    Article  PubMed  CAS  Google Scholar 

  • Thomas GH, Elgin SCR (1988) Protein/DNA architecture of the DNase I hypersensitive region of the Drosophila hsp26 promoter. EMBO J 7:7291–7301

    Google Scholar 

  • Tremethick D, Zucker D, Worcel A (1990) The transcription complex of the 5S RNA gene, but not the transcriptional factor TFIIIA alone, prevents nucleosomal repression of transcription. J Biol Chem 265:5014–5023

    PubMed  CAS  Google Scholar 

  • Ura K, Hayes JJ, Wolffe AP (1994) Structure and in vitro transcription of Xenopus 5S DNA in synthetic dinucleosomes. (in preparation)

    Google Scholar 

  • van Holde KE (1989) Chromatin. Springer, Berlin Heidelberg New York

    Book  Google Scholar 

  • Wallrath LL, Lu Q, Granok H, Elgin SCR (1994) Architectural variations of inducible eukaryotic promoters: present and remodeling chromatin structures. BioEssays 16:165–170

    Article  PubMed  CAS  Google Scholar 

  • Widom J (1989) Toward a unified model of chromatin folding. Annu Rev Biophys Chem 18:365–395

    Article  CAS  Google Scholar 

  • Widom J, Klug A (1985) Structure of the 300 Å chromatin filament: X-ray diffraction from oriented samples. Cell 43:207–213

    Article  PubMed  CAS  Google Scholar 

  • Williams SP, Athey BD, Muglia LJ, Schappe RS, Gough AH, Langmore JP (1986) Chromatin fibers are left-handed double helices with diameter and mass per unit length that depend on linker length. Biophys J 49:233–248

    Article  PubMed  CAS  Google Scholar 

  • Williamson P, Felsenfeld G (1978) Transcription of histone-covered T7 DNA by Escherichia coli RNA polymerase. Biochemistry 17:5695–5705

    Article  PubMed  CAS  Google Scholar 

  • Wolffe AP (1991) Activating chromatin. Curr Biol 1:366–368

    Article  PubMed  CAS  Google Scholar 

  • Wolffe AP (1992) New insight into chromatin function in transcriptional control. FASEB J 6:3354–3361

    PubMed  CAS  Google Scholar 

  • Wolffe AP (1994a) Transcription in tune with the histones. Cell 77:13–16

    Article  PubMed  CAS  Google Scholar 

  • Wolffe AP (1994b) Architectural transcription factors. Science 264:1100–1101

    Article  PubMed  CAS  Google Scholar 

  • Wolffe AP, Brown DD (1988) Developmental regulation of two 5S ribosomal RNA genes. Science 241:1626–1632

    Article  PubMed  CAS  Google Scholar 

  • Wolffe AP, Drew HR (1989) The initiation of transcription on nucleosomal templates. Proc Natl Acad Sci USA 86:9817–9821

    Article  PubMed  CAS  Google Scholar 

  • Woodcock CFL, Frado L-LY, Rattner JB (1984) The higher-order structure of chromatin: evidence for a helical ribbon arrangement. J Cell Biol 99:42–52

    Article  PubMed  CAS  Google Scholar 

  • Worcel A, Han S, Wong ML (1978) Assembly of newly replicated chromatin. Cell 15:969–977

    Article  PubMed  CAS  Google Scholar 

  • Workman JL, Buchman AR (1993) Multiple functions of nucleosomes and regulatory factors in transcription. Trends Biochem Sci 18:90–95

    Article  PubMed  CAS  Google Scholar 

  • Yao J, Lowary PT, Widom J (1990) Direct detection of linker DNA bending in defined-length oligomers of chromatin. Proc Natl Acad Sci USA 87:7603–7607

    Article  PubMed  CAS  Google Scholar 

  • Yao J, Lowary PT, Widom J (1991) Linker DNA bending induced by the core histones of chromatin. Biochemistry 30:8408–8414

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hayes, J.J., Wolffe, A.P. (1995). Chromatin Structure and Transcription. In: Eckstein, F., Lilley, D.M.J. (eds) Nucleic Acids and Molecular Biology. Nucleic Acids and Molecular Biology, vol 9. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79488-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79488-9_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79490-2

  • Online ISBN: 978-3-642-79488-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics