Skip to main content

DNA Recognition by Helix-Loop-Helix Proteins

  • Chapter
Nucleic Acids and Molecular Biology

Part of the book series: Nucleic Acids and Molecular Biology ((NUCLEIC,volume 9))

Abstract

The helix-loop-helix proteins are characterized by a highly conserved 60-100 residue motif comprised of two amphipathic α-helices separated by a loop of variable length, and amino acid composition and sequence. These motifs dimerize by approximating the conserved hydrophobic faces of the α-helices, forming a left-handed, parallel, four-helix bundle. Baltimore and coworkers (Murre et al. 1989) first described conservation of this feature in a large number of eukaryotic transcription factors, and implicated it in dimerization and DNA binding. Subsequent work has confirmed their bold prediction and demonstrated that the helix-loop-helix motif is primarily responsible for dimerization. Most helix-loop-helix proteins possess a highly conserved basic region immediately N-terminal to the first helix (Prendergast and Ziff 1989), which mediates high-affinity, specific DNA binding (reviewed in Bexevanis and Vinson 1993). In addition, the second helix of many of these transcription factors is extended beyond the C-terminus of the fourhelix bundle, where a leucine heptad repeat or zipper forms a left-handed, coiled-coil dimer interface. Finally, some helix-loop-helix proteins lack the basic region (Benezra et al. 1990).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amati B, Brooks MW, Levy N, Littlewood TD, Evan GI, Land H (1993) Oncogenic activity of the c-Myc protein requires dimerization with Max. Cell 72:233–245

    Article  PubMed  CAS  Google Scholar 

  • Anthony-Cahill SJ, Benfield PA, Robert F, Wasserman ZR, Brenner SL, Stafford WFI, Altenbach C, Hubbel WL, DeGrado WF (1992) Molecular characterization of helix-loop-helix peptides. Science 255:979–983

    Article  PubMed  CAS  Google Scholar 

  • Ayer DE, Kretzner L, Eisenman RN (1993) Mad: a heterodimeric partner for Max that antagonizes Myc transcriptional activity. Cell 72:211–222

    Article  PubMed  CAS  Google Scholar 

  • Beckmann H, Kadesch T (1991) The leucine zipper of TFE3 dictates helix-loop-helix dimerization specificity. Genes Dev 5:1057–1066

    Article  PubMed  CAS  Google Scholar 

  • Benezra R, Davis RL, Lockshon D, Turner DL, Weintraub H (1990) The protein Id: a negative regulator of helix-loop-helix DNA binding proteins. Cell 61:49–59

    Article  PubMed  CAS  Google Scholar 

  • Bexevanis A, Vinson CR (1993) Interactions of coiled coils in transcription factors: where is the specificity. Curr Op Genet Dev 3:278–285

    Article  Google Scholar 

  • Blackwell TK, Huang J, Ma A, Kretzner L, Alt FW, Eisenman RN, Weintraub H (1993) Binding of Myc proteins to canonical and noncanonical DNA sequences. Mol Cell Biol 13:5216–5224

    PubMed  CAS  Google Scholar 

  • Blackwood EM, Eisenman RN (1991) Max: a helix-loop-helix zipper protein that forms a sequence specific DNA-binding complex with Myc. Science 251:1211–1217

    Article  PubMed  CAS  Google Scholar 

  • Blackwood EM, Lüscher B, Eisenmann RN (1992) Myc and Max associate in vivo. Genes Dev 6:71–80

    Article  PubMed  CAS  Google Scholar 

  • Burbach KM, Poland A, Brafield CA (1992) Cloning of the Ah-receptor reveals a distinctive ligand-activated transcription factor. Proc Natl Acad Sci USA 89:8185–8189

    Article  PubMed  CAS  Google Scholar 

  • Dang CV, McGuire M, Buckmire M, Lee WMF (1989) Involvement of the “leucine zipper” region in oligomerization and transforming activity of human c-Myc protein. Nature 337:664–666

    Article  PubMed  CAS  Google Scholar 

  • Dang CV, Dolde C, Gillison ML, Kato GJ (1992) Discrimination between related DNA sites by a single amino-acid residue of Myc-related basic-helix-loop-helix proteins. Proc Natl Acad Sci USA 89:599–602

    Article  PubMed  CAS  Google Scholar 

  • Davis LJ, Halazonetis TD (1993) Both the helix-loop-helix and the leucine zipper motifs of c-Myc contribute to its dimerization specificity with Max. Oncogene 8:125–132

    PubMed  CAS  Google Scholar 

  • Davis RL, Cheng P-F, Lassar AB, Weintraub H (1990) The MyoD DNA binding domain contains a recognition code for muscle-specific gene activation. Cell 60:733–746

    Article  PubMed  CAS  Google Scholar 

  • Dong Q, Blatter EE, Ebright YW, Bister K, Ebright RH (1994) Identification of amino acid-base contacts in the Myc-DNA complex by site-specific bromouracilmediated photocrosslinking. EMBO J 13:200–204

    PubMed  CAS  Google Scholar 

  • Du H, Roy AL, Roeder RG (1993) Human transcription factor USF stimulates transcription through the initiator elements of the HIV-1 and the Ad-ML promoters. EMBO J 12:501–511

    PubMed  CAS  Google Scholar 

  • Ellenberger T, Fass D, Arnaud M, Harrison SC (1994) Crystal structure of transcription factor E47: E-box recognition by a basic region helix-loop-helix dimer. Genes Dev 8:970–980

    Article  PubMed  CAS  Google Scholar 

  • Ellis HM, Spann DR, Posakony JW (1990) Extramacrochaetae, a negative regulator of sensory organ development in Drosophila, defines a new class of helix-loophelix proteins. Cell 61:27–38

    Article  PubMed  CAS  Google Scholar 

  • Fairman R, Beran-Steed RK, Anthony-Cahill SJ, Lear JD, Stafford WFI, DeGrado WF, Benfield PA, Brenner SL (1993) Multiple oligomeric states regulate the DNA-binding of helix-loop-helix peptides. Proc Natl Acad Sci USA 90:10429–10433

    Article  PubMed  CAS  Google Scholar 

  • Feldman T, Alex R, Suckow J, Dildrop R, Kisters-Woike G, Müller-Hill B (1993) Single exchanges of amino acids in the basic region change the specificity of N-Myc. Nucleic Acids Res 21:5050–5058

    Article  Google Scholar 

  • Ferré-D’Amaré AR, Prendergast GC, Ziff EB, Burley SK (1993) Recognition by Max of its cognate DNA through a dimeric b/HLH/Z domain. Nature 363:38–45

    Article  Google Scholar 

  • Ferré-D’Amaré AR, Pognonec P, Roeder RG, Burley SK (1994) Structure and function of the b/HLH/Z domain of USF. EMBO J 13:180–189

    Google Scholar 

  • Fisher DE, Carr CS, Parent LA, Sharp PA (1991) TFEB has DNA-binding and oligomerization properties of a unique helix-loop-helix/leucine-zipper family. Genes Dev 5:2342–2352

    Article  PubMed  CAS  Google Scholar 

  • Fisher DE, Parent LA, Sharp PA (1993) High affinity DNA-binding Myc analogs: recognition by an α-helix. Cell 72:467–476

    Article  PubMed  CAS  Google Scholar 

  • Fisher F, Goding CR (1992) Single amino acid substitutions alter helix-loop-helix protein specificity for bases flanking the core CANNTG motif. EMBO J 11:4103–4109

    PubMed  CAS  Google Scholar 

  • Gregor PD, Sawadogo M, Roeder RG (1990) The adenovirus major late transcription factor USF is a member of the helix-loop-helix group of regulatory proteins and binds to DNA as a dimer. Genes Dev 4:1730–1740

    Article  PubMed  CAS  Google Scholar 

  • Hodgkinson CA, Moore KJ, Nagayama A, Steigrímsson E, Copeland NG, Jenkins NA, Arnheiter H (1993) Mutations at the mouse microphthalmia locus are associated with defects in a gene encoding a novel basic-helix-loop-helix-zipper protein. Cell 74:395–404

    Article  PubMed  CAS  Google Scholar 

  • Hoffman EC, Reyes H, Chu F-F, Sander F, Conley LH, Brooks BA, Hankinson O (1991) Cloning of a factor required for activity of the Ah (Dioxin) receptor. Science 252:954–958

    Article  PubMed  CAS  Google Scholar 

  • König P, Richmond TJ (1993) The X-ray structure of the GCN4-bZip bound to ATF/CREB site DNA shows the complex depends on DNA flexibility. J Mol Biol 233:139–154

    Article  PubMed  Google Scholar 

  • Kozlowski MT, Gan L, Venuti JM, Sawadogo M, Klein WH (1991) Sea urchin USF: a helix-loop-helix protein active in embryonic ectoderm cells. Dev Biol 148:625–630

    Article  PubMed  CAS  Google Scholar 

  • Kraulis PJ (1990) Molscript: a program to produce both detailed and schematic plots of protein structures. J Appl Crystallogr 24:946–950

    Article  Google Scholar 

  • Kretzner L, Blackwood EM, Eisenman RN (1992) Myc and Max proteins possess distinct transcriptional activities. Nature 359:426–429

    Article  PubMed  CAS  Google Scholar 

  • Lassar AB, Buskin JN, Lockson D, Davis RL, Apone S, Hauschka SD, Weintraub H (1989) MyoD is a sequence-specific DNA binding protein requiring a region Myc homology to bind to the muscle creatine kinase enhancer. Cell 58:823–831

    Article  PubMed  CAS  Google Scholar 

  • Ma PCM, Rould MA, Weintraub H, Pabo CO (1994) Crystal strucutre of MyoD bHLH domain-DNA complex: perspectives on DNA recognition and implications for transcriptional activation. Cell 77:451–459

    Article  PubMed  CAS  Google Scholar 

  • Murre C, McCaw PS, Blatimore D (1989) A new DNA binding and dimerization motif in immunoglobulin enhancer binding, daughterless MyoD, and Myc proteins. Cell 56:777–783

    Article  PubMed  CAS  Google Scholar 

  • Ogawa N, Oshima Y (1990) Functional domains of a positive regulatory protein, Pho4, for transcriptional control of the Phosphatase regulon in Saccharomyces cerevisiae. Mol Cell Biol 10:2224–2236

    PubMed  CAS  Google Scholar 

  • Poellinger L, Göttlicher M, Gustafsson J-Å (1992) The dioxin and peroxisome proliferator-activated receptors: nuclear receptors in search of endogenous ligands. Trends Pharmacol Sci 13:241–245

    Article  PubMed  CAS  Google Scholar 

  • Pognonec P, Roeder RG (1991) Recombinant 43-kDa USF binds to DNA and activates transcription in a manner indistinguishable from that of natural 43/44-kDa USF. Mol Cell Biol 11:5125–5136

    PubMed  CAS  Google Scholar 

  • Prendergast GC, Ziff EB (1989) DNA-binding motif. Nature 341:392

    Article  PubMed  CAS  Google Scholar 

  • Prendergast GC, Lawe D, Ziff EB (1991) Association of Myn, the murine homolog of Max with c-Myc stimulates methylation-sensitive DNA binding and Ras cotransformation. Cell 65:395–407

    Article  PubMed  CAS  Google Scholar 

  • Prendergast GC, Hopewell R, Gorham B, Ziff EB (1992) Biphasic effect of Max on Myc transformation activity and dependence on N-and C-terminal Max functions. Genes Dev 6:2429–2439

    Article  PubMed  CAS  Google Scholar 

  • Shirakata M, Friedman FK, Wei Q, Paterson BM (1993) Dimerization specificity of myogenic helix-loop-helix DNA-binding factors directed by nonconserved hydrophilic residues. Genes Dev 7:2456–2470

    Article  PubMed  CAS  Google Scholar 

  • Spolar RS, Record TM Jr (1994) Coupling of local folding to site-specific binding of proteins to DNA. Science 263:777–784

    Article  PubMed  CAS  Google Scholar 

  • Starovasnik MA, Blackwell TK, Laue TM, Weintraub H, Klevit RE (1992) Folding topology of the disulfide-bonded dimeric DNA-binding domain of the myogenic determination factor MyoD. Biochemistry 31:9891–9903

    Article  PubMed  CAS  Google Scholar 

  • Steingrímsson E, Moore KJ, Lamoreux ML, Ferré-D’Amaré AR, Burley SK, Sanders-Zimring DC, Skow LC, Hodgkinson CA, Arnheiter H, Copeland NG, Jenkins NA (1994) Molecular genetic dissection of the bHLH-Zip protein encoded by the mouse microphthalmia locus. Nature Genetics 8:256–263

    Article  PubMed  Google Scholar 

  • Voronova A, Baltimore D (1990) Mutations that disrupt DNA binding and dimer formation in the E47 helix-loop-helix protein map to distinct domains. Proc Natl Acad Sci USA 87:4722–4726

    Article  PubMed  CAS  Google Scholar 

  • Weiss MA, Ellenberger T, Wobbe RC, Lee JP, Harrison SC, Struhl K (1990) Folding transition in the DNA-binding domain of GCN4 on specific binding to DNA. Nature 347:575–578

    Article  PubMed  CAS  Google Scholar 

  • Yokoyama C, Wang X, Briggs MR, Admon A, Wu J, Hua X, Goldstein JL, Brown MS (1993) SREBP-1, a basic-helix-loop-helix-leucine zipper protein that controls transcription of the low-density lipoprotein receptor gene. Cell 75:187–197

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ferré-D’Amaré, A.R., Burley, S.K. (1995). DNA Recognition by Helix-Loop-Helix Proteins. In: Eckstein, F., Lilley, D.M.J. (eds) Nucleic Acids and Molecular Biology. Nucleic Acids and Molecular Biology, vol 9. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79488-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79488-9_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79490-2

  • Online ISBN: 978-3-642-79488-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics