Skip to main content

Biochemical Heterogeneity in Schizophrenia: Implications and Research Strategies of the State Dependency Model

  • Conference paper
Psychotic Continuum
  • 47 Accesses

Abstract

Clinical heterogeneity in schizophrenia has limited interest unless we can validate it in terms of etiology, prognosis, or treatment response (Garver et al. 1988; Brown et al. 1990). Similarly, biochemical heterogeneity is not very interesting if it does not lead to etiological heterogeneity or clinical application. Traditional research strategies have been confounded by the fact that the study of schizophrenic patients is very difficult. The very nature of the disorder interferes with the patients’ willingness and ability to participate in research (and in clinical care). Therefore, most studies make use of cross-sectional study designs, based on the notion that the study variable is stable over time. The difficulties in replicating such findings are usually explained by invoking the heterogeneity in etiology hypothesis, which explains much but clarifies nothing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akbarian S, Viñuela A, Kim JJ, Potkin SG, Bunney WE Jr, Jones EG (1993) Distorted distribution of nicotinamide-adenine dinucleotide phosphate-diaphorase neurons in temporal lobe of schizophrenics implies anomalous cortical development. Arch Gen Psychiatry 50:178–187

    PubMed  CAS  Google Scholar 

  • Albus M, Ackenheil M, Engel RR, Muller F (1982) Situational reactivity of autonomic functions in schizophrenic patients. Psychiatry Res 6:361–370

    Article  PubMed  CAS  Google Scholar 

  • Andrews P, Hall JN, Snaith RP (1976) A controlled trial of phenothiazine withdrawal in chronic schizophrenic patients. Br J Psychiatry 128:451–455

    Article  PubMed  CAS  Google Scholar 

  • Angrist B, van Kammen (1984) CNS stimulants as tools in the study of schizophrenia. Trends Neurosci 7:388–390

    Article  Google Scholar 

  • Angrist B, Peselow E, Rotrosen J, Gershon S (1981) Relationships between responses to dopamine agonists, psychopathology, neuroleptic treatment response, and need for neuroleptic maintenance in schizophrenic subjects. In: Angrist B, Burrows BD, Lader M, Lingjaerde O, Sedvall G, Wheatley D (eds) Recent advances in neuropsychopharmacology. Permagon, New York, pp 49–54

    Google Scholar 

  • Angrist B, Peselow E, Rubinstein M, Wolkin A, Rotrosen J (1985) Amphetamine response and relapse risk after depot neuroleptic discontinuation. Psychopharmacology 85:277–283

    Article  PubMed  CAS  Google Scholar 

  • Benes FM (1991) Evidence for neurodevelopment disturbances in anterior cingulated cortex of post-mortem schizophrenic brain. Schizophr Res 5:187–188

    Article  PubMed  CAS  Google Scholar 

  • Bilder RM, Mukherjee S, Rieder RO, Pandurangi AK (1985) Symptomatic and neuropsychological components of defect states. Schizophr Bull 11:409–419

    PubMed  CAS  Google Scholar 

  • Bondy B, Ackenheil M, Birzle W, Elbers R, Frohler M (1984) Catecholamines and their receptors in blood: evidence for alterations in schizophrenia. Biol Psychiatry 19:1377–1393

    PubMed  CAS  Google Scholar 

  • Bowers MB Jr, Swigar ME, Jatlow PI, Hoffman F, Giocoechea N (1986) Early neuroleptic response in psychotic men and women: correlation with plasma HVA and MHPG. Compr Psychiatry 27:181–185

    Article  PubMed  Google Scholar 

  • Breier A (1989) Experimental approaches to human stress research: assessment of neurobiological mechanisms of stress in volunteers and psychiatric patients. Biol Psychiatry 26:438–462

    Article  PubMed  CAS  Google Scholar 

  • Brown WA, Laughren TP (1981) Low serum prolactin and early relapse during neuroleptic treatment and withdrawal. Am J Psychiatry 136:237–239

    Google Scholar 

  • Brown WA, Herz LR (1987) Response to neuroleptic drugs as a device for classifying schizophrenia. Schizophr Bull 15:123–129

    Google Scholar 

  • Brown GM, Mazurek M, Allen D, Szechtman B, Cleghorn JM (1990) Dose-response profiles of plasma growth hormone and vasopressin after Clonidine challenge in man. Psychiatry Res 31:311–320

    Article  PubMed  CAS  Google Scholar 

  • Buchanan RW, Kirkpatrick B, Summerfelt A, Hanlon TE, Levine J, Carpenter WT Jr (1992) Clinical predictors of relapse following neuroleptic withdrawal. Biol Psychiatry 32:72–78

    Article  PubMed  CAS  Google Scholar 

  • Carlsson A, Lindqvist M (1963) Effect of chlorpromazine or haloperidol on formation of 3-methoxytramine and normetanephrine in mouse brain. Acta Pharmacol Toxicol 20:140–144

    Article  CAS  Google Scholar 

  • Carpenter WT (1989) Dissecting schizophrenia through psychopathology, monograph. The 1989 Charles Burlingame Award Lecture. Institute of Living, Hartford, CT

    Google Scholar 

  • Carpenter WT Jr, Heinrichs DW, Wagman AMI (1988) Deficit and nondeficit forms of schizophrenia: the concept. Am J Psychiatry 145:578–583

    PubMed  Google Scholar 

  • Chang W-H, Chen T-Y, Lin S-K, Lung F-W, Lin W-L, Hu W-H, Yeh E-K (1990) Plasma catecholamine metabolites in schizophrenics: Evidence for the two-subtype concept. Biol Psychiatry 27:510–518

    Article  PubMed  CAS  Google Scholar 

  • Cleghorn JM, Brown GM, Brown PJ, Kaplan RD, Dermer SW, MacCrimmon DJ, Mitton J (1983) Growth hormone responses to apomorphine HCl in schizophrenic patients on drug holidays and at relapse. Br J Psychiatry 142:482–488

    Article  PubMed  CAS  Google Scholar 

  • Condray R, Steinhauer SR (1992) Schizotypal personality disorder in individuals with and without schizophrenic relatives: similarities and contrasts in neurocognitive and clinical functioning. Schizophr Res 7:33–41

    Article  PubMed  CAS  Google Scholar 

  • Coyle JT, Snyder SH (1969) Catecholamine uptake by synaptosomes in homogenates of rat brain. Stereospecificity in different areas. J Pharmacol Exp Ther 170:221–231

    PubMed  CAS  Google Scholar 

  • Crawley JCW, Owens DGC, Crow TJ, Poulter M, Johnstone EC, Smith T, Oldland SRD, Veall N, Owen F, Zanelli GD (1986) Dopamine D2 receptors in schizophrenia studied in vivo. Lancet 2:224–225

    Article  PubMed  CAS  Google Scholar 

  • Crow TJ, Owen F, Cross AJ, Johnstone EC, Joseph MH, Longden A (1980) The dopamine receptor as the site of the primary disturbance in the type-I syndrome of schizophrenia. In: Usdin E, Sourkes Tl, Youdim MBH (eds) Enzymes and neurotransmitters in mental disease. Wiley, New York, pp 559–572

    Google Scholar 

  • Davidson M, Davis KL (1988) A comparison of plasma homovanillic acid concentrations in schizophrenic patients and normal controls. Arch Gen Psychiatry 45:561–563

    PubMed  CAS  Google Scholar 

  • Davidson M, Keefe RSE, Mohs RC, Siever LJ, Losonczy MF, Horvath TB, Davis KL (1987) L-dopa challenge and relapse in schizophrenia. Am J Psychiatry 144:934–938

    PubMed  CAS  Google Scholar 

  • Davila R, Manero E, Zumarraga M, Andia I, Schweitzer JW, Friedhoff AJ (1988) Plasma homovanillic acid as a predictor of response to neuroleptics. Arch Gen Psychiatry 45:561–563

    Google Scholar 

  • Davis KL, Davidson M, Mohs RC, Kendler KS, Davis BM, Johns CA, DeNigris Y, Horvath TB (1985) Plasma homovanillic acid concentration and the severity of schizophrenic illness. Science 227:1601–1602

    Article  PubMed  CAS  Google Scholar 

  • Davis KL, Kahn RS, Ko G, Davidson M (1991) Dopamine in schizophrenia: a review and reconceptualization. Am J Psychiatry 148:1474–1486

    PubMed  CAS  Google Scholar 

  • Dencker SJ, Malm U, Lepp M (1986) Schizophrenic relapse after drug withdrawal is predictable. Acta Psychiatr Scand 73:181–185

    Article  PubMed  CAS  Google Scholar 

  • Delisi LE, Dauphinais D (1989) Neuroleptic responsiveness in siblings concordant for schizophrenia. Arch Gen Psychiatry 46:477

    PubMed  CAS  Google Scholar 

  • Docherty JP, van Kammen DP, Siris SG, Marder SR (1978) Stages of onset of schizophrenic psychosis. Am J Psychiatry 135:420–426

    PubMed  CAS  Google Scholar 

  • Farde L, Wiesel F, Stone-Elander S, Halldin C, Nordstrom A, Hall H, Sedvall G (1990) D2 dopamine receptors in neuroleptic-naive schizophrenic patients. Arch Gen Psychiatry 47:213–219

    PubMed  CAS  Google Scholar 

  • Friedhoff A J (1986) A dopamine-dependent resitutive system for the maintenance of mental normalcy. Ann NY Acad Sci 463:47–52

    Article  PubMed  CAS  Google Scholar 

  • Garver DL, Kelly K, Fried KA, Magnusson M, Hirschowitz J (1988) Drug response patterns as a basis of nosology for the mood-incongruent psychoses (the schizophrenias). Psychol Med 18:1–13

    Article  Google Scholar 

  • Gattaz WF, Riederer P, Reynolds GP, Gattaz D, Beckmann H (1983) Dopamine and noradrenaline in the cerebrospinal fluid of schizophrenic patients. Psychiatry Res 8:243–250

    Article  PubMed  CAS  Google Scholar 

  • Gillin JC, Kaplan J, Stillman R, Wyatt RJ (1976) The psychedelic model of schizophrenia: the case of N, N-dimethyltryptamine. Am J Psychiatry 133:203–214

    PubMed  CAS  Google Scholar 

  • Green AI, Faraone SV, Brown WA (1990) Prolactin shifts after neuroleptic withdrawal. Psychiatry Res 32:213–219

    Article  PubMed  CAS  Google Scholar 

  • Heinrichs DW, Carpenter WT Jr (1985) Prospective study of prodromal symptoms in schizophrenic relapse. Am J Psychiatry 142:371–373

    PubMed  CAS  Google Scholar 

  • Henn FA, Henn SW (1982) Phospholipids as markers for schizophrenia. In: Usdin E, Hanin I (eds) Biological markers in psychiatry and neurology. Permagon New York, pp 183–185

    Google Scholar 

  • Herz MI, Szymanski HV, Simon JC (1982) Intermittent medication for stable schizophrenic outpatients: an alternative to maintenance medication. Am J Psychiatry 139:917–922

    Google Scholar 

  • Herz MI, Glazer WM, Mostert A, Sheard MA, Szymanski HV, Hafez H, Mirza M, Vana J (1991) Intermittent vs. maintenance medication in schizophrenia. Arch Gen Psychiatry 48:333–339

    PubMed  CAS  Google Scholar 

  • Hirsch SR, Jolley AG, Morrison E, McRink A, Wilson L (1990) Trial of brief intermittent neuroleptic prophylaxis for selected schizophrenic outpatients: clinical and social outcome at 2 years. Schizophr Res 3:40

    Article  Google Scholar 

  • Holzman PS, Kringlen E, Matthysse S, Flanagan SD, Lipton RB, Cramer G, Levin S, Lange K, Levy DL (1988) A single dominant gene can account for eye tracking dysfunctions and schizophrenia in offspring of discordant twins. Arch Gen Psychiatry 45:641–647

    PubMed  CAS  Google Scholar 

  • Hornykiewicz O (1982) Brain catecholamine in schizophrenia — a good case for noradrenaline. Nature 299:484–486

    Article  PubMed  CAS  Google Scholar 

  • Innis RB, Malison RT, Al-Tikriti M, Hoffer PB, Sybirska EH, Seibyl JP, Zoghbi SS, Baldwin RM, Laruelle M, Smith EO, Charney DS, Heninger G, Eisworth JD, Roth RH (1992) Amphetamine-stimulated dopamine release competes in vivo for [123I]IBZM binding to the D2 receptor in nonhuman primates. Synapse 10:177–184

    Article  PubMed  CAS  Google Scholar 

  • Jakob H, Beckmann H (1986) Prenatal developmental disturbances in the limbic allocortex in schizophrenics. J Neural Transm 65:303–326

    Article  PubMed  CAS  Google Scholar 

  • Janowsky DS, Davis JM (1976) Methylphenidate, dextroamphetamine, and levam-phetamine: effects on schizophrenic symptoms. Arch Gen Psychiatry 33:304–308

    PubMed  CAS  Google Scholar 

  • Janowsky DS, El-Yousef K, Davis JM, Sekerke HJ (1973) Provocation of schizophrenic symptoms by intravenous administration of methylphenidate. Arch Gen Psychiatry 28:185–191

    PubMed  CAS  Google Scholar 

  • Johnson DAW (1976) The expectation of outcome from maintenance therapy in chronic schizophrenic patients. Br J Psychiatry 128:246–250

    Article  PubMed  CAS  Google Scholar 

  • Johnson DAW, Pasterski G, Ludlow JM, Street K, Taylor RDW (1983) The discontinuance of maintenance neuroleptic therapy in chronic schizophrenic patients: drug and social consequences. Acta Psychiatr Scand 67:339–352

    Article  PubMed  CAS  Google Scholar 

  • Johnstone EC, Owens DGC, Frith CD, Crow TJ (1986) The relative stability of positive and negative features in chronic schizophrenia. Br J Psychiatry 150:60–64

    Article  Google Scholar 

  • Kafka MS, van Kammen DP, Kleinman JE (1980) α-Adrenergic receptor function in schizophrenia. Psychopharmacol Bull 16:91–94

    Google Scholar 

  • Kafka MS, van Kammen DP (1983) α-Adrenergic receptor function in schizophrenia. Arch Gen Psychiatry 40:264–270

    PubMed  CAS  Google Scholar 

  • Kafka MS, Siever LJ, NĂĽrnberger JI, Uhde TW, Targum S. Cooper DMJ, van Kammen DP, Tokola NS (1985) Platelet alpha-adrenergic receptor function in affective disorders and schizophrenia. Psychopharmacol Bull 21:599–602

    PubMed  CAS  Google Scholar 

  • Kane J, Honigfeld G, Singer J, Meitzer H (1988) Clozapine for the treatment-resistant schizophrenic. Arch Gen Psychiatry 45:789–796

    PubMed  CAS  Google Scholar 

  • Kanof PD, Johns CA, Davidson M, Siever LJ, Coccaro EF, Davis KL (1988) Platelet alpha2-adrenergic receptor function in psychiatric disorders. Psychiatry Res 23: 11–22

    Article  PubMed  CAS  Google Scholar 

  • Karoum F, Karson CN, Bigelow LB, Lawson WB, Wyatt RJ (1987) Preliminary evidence of reduced combined output of dopamine and its metabolites in chronic schizophrenia. Arch Gen Psychiatry 44:604–607

    PubMed  CAS  Google Scholar 

  • Kay SR, Sevy S (1990) Pyramidical model of schizophrenia. Schizophr Bull 16:537–545

    PubMed  CAS  Google Scholar 

  • Keefe RSE, Mohs RC, Losonczy MF, Davidson M, Silverman JM, Kendler KS, Horvath TB, Nora R, Davis KL (1987) Characteristics of very poor outcome schizophrenia. Am J Psychiatry 144:889–895

    PubMed  CAS  Google Scholar 

  • Kelley ME, Gilbertson M, Mouton A, van Kammen DP (1992) Deterioration in premorbid functioning in schizophrenia: a developmental model of negative symptoms in drug-free patients. Am J Psychiatry 149:1543–1548

    PubMed  CAS  Google Scholar 

  • Kemali D, Delvecchio M, Maj M (1982) Increased noradrenaline levels in CSF and plasma of schizophrenic patients. Biol Psychiatry 17:711–717

    PubMed  CAS  Google Scholar 

  • Kirkpatrick B, Carpenter WT, Maeda K, Buchanan RW, Breier A, Tamminga CA (1992) Plasma prolactin as a predictor of relapse in drug-free schizophrenic outpatients. Biol Psychiatry 32:1049–1054

    Article  PubMed  CAS  Google Scholar 

  • Ko GN, Unnerstall JR, Kuhar MJ, Wyatt RJ, Kleinman JE (1986) Alpha-2 adrenergic agonist binding in schizophrenic brains. Psychopharmacology Bull 22:1011–1016

    CAS  Google Scholar 

  • Ko GN, Jimerson DC, Wyatt RJ, Bigelow LB (1988) Plasma 3-methoxy-4-hydroxyphenylglycol changes associated with clinical state and schizophrenic subtype. Arch Gen Psychiatry 45:842–846

    PubMed  CAS  Google Scholar 

  • Kovelman JA, Scheibel AB (1984) A neurohistological correlate of schizophrenia. Biol Psychiatry 19:1601–1621

    PubMed  CAS  Google Scholar 

  • Lake CR, Sternberg DE, van Kammen DP, Ballenger JC, Ziegler MG, Post RM, Kopin IJ, Bunney WE (1980) Schizophrenia: elevated cerebrospinal fluid norepinephrine. Science 207:331–333

    Article  PubMed  CAS  Google Scholar 

  • Lai S, Nair NPV, Thavundayil JX, Monks RC, Gudya H (1983) Clonidine-induced growth hormone secretion in chronic schizophrenia. Acta Psychiatr Scand 68:82–88

    Article  Google Scholar 

  • Lambert GW, Eisenhofer G, Cox HS, Hörne M (1991) Direct determination of homovanillic acid release from the human brain, an indicator of central dopaminergic activity. Life Sci 49:1061–1072

    Article  PubMed  CAS  Google Scholar 

  • Liddle PF, Barnes TRE (1990) Syndromes of chronic schizophrenia. Br J Psychiatry 157:558–561

    Article  PubMed  CAS  Google Scholar 

  • Lieberman JA, Kane JM, Gadaleta D, Brenner R, Lesser MS, Kinon B (1984) Methylphenidate challenge as a predictor of relapse in schizophrenia. Am J Psychiatry 141:633–638

    PubMed  CAS  Google Scholar 

  • Lieberman JA, Jody D, Geister S, Alvir J, Loebel A, Szymanski S, Woaner M, Barenstein M (1993) Time course and biological correlates of treatment response in first-episode schizophrema. Arch Gen Psychiatry 50:369–376

    PubMed  CAS  Google Scholar 

  • Loebel AD, Lieberman JA, Alvir JM, Mayerhoff DI (1992) Duration of psychosis and outcome in first-episode schizophrenia. Am J Psychiatry 149:1183,1188

    Google Scholar 

  • Maas JW, Contreras SA, Miller AL, Berman N, Bowden CL, Javors MA, Seleshi E, Weintraub S (1993a) Studies of catecholamine metabolism in schizophrenia/ psychosis-I. Neuropsychopharmacology 8:97–109

    PubMed  CAS  Google Scholar 

  • Maas JW, Contreras SA, Miller AL, Berman N, Bowden CL, Javors MA, Seleshi E, Weintraub S (1993b) Studies of catecholamine metabolism in schizophrenia/ psychosis-II. Neuropsychopharmacology 8:111–116

    PubMed  CAS  Google Scholar 

  • MacKay AV (1980) Positive and negative schizophrenic symptoms and the role of dopamine. Br J Psychiatry 137:379–383

    Article  PubMed  CAS  Google Scholar 

  • Marder SR, van Kammen DP, Bunney WE Jr (1979) Prediction of drug-free improvement in schizophrenic psychosis. Arch Gen Psychiatry 36:1080–1085

    PubMed  CAS  Google Scholar 

  • Matussek N, Ackenheil M, Hippius H, MĂĽller F, Schröder H-Th, Schultes H, Wasilewski B (1980) Effect of Clonidine on growth hormone release in psychiatric patients and controls. Psychiatr Res 2:25–36

    Article  CAS  Google Scholar 

  • Mazure CM, Nelson JC, Jatlow PI, Bowers MB (1991) Plasma free homovanillic acid (HVA) as a predictor of clinical response in acute psychosis. Biol Psychiatry 30:475–482

    Article  PubMed  CAS  Google Scholar 

  • McGuffin P, Farmer A, Gottesman II (1987) Is there really a split in schizophrenia? The genetic evidence. Br J Psychiatry 150:581–592

    Article  PubMed  CAS  Google Scholar 

  • McKusick VA (1969) On lumpers and splitters, or the nosology of genetic disease. Perspect Biol Med 12:298–301

    PubMed  CAS  Google Scholar 

  • Moises HW, Gelernter J, Giuffra LA, Zarcone VP (1991) No linkage between D2 dopamine receptor gene region and schizophrenia. Arch Gen Psychiatry 48:643–647

    PubMed  CAS  Google Scholar 

  • Mortimer AM (1992) Phenomenology, its place in schizophrenia research. Br J Psychiatry 161:293–297

    Article  PubMed  CAS  Google Scholar 

  • MĂĽller-Spahn F, Ackenheil M, Bondy B, May G, RĂĽther E (1985) Growth hormone response to graded doses of apomorphine HCl in normals and schizophrenic patients: relation to psychotic decompensation? In: Shagass C, Josiassen RC, Bridger WH, Weiss KJ, Stoff D, Simpson GM (eds) Biological psychiatry 1985. Elsevier Science, New York, pp 1074–1076

    Google Scholar 

  • Murray RM, O’Callaghan E, Castle DJ, Lewis SW (1992) A neurodevelopmental approach to the classification of schizophrenia. Schizophr Bull 18:319–332

    PubMed  CAS  Google Scholar 

  • Neuchterlein KH, Dawson ME (1984) A heuristic vulnerability/stress model of schizophrenic episodes. Schizophr Bull 10:300–312

    Google Scholar 

  • Neuchterlein KH, Dawson ME, Gitlin M, Ventura J, Goldstein MJ, Snyder KS, Yee CM, Mintz J (1992) Developmental processes in schizophrenic disorders: Longitudinal studies of vulnerability and stress. Schizophr Bull 18:387–425

    Google Scholar 

  • Ă–hlund LS, Lindström LH, Ă–hman A (1992) Electrodermal orienting response and central nervous system dopamine and serotonin activity in schizophrenia. J Nerv Ment Dis 180:304–313

    Article  PubMed  Google Scholar 

  • Pandey GN, Janicak PG, Javaid JI, Davis JM (1989) Increased 3H-clonidine binding in the platelets of patients with depressive and schizophrenic disorders. Psychiatry Res 28:83–88

    Article  Google Scholar 

  • Parnas J, Cannon TD, Jacobsen B, Schulsinger H, Schulsinger F, Mednick SA (1993) Lifetime DSM-III-R diagnostic outcomes in the offspring of schizophrenic mothers. Results from the Copenhagen high-risk study. Arch Gen Psychiatry 50:707–714

    PubMed  CAS  Google Scholar 

  • Penrose LS (1952) Measurement of pleiotropic effects in phenyl ketonuria. Ann Eugenics 18:120–124

    Article  Google Scholar 

  • Peters JL, van Kammen DP, Gelernter J, Yao JK, Shaw D (1990) Neuropeptide Y-like immunoreactivity in schizophrenia: relationships with clinical measures. Schizophr Res 3:287–294

    Article  PubMed  CAS  Google Scholar 

  • Pickar D, Breier A, Hsiao JK, Doran AR, Wolkowitz OM, Pato CN, Konicki E, Potter WZ (1990) Cerebrospinal fluid and plasma monoamine metabolites and their relation to psychosis. Implications for regional brain dysfunction in schizophrenia. Arch Gen Psychiatry 47:641–648

    PubMed  CAS  Google Scholar 

  • Post RM, Fink E, Carpenter WT, Goodwin FK (1975) Cerebrospinal fluid amine metabolites in acute schizophrenia. Arch Gen Psychiatry 32:1063–1069

    PubMed  CAS  Google Scholar 

  • Post RM, Gold PW, Rubinow DR, Bunney WE Jr, Ballenger JC, Goodwin FK (1983) Cerebrospinal fluid as neuroregulatory pathway. Peptides in neuropsychiatry illness. In: Wood JH (ed) Neurobiology of cerebrospinal fluid, 2. Plenum New York, pp 107–141

    Google Scholar 

  • Rapaport MH, McAllister CG, Pickar D, Nelson DL, Paul SM (1989) Elevated levels of soluble interleukin 2 receptors in schizophrenia (letter). Arch Gen Psychiatry 46: 291–292

    PubMed  CAS  Google Scholar 

  • Reveley MA, Reveley AM, Clifford CA, Murray RM (1983) Genetics of platelet MAO activity in discordant schizophrenic and normal twins. Br J Psychiatry 142:560–565

    Article  PubMed  CAS  Google Scholar 

  • Rice HE, Smith CB, Silk KR, Rosen J (1984) Platelet alpha2-adrenergic receptors in schizophrenic patients before and after phenothiozine treatment. Psychiatry Res 12:69–77

    Article  PubMed  CAS  Google Scholar 

  • Roberts E (1973) An hypothesis suggesting that there is a defect in the GABA system in schizophrenia. An essay. Neurosci Res Prog Bull 10:468–482

    Google Scholar 

  • Rotrosen J, Miller AD, Mandio D, Traficante LJ, Gershon S (1978) Reduced PGE1 stimulated 3H-cAMP accumulation in platelets from schizophrenics. Life Sci 23: 1989–1996

    Article  PubMed  CAS  Google Scholar 

  • Scheinin M, Karhuvaara S, Ojala-Karlsson P, Kallio A, Koulu M (1991) Plasma 3,4-dihydroxyphenylglycol (DHPG) and 3-methoxy-4-hydroxyphenylglycol (MHPG) are insensitive indicators of α2-adrenoceptor mediated regulation of norepinephrine release in healthy human volunteers. Life Sci 49:75–84

    Article  PubMed  CAS  Google Scholar 

  • Seeman P, Ulpian C, Bergeron C, Riederer P, Jellinek K, Gabriel E, Reynolds GP, Tourtelotte WW (1984) Bimodal distribution of dopamine receptor densities in brains of schizophrenics. Science 225:728–731

    Article  PubMed  CAS  Google Scholar 

  • Siever LJ, Silverman JM, Horvath TB, Klar H, Coccaro E, Keefe RSE, Pinkham L, Rinaldi P, Mohs RC, Davis KL (1990) Increased morbid risk for schizophreniarelated disorders in relatives of schizotypal personality disordered patients. Arch Gen Psychiatry 47:634–640

    PubMed  CAS  Google Scholar 

  • Slater E (1947) Genetic causes of schizophrenic symptoms. Monatsschr Psychiatrie Neurol 113:50–58 (Reprinted in Man, mind and heredity, selected papers of Eliot Slater on psychiatry and genetics. Johns Hopkins Press, Baltimore, 1971)

    CAS  Google Scholar 

  • Stein L, Wise CD (1971) Possible etiology of schizophrenia: progressive damage to the noradrenergic reward system by 6-hydroxydopamine. Science 171:1032–1036

    Article  PubMed  CAS  Google Scholar 

  • Steinhauer SR, van Kammen DP, Colbert K, Peters JL, Zubin J (1992) Pupillary constriction during haloperidol treatment as a predictor of relapse following drug withdrawal in schizophrenic patients. Psychiatry Res 43:287–298

    Article  PubMed  CAS  Google Scholar 

  • Sternberg DE, van Kammen DP, Lake CR, Ballenger JC, Marder SR, Bunney WE Jr (1981) The effect of pimozide on CSF norepinephrine in schizophrenia. Am J Psychiatry 138:1045–1051

    PubMed  CAS  Google Scholar 

  • Sternberg DE, Charney DS, Heninger GR, Leckman JF, Hafstad KM, Landis DH (1981) Impaired presynaptic regulation of norepinephrine in schizophrenia. Effects of Clonidine in schizophrenic patients and normal controls. Arch Gen Psychiatry 39: 285–289

    Google Scholar 

  • Sternberg DE, van Kammen DP, Lerner P, Ballenger JC, Marder SR, Post RM, Bunney WE (1983) CSF dopamine beta-hydroxylase in schizophrenia. Arch Gen Psychiatry 40:743–747

    PubMed  CAS  Google Scholar 

  • Strauss JS, Hafez H, Lieberman P, Harding CM (1985) The course of psychiatric disorder. III. Longitudinal principles. Am J Psychiatry 142:289–296

    PubMed  CAS  Google Scholar 

  • Subotnik KL, Nuechterlein KH (1988) Prodromal signs and symptoms of schizophrenic relapse. J Abnorm Psychol 97:405–412

    Article  PubMed  CAS  Google Scholar 

  • Terenius L, Wahlstrom A, Lindstrom L, Widerlöv (1976) Increased CSF levels of endorphines in chronic psychosis. Neurosci Lett 3:157–162

    Article  PubMed  CAS  Google Scholar 

  • Torrey EF, Peterson MR (1976) The viral hypothesis of schizophrenia. Schizophr Bull 2:136–146

    PubMed  CAS  Google Scholar 

  • Tsuang MT, Lyons MJ, Faraone SV (1990) Heterogeneity in schizophrenia. Conceptual models and analytic stategies. Br J Psychiatry 156:17–26

    Article  PubMed  CAS  Google Scholar 

  • van der Velde CD (1976) Variability in schizophrenia. Reflection of a regulatory disease. Arch Gen Psychiatry 33:489–496

    PubMed  Google Scholar 

  • van Kammen DP (1977) Gamma-aminobutyric acid (GABA) and the dopamine hypothesis of schizophrenia. Am J Psychiatry 134:138–143

    PubMed  Google Scholar 

  • van Kammen DP (1991) The biochemical basis of relapse and drug response in schizophrenia: review and hypothesis. Psychol Med 21:881–895

    Article  PubMed  Google Scholar 

  • van Kammen DP, Kelley M (1991) Dopamine and norepinephrine activity in schizophrenia: an integrative perspective. Schizophr Res 4:173–191

    Article  PubMed  Google Scholar 

  • van Kammen DP, Sternberg DE (1980) CSF studies in schizophrenia. In: Wood JH (ed) Neurobiology of cerebrospinal fluid, vol I. Plenum, New York, pp. 719–742

    Google Scholar 

  • van Kammen DP, van Kammen WB (1984) The amphetamine challenge test in schizophrenia: a stress response? In: Usdin E, Kvetnansky R, Axelrod J (eds) Stress: the role of catecholamines and other neurotransmitters, vol 2. Gordon & Breach Science Publishers, London, pp 957–966

    Google Scholar 

  • van Kammen DP, Docherty JP, Bunney WE Jr (1982a) Prediction of early relapse after pimozide discontinuation by response to d-amphetamine during pimozide treatment. Biol Psychiatry 17:233–242

    PubMed  Google Scholar 

  • van Kammen DP, Docherty JP, Marder SR, Rayner JN, Bunney WE Jr (1982b) Longterm pimozide pretreatment differentially affects behavioral responses to dextroamphetamine in schizophrenia. Arch Gen Psychiatry 39:275–281

    PubMed  Google Scholar 

  • van Kammen DP, Bunney WE Jr, Docherty JP, Marder SR, Ebert MH, Rosenblatt JE, Rayner JN (1982c) D-amphetamine-induced heterogeneous changes in psychotic behavior in schizophrenia. Am J Psychiatry 139:991–997

    PubMed  Google Scholar 

  • van Kammen DP, Peters J, van Kammen WB (1986a) Cerebrospinal fluid studies of monoamine metabolism in schizophrenia. In: Roy A (ed) Schizophrenia: Psychiatric Clinics of North America. WB Saunders, Philadelphia, pp 81–97

    Google Scholar 

  • van Kammen DP, van Kammen WB, Mann LS, Seppala T, Linnoila M (1986b) Dopamine metabolism in the cerebrospinal fluid of drug-free schizophrenic patients with and without cortical atrophy. Arch Gen Psychiatry 43:978–983

    PubMed  Google Scholar 

  • van Kammen DP, van Kammen WB, Peters JL, Goetz K, Neylan T (1988) Decreased slow-wave sleep and enlarged lateral ventricles in schizophrenia. Neuropsychopharmacology 1:265–271

    PubMed  Google Scholar 

  • van Kammen DP, Peters J, van Kammen WB, Nugent A, Goetz KL, Yao J, Linnoila M (1989) CSF norepinephrine in schizophrenia is elevated prior to relapse after haloperidol withdrawal. Biol Psychiatry 26:176–188

    Article  PubMed  Google Scholar 

  • van Kammen DP, Peters J, Yao J, McAdam D, Mouton A, Breeding W (1990) Prediction of relapse following neuroleptic withdrawal: the role of noradrenaline. Clin Neuropharmacology 13:436–437

    Article  Google Scholar 

  • van Kammen DP, Peters J, Yao J, Neylan T, Beuger M, Pontius E, O’Connor DT (1992) CSF chromogranin A-like immunoreactivity in schizophrenia: assessment of clinical and biochemical relationships. Schizophr Res 6:31–39

    Article  Google Scholar 

  • van Kammen DP, Peters JL, Kelley ME, Gilbertson MW, Gurklis JA, O’Connor DT (1994) CSF dopamine β-hydroxylase in schizophrenia: associations with premorbid functioning and brain CT scan measures. Am J Psychiatry (in press)

    Google Scholar 

  • van Rossum JM (1966) The significance of dopamine-receptor blockade for the mechanism of action of neuroleptic drugs. Arch Int Pharmacodyn 160:492–494

    PubMed  Google Scholar 

  • Ventura J, Nuechterlein KH, Hardesty JP, Gitlin M (1992) Life events and schizophrenic relapse after withdrawal of medication. Br J Psychiatry 161:615–620

    Article  PubMed  CAS  Google Scholar 

  • Verhoeven WMA, van Praag HM, van Ree JM, De Wied D (1979) Improvement of schizophrenic patients treated with [des-tyr1]-Îł-endorphin (DT ÎłE). Arch Gen Psychiatry 36:294–298

    PubMed  CAS  Google Scholar 

  • Weinberger DR (1987) Implications of normal brain development for the pathogenesis of schizophrenia. Arch Gen Psychiatry 44:660–669

    PubMed  CAS  Google Scholar 

  • Widerlöv E (1988) A critical appraisal of CSF monoamine metabolite studies in schizophrenia. Ann NY Acad Sci 537:309–323

    Article  PubMed  Google Scholar 

  • Wolkin A, Barouche F, Wolf AP, Rotrosen J, Fowler JS, Shiue C-Y, Cooper TB, Brodie JD (1989) Dopamine blockade and clinical response: evidence for two biological subgroups of schizophrenia. Am J Psychiatry 146:905–908

    PubMed  CAS  Google Scholar 

  • Wong DF, Wagner HN Jr, Tune LE, Dannais RF, Pearlson GD, Links JM, Tamminga CA, Broussolle EP, Ravert HT, Wilson AA, Toung JKT, Malat J, Williams JA, O’Tuama LA, Snyder SH, Kuhar MJ, Gjedde A (1986) Positron emission tomography reveals elevated D2 dopamine receptors in drug-naive schizophrenics. Science 234: 1558–1563

    Article  PubMed  CAS  Google Scholar 

  • Yao JK, van Kammen DP (1994) Red blood cell dynamics in schizophrenia. I. Membrane fluidity. Schizophr Res 11:209–216

    Article  PubMed  CAS  Google Scholar 

  • Zubin J, Steinhauer S (1981) How to break the logjam in schizophrenia. J Nerv Ment Dis 169:477–492

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Van Kammen, D.P. (1995). Biochemical Heterogeneity in Schizophrenia: Implications and Research Strategies of the State Dependency Model. In: Marneros, A., Andreasen, N.C., Tsuang, M.T. (eds) Psychotic Continuum. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79485-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79485-8_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79487-2

  • Online ISBN: 978-3-642-79485-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics