Bestrahlungsplanung

  • H. Sack
  • U. Quast
  • M. Stuschke

Zusammenfassung

Die Strahlenbehandlung bösartiger Tumoren hat in den letzten Jahren ständig an Bedeutung und an Erfolgen gewonnen. Wie bei den Infektionserkrankungen ist es gelungen, Krebs heilbar zu machen. Hieran sind Chirurgie und Radioonkologie ganz überwiegend und etwa gleich beteiligt. Einige bösartige Erkrankungen sind auch mit der Chemotherapie heilbar.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. AAPM Report 13 (1984) Physical aspects of quality assurance in radiotherapy. American Institute of Physics, New York, pp 7–13Google Scholar
  2. Ahnesjö A (1989) Collapsed cone convolution of radiant energy for photon dose calculation in heterogeneous media. Med Phys 16: 577–592PubMedCrossRefGoogle Scholar
  3. Ahnesjö A (1993) Dose calculation methods for multidimensional treatment planning. In: Minet P (ed) Three-dimensional treatment planning. WHO, Geneva, pp 277–288Google Scholar
  4. Amel-Zadeh A, Gremmel H, Hebbinghaus D, Ihnen F, Wendhausen H (1980) Praktische Anwendung der Optimierungskriterien für geometrische Strahlendosisverteilungen. Strahlentherapie 156: 689–693PubMedGoogle Scholar
  5. Ang KK, Peters LJ, Weber RS, Maor MH, Morrison WH, Wendt CD, Brown BW (1990) Concomitant boost radiotherapy schedules in the treatment of carcinoma of the oro-pharynx and nasopharynx. Int J Radiat Oncol Biol Phys 19: 1339–1345PubMedCrossRefGoogle Scholar
  6. Ang KK, Jiang GL, Guttenberger R, Thames HD, Stephens LC, Smith CD, Feng Y (1992) Impact of spinal cord repair kinetics on the practice of altered fractionation schedules. Radiother Oncol 25: 287–294PubMedCrossRefGoogle Scholar
  7. Begg AC, Hofland I, van Glabekke M, Bartelink H, Horiot JC (1992) Predictive value of potential doubling time for radiotherapy of head and Neck tumor patients: results from the EORTC cooperative trial 22851. Sem Radiat Oncol 2:22–25CrossRefGoogle Scholar
  8. Bentel et al. (1989) s. Weiterführende Literatur, S. 268Google Scholar
  9. Bentzen SM, Thames HD (1991) Clinical evidence for tumor clonogen regeneration: interpreations of the data. Radiother Oncol 22: 161–166PubMedCrossRefGoogle Scholar
  10. Bielajew AF (1994) Monte Carlo modeling in external electron beam therapy - Why leave it to chance? In: Hounsel AR, Wilkinson JM, Williams PC (eds) Proc XIth Conf on the Use of Computers in Radiation Therapy. Handley, Stockport, pp 2–5Google Scholar
  11. Bleehen NM, Girling DJ, Machin D, Stephens RJ (1992) A medical research council (MRC) randomised trial of palliative radiotherapy with two fractions or a single fraction in patients with inoperable non-small-cell lung cancer (NSCL) and poor performance status. Br J Cancer 65: 934–941CrossRefGoogle Scholar
  12. Boersma LJ, Damen EMF, de Boer RW et al. (1994) Dose-effect relations for local functional and structural changes of the lung after irradiation for malignant lymphoma. Radiother Oncol 32: 201–209PubMedCrossRefGoogle Scholar
  13. Boesecke R, Doll J, Bauer B, Schlegel W, Pastyr O, Lorenz W (1988) Treatment planning for conformation therapy using a multi-leaf collimator. Strahlenther Onkol 164: 151–154PubMedGoogle Scholar
  14. Bohndorf W, Harder D (1962) Die Dosisverteilung bei Horizontal-Translation. Strahlentherapie 119: 389PubMedGoogle Scholar
  15. Borgelt B, Gelber R, Kramer S (1980) The palliation of brain metastases: final results of the first two studies by the Radiation Therapy Oncology Group. Int J Radiat Oncol Biol Phys 6: 1PubMedGoogle Scholar
  16. Bortfeld T, Schlegel W (1990) Inverse planning. Phys Med Bio135: 1423–1434Google Scholar
  17. Bortfeld T, Burkelbach J, Boesecke R, Schlegel W (1992) Three-dimensional solution of the inverse problem in conformation radiotheray. In: Breit A (ed) (1992), pp 503–508Google Scholar
  18. Bortfeld T, Boyer AL, Schlegel W, Kahler DL, Waldron TJ (1994) MLC Modulation of X-ray beams in discrete steps. Experimental verification of multileaf modulated conformal radiotherapy. In: Hounsel AR, Wilkinson JM, Williams PC (eds) Prox XIth Conf on the Use of Computers in Radiation Therapy. Handley, Stockport, pp 178–181Google Scholar
  19. Boyer AL, Desobry GE, Wells NH (1992a) Potential applications of invariant kernel conformal therapy. In: Breit A (ed) (1992), pp 471–478Google Scholar
  20. Boyer AL, Antonuk L, Fenster A et al. (1992b) A review of electronic portal imaging devices (EPIDs). Med Phys 19: 1–16CrossRefGoogle Scholar
  21. Brahme A (1984) Dosimetric precision requirements in radiation therapy. Acta Radiol Oncol 23: 379–391PubMedCrossRefGoogle Scholar
  22. Brahme A (1987) Design principles and clinical possibilities with a new generation of radiotherapy equipment. Acta Oncol 26: 403–412PubMedCrossRefGoogle Scholar
  23. Brahme A (1992) Recent developments in radiation therapy planning. In: Breit A (ed) (1992), pp 379–390Google Scholar
  24. Brahme A (1994a) Treatment optimization using physical and biological objective functions. In: Smith A (ed) Radiation therapy physics. Springer, Berlin Heidelberg New York TokyoGoogle Scholar
  25. Brahme A (1994b) Radiobiologically based treatment plan optimization. In: Gobbi G, Latini P (eds) Proc Advanced Diagnostic Modalities and New Irradiatin Techniques in Radiotherapy. Casa Editrice l’Antologia, NapoliGoogle Scholar
  26. Brahme A (1994c) Inverse radiation therapy planning, principles and possibilities. In: Hounsell AR, Wilkinson JM, Williams PC (eds) Proc XIth Int Conf on the Use of Cornputers in Radiation Therapy. Handley, Stockport, pp 6–7Google Scholar
  27. Brahme A (1995, in press) Radiobiologically based treatment plan optimization. In: Bayer K, Baltas D (eds) Proceedings: Modelling in clinical radiobiology. WürzburgGoogle Scholar
  28. Brahme A, Lind B, Näfstadius P (1987) Radiotherapeutic computed tomography with scanned photon beams. Int J Radiat Oncol Biol Phys 13: 95–101PubMedGoogle Scholar
  29. Brahme A, Chavaudra J, Landberg T et al. (1988) Accuracy requirements and quality assurance of external beam therapy with photons and electrons. Acta Oncol [Suppl 1]Google Scholar
  30. Brahme A, Lind B, Källman P (1990) Inverse radiation therapy planning as a tool for 3D dose optimization. Physica Medica 6: 53–63Google Scholar
  31. Brahme A, Lind BK, Källman P (1992) Application of radiation-biological data for dose optimization in radiation therapy. In: Breit A (ed) (1992), pp 407–416Google Scholar
  32. Breit A (ed) (1992) Tumor response monitoring and treatment planning. Advanced radiation therapy. Springer, Berlin Heidelberg New York TokyoGoogle Scholar
  33. Burman C, Kutcher GJ, Emami B, Goitein M (1991) Fitting of normal tissue tolerance data to an analytic function. Int J Radiat Oncol Biol Phys 21: 123–135PubMedGoogle Scholar
  34. Byhardt RW, Pajak TF, Emami B, Herskovic A, Doggett RS, Olsen LA (1993) A phase I/II study to evaluate accelerated fractionation via concomitant boost for squamous, adeno, and large cell carcinoma of the lung: report of radiation oncology group 84–07. Int J Radiat Oncol Biol Phys 26: 459–468PubMedCrossRefGoogle Scholar
  35. Carol MP, Targovnik H, Campbell C et al. (1993) An automatic 3D treatment planning and implementation system for optimized conformal therapy. In: Minet P (ed) Three-dimensional treatment planning. WHO, Geneva, pp 173–187Google Scholar
  36. CART (1985) Proc CART-Project, VIIth Int Conf Medical Physics, Espoo. Med Biol Eng Comput 1: 173–177Google Scholar
  37. Clarkson JR (1941) A note on depth dosis in fields of irregular shape. Brit J Radiol 14: 265–268CrossRefGoogle Scholar
  38. Collaborative Working Group (1991) Three-dimensional photon treatment planning: report of the Collaborative Working Group on the evaluation of treatment plans for external photon beam radiotherapy. Int J Radiat Oncol Biol Phys 21: 25–36Google Scholar
  39. Cox JD, Pajak TF, Marcial VA et al. (1991) Interfraction interval is a major determinant of late effects, with hyperfractionated radiation therapy of carcinomas of upper respiratory and digestive tracts: results from Radiation Therapy Oncology Group protocol 83–13. Int J Radiat Oncol Biol Phys 20: 1191–1195PubMedCrossRefGoogle Scholar
  40. Creutzberg CL, Althof VGM, Huizenga H, Visser AG, Leven-dag PC (1993) Quality assurance using portal imaging: the accuracy of patient positioning in irradiation of breast cancer. Int J Radiat Oncol Biol Phys 25: 529–539PubMedCrossRefGoogle Scholar
  41. Dahlin H, Lamm IL, Landberg T, Levernes S, Ulso N (1983) User requirements of CT-based computed dose planning systems in radiation therapy. Acta Radiol Oncol 22: 398–415CrossRefGoogle Scholar
  42. Dahlin H, Ekström P, Högström B (1992) Treatment management system: the integrated network solution for better cancer treatment. In: Breit A (ed) (1992), pp 567–572Google Scholar
  43. Day MJ (1950) A note on the calculation of dose in X-ray fields. Brit J Radiol 23: 368–369PubMedCrossRefGoogle Scholar
  44. DIN 6814–8 (1996, im Druck) Begriffe und Benennungen in der radiologischen Technik. Strahlentherapie. Beuth, BerlinGoogle Scholar
  45. DIN 6814–16 (1995) Begriffe in der radiologischen Technik. Prüfung der Qualität einschließlich Sicherheit; Allgemeines. Beuth, BerlinGoogle Scholar
  46. DIN 6827–1 (1991) Entwurf: Protokollierung bei der medizinischen Anwendung ionisierender Strahlung. Therapie mit Röntgen-, Gamma-und Elektronenbestrahlungseinrichtungen. Beuth, BerlinGoogle Scholar
  47. DIN 6827–3 (1985) Protokollierung bei der medizinischen Anwendung ionisierender Strahlung. Lokale Anwendung umschlossener radioaktiver Strahler in der Therapie. Beuth, BerlinGoogle Scholar
  48. DIN 6846–4 (1990) Gammabestrahlungs-Anlagen. Apparative Qualitätsmerkmale. Beuth, BerlinGoogle Scholar
  49. DIN 6846–5 Entwurf (1990) Medizinische Gammabestrahlungs-Anlagen. Konstanzprüfungen apparativer Qualitätsmerkmale. Beuth, BerlinGoogle Scholar
  50. DIN 6847–4 (1990) Medizinische Elektronenbeschleuniger- Anlagen. Apparative Qualitätsmerkmale. Beuth, BerlinGoogle Scholar
  51. DIN 6847–5 Entwurf (1995) Medizinische Elektronenbeschleuniger-Anlagen. Konstanzprüfungen von Kennmerkmalen. Beuth, BerlinGoogle Scholar
  52. DIN 6873–5 Entwurf (1992) Bestrahlungsplanungssysteme. Konstanzprüfungen apparativer Qualitätsmerkmale. Beuth, BerlinGoogle Scholar
  53. DIN IEC 62B(CO)105 (1994) Beurteilung und routinemäßige Überprüfung in medizinischen bildgebenden Abteilungen. Konstanzprüfungen, Bildwiedergabegeräte (Monitore). Beuth, BerlinGoogle Scholar
  54. DIN IEC 62B(CO)106 (1994) Beurteilung und routinemäßige Überprüfung in medizinischen bildgebenden Abteilungen. Konstanzprüfungen, Bilddokumentationssysteme. Beuth, BerlinGoogle Scholar
  55. DIN IEC 62B(CO)107 (1994) Beurteilung und routinemäßige Überprüfung in medizinischen bildgebenden Abteilungen. Konstanzprüfungen an Geräten für die Computertomographie. Beuth, BerlinGoogle Scholar
  56. DIN ISO 9000–1 (1994) Normen zum Qualitätsmanagement und zur Qualitätssicherung, QM-Darlegung - Leitfaden zur Auswahl und Anwendung. Beuth, BerlinGoogle Scholar
  57. Dörr W, Kummermehr J (1990) Accelerated repopulation of mouse tongue epithelium during fractionated irradiations or following single doses. Radiother Onco 117: 249–259CrossRefGoogle Scholar
  58. Dutreix A (1984) When and how can we improve precision in radiotherapy? Radiother Oncol 2: 275–292Google Scholar
  59. El-Gayed AAH, Bel A, Vijlbrief R, Bartelink H, Lebesque JV (1993) Time trend of patient setup deviations during pelvic irradiation using electronic portal imaging. Radiother Oncol 26: 162–171PubMedCrossRefGoogle Scholar
  60. Emami B, Lyman J, Brown A et al. (1991) Tolerance of normal tissue to therapeutic irradiation. Int J Radiat Oncol Biol Phys 21: 109–122PubMedGoogle Scholar
  61. EORTC (1987) Quality assurance in radiotherapy. Proc of a workshop of the European Organization for Research on Treatment of Cancer. Les Menuires, pp 7–9Google Scholar
  62. Fletcher (1980) s. Weiterführende Literatur, S. 268Google Scholar
  63. Fifths D, Quast U, Kolanoski H, Heintz M (1994) Dosimetric treatment planning - Fast 2-D/3-D dosimetry. In: Hounsel AR, Wilkinson JM, Williams PC (eds) Proc XIth Conf on the Use of Computers in Radiation Therapy. Handley, Stockport, pp 38–39Google Scholar
  64. Flühs D, Heintz M, Indenkämpen F, Wieczorek C, Kolanoski H, Quast U (1996, in press) Direct reading measurement of absorbed dose with plastic scintillators - the general concept and applications to ophthalmic plaque dosimetry. Med Phys 22Google Scholar
  65. Fowler JF (1991) The linear quadratic formula in progress in fractionated radiotherapy. Br J Cancer 61: 679–694Google Scholar
  66. Fowler JF, Lindstrom MJ (1992) Loss of local control with prolongation in radiotherapy. Int J Radiat Oncol Biol Phys 23: 457–467PubMedCrossRefGoogle Scholar
  67. Gauwerky F (1975) Liber das Zielvolumenkonzept in der strahlentherapeutischen Planung. Radiologe 15: 217PubMedGoogle Scholar
  68. Glaeser L, Quast U (1981) Derivation, evidence and physical validity of a weighted beam-zone method for dose determination in blocked photon fields of arbitrary shape. In: Biomedical Dosimetry, IEEA, Vienna, pp 61–77Google Scholar
  69. Gill SS, Thomas DGT, Warrington AP, Brada M (1991) Relocatable frame for stereotactic external beam radiotherapy. Int J Radiat Oncol Biol Phys 20: 599–603PubMedCrossRefGoogle Scholar
  70. Goitein M, Abrams M (1983) Multi-dimensional treatment planning: I. Delineation of anatomy. Int J Radiat Oncol Biol Phys 9: 777–788PubMedCrossRefGoogle Scholar
  71. Goitein M, Abrams M, Rowell D, Pollari H, Wiles J (1983) Multi-dimensional treatment planning: II. Beam’s eye-view, back projection, and projections through CT sections. Int J Radiat Oncol Biol Phys 9: 789–797PubMedCrossRefGoogle Scholar
  72. Guttenberger R, Thames HD, Ang KK (1992) Is the experience with Chart compatible with experimental data? A new model of repair kinetics and computer simulations. Radiother Oncol 25: 280–286PubMedCrossRefGoogle Scholar
  73. Harari PM (1992) Adding dose escalation to accelerated hyperfractionated therapy for head and neck cancer. Sem Radiat Oncol 2: 58–61CrossRefGoogle Scholar
  74. Harrison D, Crennan E, Cruickshank D, Hughes P, Ball D (1988) Hypofractionation reduces the therapeutic ratio in early glottic carcinoma. Int J Radiat Oncol Biol Phys 15: 364–372Google Scholar
  75. Heisig S, Shentall GS, Mirzak K, Mayles WPM (1994) Application of the GE target planning computer to multi-leaf collimator treatment. In: Hounsel AR, Wilkinson JM, Williams PC (eds) Proc Xlth Conf on the Use of Computers in Radiation Therapy. Handley, Stockport, pp 16–17Google Scholar
  76. Hendrickson FR (1988) Dose prescription dilemma. Int J Radiat Oncol Biol Phys 14: 595–596PubMedCrossRefGoogle Scholar
  77. Höckel M, Knop C, Schlenger K et al. (1993) Intratumoral pO, predicts survival in advanced cancer in the uterine cervix. Radiother Oncol 26: 286–288CrossRefGoogle Scholar
  78. Horiot JC, Le Fur R, N’Guyen T et al. (1992) Hyperfractionation versus conventional fractionation in oropharyngeal carcinoma: final analysis of a randomized trial of the EORTC Cooperative Group of Radiotherapy. Radiother Oncol 25: 231–242PubMedCrossRefGoogle Scholar
  79. IAEA (1987) Absorbed dose determination in photon and electron beams. An international code of practice. Technical Report Series No 277, IAEA, ViennaGoogle Scholar
  80. IEC u68 (1993) Radiotherapy simulators - functional performance characteristics. IEC, GenevaGoogle Scholar
  81. ICRU Report 29 (1978) Landberg T et al. (eds) Dose specification for reporting external beam therapy with photons and electrons. ICRU, Bethesda/MDGoogle Scholar
  82. ICRU Report 38 (1985) Landberg T et al. (eds) Dose and volume specification for reporting intracavitary therapy in gynecology. ICRU, Bethesda/MDGoogle Scholar
  83. ICRU Report 42 (1987) Landberg T et al. (eds) Use of computers in external beam radiotherapy procedures with high-energy photons and electrons. ICRU, Bethesda/MDGoogle Scholar
  84. ICRU Report 50 (1993) Landberg T et al. (eds) Prescribing, recording, and reporting photon beam therapy. ICRU, Bethesda/MDGoogle Scholar
  85. Jackson A, Kutcher GJ (1993) Probability of radiation-induced complications for normal tissues with parallel architecture subject to non-uniform irradiation. Med Phys 20: 621–625Google Scholar
  86. Jani SK (1993) CT simulation in radiotherapy. Medical Physics Publishing, Madison/WIGoogle Scholar
  87. Jenkins TM, Nelson WR, Rindi A (1988) Monte Carlo transport of electrons and photons. Plenum, New YorkCrossRefGoogle Scholar
  88. Källman P (1992) Optimization of radiotherapy planning using physical and biological objective functions. Thesis, Stockholm University, SwedenGoogle Scholar
  89. Källman P, Lind B, Brahme A (1988) Shaping of arbitrary dose distributions by dynamic multileaf collimator. Phys Med Biol 33: 1291–1300PubMedCrossRefGoogle Scholar
  90. Källman P, Lind B, Brahme A (1992a) An algorithm for maximizing the probability of complication free tumor control in radiation therapy. In: Källman P (1992) Thesis, Stockholm UniversityGoogle Scholar
  91. Källman P, Agren A, Brahme A (1992b) Tumor and normal tissue responses to fractionated nonuniform dose delivery. Int J Radiat Biol 62: 249–262CrossRefGoogle Scholar
  92. Kijewski PK, Chin LM, Bjärngard BE (1978) Wedge-shaped dose distributions by computer-controlled collimator motion. Med Phys 5: 426PubMedCrossRefGoogle Scholar
  93. Kutcher GJ, Mohan R (1995) s. Weiterführende Literatur, S. 268Google Scholar
  94. Kutcher GJ (1994) Planning and delivery of conformal therapy. In: Gobbi G, Latini P (eds) Proc Advanced Diagnostic modalities and New Irradiating Techniques in Radiotherapy. Casa Editrice l’Antologia, Napoli, pp 107–115Google Scholar
  95. Kutcher GJ, Burman C, Brewster L, Goitein M, Mohan R (1991) Histogram reduction method for calculating complication probabilities for three dimensional treatment planning evaluations. Int J Radiat Oncol Biol Phys 21:137–146PubMedGoogle Scholar
  96. Late effects of normal tissues consensus conference (1995) Int J Radiat Oncol Biol Phys 31: 1035–1364CrossRefGoogle Scholar
  97. Leibel SA (1994) Clinical trials with 3-dimensional conformal radiation therapy in carcinoma of the prostate, head and neck, and lung: In: Gobbi G, Latini P (eds) Proc Advanced Diagnostic Modalities and New Irradiatin Techniques in Radiotherapy. Casa Editrice l’Antollogìa, Napoli, pp 117–123Google Scholar
  98. Leibel SA, Ling CC, Kutcher GJ, Mohan R, Cordon-Cordo C, Fuks Z (1991) The biological basis for conformal three-dimensional radiation therapy. Int J Radiat Oncol Biol Phys 21: 805–811PubMedCrossRefGoogle Scholar
  99. Lichter AS (1991) Three-dimensional conformal radiotherapy: a testable hypothesis. Int J Radiat Oncol Biol Phys 21: 853–855PubMedCrossRefGoogle Scholar
  100. Lichter AS, Sandler H, Robertson J, Lawrence T (1993) The role of 3D treatment planning in radiation oncology. In: Minet P (ed) Three-dimensional treatment planning. WHO, Geneva, pp 1–6Google Scholar
  101. Ling CC, Burman C, Chui CS et al. (1993) Perspectives of multidimensional conformal radiation treatment. Radiat Oncol 29: 129–139CrossRefGoogle Scholar
  102. Lyman JT, Wolbarst A (1989) Optimization of radiation therapy; IV: A dose-volume histogram reduction algorithm. Int J Radiat Oncol Biol Phys 17: 433–436PubMedCrossRefGoogle Scholar
  103. Mackie TR, Holmes T, Swerdloff S et al. (1992) Tomotherapy: A new concept for the delivery of dynamic conformal radiotherapy. Med Phys 20: 1709–1719CrossRefGoogle Scholar
  104. Mackie TR, Holmes TW, Reckwerdt PJ et al. (1994) Tomotherapy: A proposal for a dedicated computer-controlled delivery and verification system for conformal radiotherapy. In: Hounsel AR, Wilkinson JM, Williams PC (eds) Proc XIth Conf on the Use of Computers in Radiation Therapy. Handley, Stockport, pp 176–177Google Scholar
  105. Mayles WPM, Chow M, Dyer J et al. (1993) The Royal Marsden Hospital pelvic radiotherapy trial: technical aspects and quality assurance. Radiother Oncol 29: 184–191PubMedCrossRefGoogle Scholar
  106. McGinn CJ, Haradi PM, Fowler JF, Ford CN, Pyle GM, Kinsella TJ (1993) Dose intensification in curative head and neck cancer radiotherapy - linear quadratic analysis and preliminary assessment of clinical results. Int J Radiat Oncol Biol Phys 27: 363–369PubMedCrossRefGoogle Scholar
  107. Mitine C, Leunens G, Verstraete N et al. (1991) It is necessary to repeat quality control procedures for head and neck patients? Radiother Oncol 21: 201–210PubMedCrossRefGoogle Scholar
  108. Möller TR, Nordberg UB, Gustafsson T, Johansson J-E, Landberg TG, Svahn-Tapper G (1976) Planning, control, and documentation of external beam therapy. Acta Radiol 353 [Suppl]Google Scholar
  109. Mohan R, Wang X, Jackson A et al. (1994) The potential and limitations of inverse radiotherapy technique. Radiother Oncol 32: 322–348CrossRefGoogle Scholar
  110. Molls M, Stuschke M (1991) Radiotherapy in childhood: Normal tissue injuries and carcinogenesis. In: Scherer E, Streffer C, Tritt KR (eds) Radiopathology of organs and tissues. Springer, Berlin Heidelberg New York Tokyo, pp 461–477CrossRefGoogle Scholar
  111. Molls M, Sauerwein W, Quast U (1987) Gonadendosis, Fertilitätsstörungen und genetisches Risiko bei der Strahlentherapie männlicher Patienten. In: Katzorke T (Hrsg) Fertilitätserhaltung bei Tumorpatienten. Grosse, Berlin (Fortschritte der Fertilitätsforschung 14)Google Scholar
  112. Morrill SM, Lane RG, Rosen II (1991) Treatment planning optimization using constrained simulated annealing. Phys Med Biol 36: 1341–1361PubMedCrossRefGoogle Scholar
  113. NACP (1993) Specification of dose delivery in Radiotherapy. Recommendations by the Nordic Association of Clinical Physics, pp 1–32Google Scholar
  114. Niemierko A, Goitein M (1991) Calculation of normal tissue complication probability and dosevolume histogram reduction schemes for tissues with a critical element architecture. Radiother Oncol 20: 166–176PubMedCrossRefGoogle Scholar
  115. Niemierko A, Goitein M (1993) Modeling of normal tissue response to radiation: the critical volume model. Int J Radiat Oncol Biol Phys 25: 135–145PubMedCrossRefGoogle Scholar
  116. Niemierko A, Urie M, Goitein M (1990) Computer optimization of 3D radiotherapy treatment plans with biological models of tissue response. Int J Radiat Oncol Biol Phys 19 [Supp11]: 208Google Scholar
  117. Overgaard J, Hjelm-Hansen M, Vendelbo Johansen L, Andersen AP (1987) Comparison of conventional and split-course radiotherapy as primary treatment in carcinoma of the larynx. Acta Oncol 27: 147–152CrossRefGoogle Scholar
  118. Peacock JH, Eady JJ, Edwards SM, McMillan TJ, Steel GG (1992) The intrinsic a/ß ratio for human tumour cells: is it a constant? Int J Radiat Oncol Biol Phys 61: 479–487Google Scholar
  119. Perez CA, Stanley K, Rubin P et al. (1980) A prospective randomized study of various irradiation doses and fractionation schedules in the treatment of inoperable non-oat-cell carcinoma of the lung. Cancer 45: 2744–2753PubMedCrossRefGoogle Scholar
  120. Pinto LHJ, Canary PCV, Araújo CMM, Bacelar SC, Souhami L (1991) Prospective randomized trial comparing hyperfractionated versus conventional radiotherapy in stages III and IV oropharyngeal carcinoma. Int J Radiat Oncol Biol Phys 2: 557–562Google Scholar
  121. Price P, Hoskin PJ, Easton D, Austin D, Palmer SG, Yarnold JR (1986) Postoperative randomised trial of single and multi-fraction radiotherapy schedules in the treatment of painful bony metastases. Radiother Oncol 6: 247–255PubMedCrossRefGoogle Scholar
  122. Quast U (1983) Dosisbestimmung in Zielvolumina und in abgeschirmten kritischen Organen bei irregulär geformten Photonenfeldern. In: Schoen HD, Stieve FE (Hrsg) Strahlenschutzkurs für Ärzte, Teil II: Strahlentherapie. Hoffmann, BerlinGoogle Scholar
  123. Quast U (1984) Bestrahlungsplanung - Weitere Entwicklung. In: Schmidt T (Hrsg) Medizinische Physik 84, pp 79–86Google Scholar
  124. Quast U (1985) Treatment planning for high energy photon beams. Proc VII Int Conf Med Physics, Espoo. Med Biol Eng Comput 23 [Suppl 1]: 583–584Google Scholar
  125. Quast U (1992) The key to evaluation of cure rate and tissue tolerance: Clear dose specification. In: Breit A (ed) (1992), pp 597–600Google Scholar
  126. Quast U (1993) Target volume concept and tolerance dose concept clearing dose specification in ICRU-Report 50. In: Minet P (ed) Three-dimensional treatment planning. WHO, Geneva, pp 17–25Google Scholar
  127. Quast U (1994) 3D-Tumortherapie-Management. Logistik und Organisation in der Radioonkologie. Z Med Phys 4: 107–109Google Scholar
  128. Quast U, Glaeser L (1981) Das Zielvolumenkonzept bei der Protokollierung in der perkutanen Strahlentherapie. Strahlentherapie 157: 317–328PubMedGoogle Scholar
  129. Quast U, Glaeser L (1982) Irregular field dose determination with the weighted beam-zone method. Int J Radiat Oncol Biol Phys 8: 1637–1645PubMedCrossRefGoogle Scholar
  130. Quast U, Krause K (1978) New individual tissue compensators for high-energetic photons. Principle and procedure. Strahlentherapie 154: 133–341Google Scholar
  131. Quast U, Szy D (1995, in press) Dose specification for organs at risk - the importance for biological modelling. In: Bayer K, Baltas D (eds): Proceedings: Modelling in clinical radiobiology. WürzburgGoogle Scholar
  132. Quast U, Glaeser L, Nocken U (1990) Precision in radiotherapy through clear dose specification. Proc 2nd European Mevatron Users’ Conference, Berlin, pp 247–260Google Scholar
  133. Quast U, Glaeser L, Dahlin H, Sauerwein W, Sack H (1992) 3D tumor therapy management. In: Breit A (ed) (1992), pp 573–577Google Scholar
  134. Quast U, Reinhardt S, Glaeser L (1993) Anforderungen an 3DBestrahlungs-Planungssysteme. In: Müller RG (Hrsg) Medizinische Physik ‘83, DGMP, Erlangen, S 22–23Google Scholar
  135. Richtlinie Strahlenschutz in der Medizin (1992) Gem. Ministerialblatt Nr 40, S 989–1022Google Scholar
  136. Robinson M, Barr L, Fisher C et al. (1990) Treatment of extremity soft tissue sarcomas with surgery and radiotherapy. Radiother Oncol 18: 221–233PubMedCrossRefGoogle Scholar
  137. Rubin P (1989) Law and order radiation sensitivity. Front Radiat Ther Oncol 23: 7–40PubMedGoogle Scholar
  138. Rubin P, Casarett G (1972) A direction for clinical radiation pathology. Front Radiat Ther Oncol 6: 1–16Google Scholar
  139. Sanchíz F, Millâ A, Torner J et al. (1990) Single fraction per day versus two fractions per day versus radiochemotherapy in the treatment of head and neck cancer. Int J Radiat Oncol Biol Phys 19: 1347–1350PubMedCrossRefGoogle Scholar
  140. Saunders MI, Dische S, Grosch EJ, Fermont DC, Ashford RFU, Maher EJ, Makepeace AR (1991) Experience with CHART. Int J Radiat Oncol Biol Phys 21: 871–878PubMedCrossRefGoogle Scholar
  141. Saylor WL, Ames TE (1979) Dosage calculations in radiation therapy. Urban & Schwarzenberg, MünchenGoogle Scholar
  142. Scherer E (1967) s. Weiterführende Literatur, S.268Google Scholar
  143. Schlegel W (1993) Impact of 3D treatment planning on treatment techniques. In: Minet P (ed) Three-dimensional treatment planning. WHO, Geneva, pp 131–142Google Scholar
  144. Schlegel W, Pastyr 0, Bortfeld T, Gademann G, Menke M, Maier-Borst W (1993) Stereotactically guided fractionated radiotherapy: technical aspects. Radiat Oncol 29: 197–204CrossRefGoogle Scholar
  145. Shalev S (1993) Interventional verification: implications for conformal therapy. In: Minet P (ed) Three-dimensional treatment planning. WHO, Geneva, pp 121–130Google Scholar
  146. Soffen EM, Hanks GE, Hwang CC, Chu JCH (1991) Conformal field therapy for low volume low grade prostate cancer with rigid immobilization. Int J Radiat Oncol Biol Phys 20: 141–146PubMedCrossRefGoogle Scholar
  147. Stuschke M, Budach V, Sack H (1993) Radioresponsiveness of human glioma, sarcoma, and breast cancer spheroids depends on tumor differentiation. Int J Radiat Oncol Biol Phys 27: 627–636PubMedCrossRefGoogle Scholar
  148. Suit HD (1982) Potential for improving survival rates for the cancer patient by increasing the efficacy of treatment of the primary lesion. Cancer 50: 1227–1234Google Scholar
  149. Takahashi S (1965) Conformal radiotherapy. Rotational techniques as applied to radiography and radiotherapy of cancer. Acta Radiol 242 [Suppl]: 1–142Google Scholar
  150. Thames HD (1985) An „incomplete-repair“ model for survival after fractionated and continuous irradiations. Int J Radiat Oncol Biol Phys 47: 319–339Google Scholar
  151. Thames HD, Hendry JH, Moore JV, Ang KK, Travis EL (1989) The high steepness of dose-response curves for late-responding normal tissues. Radiother Onco 115: 49–53CrossRefGoogle Scholar
  152. Thames HD, Bentzen SM, Turesson I, Overgaard M, van den Bogaert W (1990) Time-dose factors in radiotherapy: a review of the human data. Radiother Oncol 19: 219–235PubMedCrossRefGoogle Scholar
  153. Thames HD, Schultheiss TE, Hendry JH, Tucker SL, Dubray BM, Brock WA (1991) Can modest escalations of dose be detected as increased tumor control? Int J Radiat Oncol Biol Phys 22: 241–246Google Scholar
  154. Thornton AF, Ten Haken RK, Gerhardsson A, Correll M (1991) Three-dimensional motion analysis of an improved head immobilization system for simulation, CT, MRI, and PET imaging. Radiother Oncol 20: 224–228PubMedCrossRefGoogle Scholar
  155. Trott KR (1990) Cell repopulation and overall treatment time. Int J Radiat Oncol Biol Phys 19: 1071–1075PubMedCrossRefGoogle Scholar
  156. Trott KR, Kummermehr J (1991) Rapid repopulation in radiotherapy: a debate on mechanisms. Radiother Oncol 22: 159–160PubMedCrossRefGoogle Scholar
  157. Vaeth JM, Meyer J (1987) s. Weiterführende Literatur, S. 268Google Scholar
  158. Valdagni R, Italia C (1991) Early breast cancer irradiation after conservative surgery: quality control by portal localization films. Radiother Oncol 22: 311–313PubMedCrossRefGoogle Scholar
  159. Wang CC, Blitzer PH, Suit H (1985) Twice-a-day radiation therapy for cancer of the head and neck. Cancer 55: 2100–2104PubMedCrossRefGoogle Scholar
  160. Webb S (1993a) Beam geometry and beam shaping. In: Minet P (ed) Three-dimensional treatment planning. WHO, Geneva, pp 75–88Google Scholar
  161. Webb S (1993b) Techniques for optimization of dose with a multileaf collimator for conformal radiotherapy of target volumes with concave outlines. In: Minet P (ed) Three-dimensional treatment planning. WHO, Geneva, pp 163–187Google Scholar
  162. Webb S (1993c) The physics of three-dimensional radiotherapy. Edge, BristolCrossRefGoogle Scholar
  163. Weltens C, Leunens G, Dutreix A, Cosset JM, Eschwege F, van der Schueren E (1993) Accuracy in mantle field irradiations: irradiated volume and daily dose. Radiother Oncol 29: 18–26PubMedCrossRefGoogle Scholar
  164. Wendt TG, Hartenstein RC, Wustrow TPU, Lissner J (1989) Cisplatin, fluorouracil with leucovorin calcium enhancement, and synchronous accelerated radiotherapy in the management of locally advanced head and neck cancer: a phase II study. J Clin Oncol 7: 471–476PubMedGoogle Scholar
  165. West CML, Davidson SE, Roberts SA, Hunter RD (1993) Intrinsic radiosensitivity and prediction of patient response to radiotherapy for carcinoma of the cervix. Br J Cancer 68: 819–823PubMedCrossRefGoogle Scholar
  166. Williams MV, Denekamp J, Fowler JF (1985) A review of a/13 ratios for experimental tumors: implications for clinical studies of altered fractionation. Int J Radiat Oncol Biol Phys 11: 87–96PubMedCrossRefGoogle Scholar
  167. Withers HD, Taylor MG (1993) Critical volume model. Int J Radiat Oncol Biol Phys 25: 151–152PubMedCrossRefGoogle Scholar
  168. Withers HR, Thames HD, Peters LJ (1983) A new isoeffect curve for change in dose per fraction. Radiother Oncol 1: 187–191PubMedCrossRefGoogle Scholar
  169. Withers HR, Taylor JMG, Maciejewski B (1988a) Treatment volume and tissue tolerance. Int J Radiat Oncol Biol Phys 14: 751–759CrossRefGoogle Scholar
  170. Withers HR, Taylor JMG, Maciejewski B (1988b) The hazard of accelerated tumor clonogen repopulation during radiotherapy. Acta Oncol 27: 131–146CrossRefGoogle Scholar
  171. Wolbarst AB (1984) Optimization of radiotherapy II: The critical-voxel model. Int J Radiat Oncol Biol Phys 10: 741–745Google Scholar
  172. Wrede (1972) Central axis tissue-air ratios as a function of area/perimeter at depth and their applicability to irregularly shaped fields. Phys Med Bio1 17: 548–554CrossRefGoogle Scholar
  173. Yorke ED, Kutcher GJ, Jackson A, Ling CC (1993) Probability of radiation-induced complications in normal tissues with parallel architecture under conditions of uniform whole or partial organ irradiation. Radiother Oncol 26: 226–237PubMedCrossRefGoogle Scholar
  174. Zhu Y, Boyer AL, Desobry GE (1992) Dose distributions of X-ray fields as shaped with multileaf collimators. Phys Med Bio137: 163–174Google Scholar
  175. Bentel GC, Nelson CE, Noell KT (1989) Treatment planning and dose calculation in radiation oncology, 4th edn. Perga-mon, New YorkGoogle Scholar
  176. Bleehen NM, Glatstein E, Haybittle JC (1983) Radiation therapy planning. Dekker, New YorkGoogle Scholar
  177. Bohndorf W, Richter J (Hrsg) (1993) Computer-Tomographie und Bestrahlungsplanung in der Radioonkologie. Biermann, ZülpichGoogle Scholar
  178. Dobbs J, Barrett A, Ash D (1992) Practical radiotherapy planning, 2nd edn. Arnold, LondonGoogle Scholar
  179. Du Mesnil de Rochmont R (1958) Lehrbuch der Strahlenheilkunde. Enke, StuttgartGoogle Scholar
  180. Fletcher GH (1980) Textbook of radiation therapy, 3rd edn. Lea & Febiger, PhiladelphiaGoogle Scholar
  181. Kutcher GJ, Mohan R (eds) (1995) Innovations in treatment delivery. In: Tepper JE (ed) Seminars in radiation oncology, vol 5/2. Saunders, PhiladelphiaGoogle Scholar
  182. Levitt SH, Khan FM, Potish RA (eds) (1992) Technological basis of radiation therapy: practical clinical application, 2nd edn. Lea & Febiger, PhiladelphiaGoogle Scholar
  183. Mizer S, Scheller RR, Deye JA (1985) Radiation therapy simulation workbook. Pergamon, New YorkGoogle Scholar
  184. Mould RF (1985) Radiotherapy treatment planning, 2nd edn. Hilger, BristolGoogle Scholar
  185. Sack H, Thesen N (1993) Bestrahlungsplanung. Thieme, StuttgartGoogle Scholar
  186. Scherer E (1967) Strahlentherapie. Thieme, StuttgartGoogle Scholar
  187. Scherer E (Hrsg) (1987) Strahlentherapie – Radiologische Onkologie, 3. Aufl. Springer, Berlin Heidelberg New York Tokyo (1. Aufl 1976)Google Scholar
  188. Steel GG (1993) Basic clinical radiobiology. Arnold, London Vaeth JM, Meyer J (eds) (1987) Treatment planning in the radiation therapy of cancer. Karger, Basel (Frontiers of radiation therapy and oncology, vol 21)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • H. Sack
  • U. Quast
  • M. Stuschke

There are no affiliations available

Personalised recommendations