Skip to main content

Bestrahlungsplanung

  • Chapter

Zusammenfassung

Die Strahlenbehandlung bösartiger Tumoren hat in den letzten Jahren ständig an Bedeutung und an Erfolgen gewonnen. Wie bei den Infektionserkrankungen ist es gelungen, Krebs heilbar zu machen. Hieran sind Chirurgie und Radioonkologie ganz überwiegend und etwa gleich beteiligt. Einige bösartige Erkrankungen sind auch mit der Chemotherapie heilbar.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   149.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • AAPM Report 13 (1984) Physical aspects of quality assurance in radiotherapy. American Institute of Physics, New York, pp 7–13

    Google Scholar 

  • Ahnesjö A (1989) Collapsed cone convolution of radiant energy for photon dose calculation in heterogeneous media. Med Phys 16: 577–592

    Article  PubMed  Google Scholar 

  • Ahnesjö A (1993) Dose calculation methods for multidimensional treatment planning. In: Minet P (ed) Three-dimensional treatment planning. WHO, Geneva, pp 277–288

    Google Scholar 

  • Amel-Zadeh A, Gremmel H, Hebbinghaus D, Ihnen F, Wendhausen H (1980) Praktische Anwendung der Optimierungskriterien für geometrische Strahlendosisverteilungen. Strahlentherapie 156: 689–693

    PubMed  CAS  Google Scholar 

  • Ang KK, Peters LJ, Weber RS, Maor MH, Morrison WH, Wendt CD, Brown BW (1990) Concomitant boost radiotherapy schedules in the treatment of carcinoma of the oro-pharynx and nasopharynx. Int J Radiat Oncol Biol Phys 19: 1339–1345

    Article  PubMed  CAS  Google Scholar 

  • Ang KK, Jiang GL, Guttenberger R, Thames HD, Stephens LC, Smith CD, Feng Y (1992) Impact of spinal cord repair kinetics on the practice of altered fractionation schedules. Radiother Oncol 25: 287–294

    Article  PubMed  CAS  Google Scholar 

  • Begg AC, Hofland I, van Glabekke M, Bartelink H, Horiot JC (1992) Predictive value of potential doubling time for radiotherapy of head and Neck tumor patients: results from the EORTC cooperative trial 22851. Sem Radiat Oncol 2:22–25

    Article  Google Scholar 

  • Bentel et al. (1989) s. Weiterführende Literatur, S. 268

    Google Scholar 

  • Bentzen SM, Thames HD (1991) Clinical evidence for tumor clonogen regeneration: interpreations of the data. Radiother Oncol 22: 161–166

    Article  PubMed  CAS  Google Scholar 

  • Bielajew AF (1994) Monte Carlo modeling in external electron beam therapy - Why leave it to chance? In: Hounsel AR, Wilkinson JM, Williams PC (eds) Proc XIth Conf on the Use of Computers in Radiation Therapy. Handley, Stockport, pp 2–5

    Google Scholar 

  • Bleehen NM, Girling DJ, Machin D, Stephens RJ (1992) A medical research council (MRC) randomised trial of palliative radiotherapy with two fractions or a single fraction in patients with inoperable non-small-cell lung cancer (NSCL) and poor performance status. Br J Cancer 65: 934–941

    Article  Google Scholar 

  • Boersma LJ, Damen EMF, de Boer RW et al. (1994) Dose-effect relations for local functional and structural changes of the lung after irradiation for malignant lymphoma. Radiother Oncol 32: 201–209

    Article  PubMed  CAS  Google Scholar 

  • Boesecke R, Doll J, Bauer B, Schlegel W, Pastyr O, Lorenz W (1988) Treatment planning for conformation therapy using a multi-leaf collimator. Strahlenther Onkol 164: 151–154

    PubMed  CAS  Google Scholar 

  • Bohndorf W, Harder D (1962) Die Dosisverteilung bei Horizontal-Translation. Strahlentherapie 119: 389

    PubMed  CAS  Google Scholar 

  • Borgelt B, Gelber R, Kramer S (1980) The palliation of brain metastases: final results of the first two studies by the Radiation Therapy Oncology Group. Int J Radiat Oncol Biol Phys 6: 1

    PubMed  CAS  Google Scholar 

  • Bortfeld T, Schlegel W (1990) Inverse planning. Phys Med Bio135: 1423–1434

    Google Scholar 

  • Bortfeld T, Burkelbach J, Boesecke R, Schlegel W (1992) Three-dimensional solution of the inverse problem in conformation radiotheray. In: Breit A (ed) (1992), pp 503–508

    Google Scholar 

  • Bortfeld T, Boyer AL, Schlegel W, Kahler DL, Waldron TJ (1994) MLC Modulation of X-ray beams in discrete steps. Experimental verification of multileaf modulated conformal radiotherapy. In: Hounsel AR, Wilkinson JM, Williams PC (eds) Prox XIth Conf on the Use of Computers in Radiation Therapy. Handley, Stockport, pp 178–181

    Google Scholar 

  • Boyer AL, Desobry GE, Wells NH (1992a) Potential applications of invariant kernel conformal therapy. In: Breit A (ed) (1992), pp 471–478

    Google Scholar 

  • Boyer AL, Antonuk L, Fenster A et al. (1992b) A review of electronic portal imaging devices (EPIDs). Med Phys 19: 1–16

    Article  CAS  Google Scholar 

  • Brahme A (1984) Dosimetric precision requirements in radiation therapy. Acta Radiol Oncol 23: 379–391

    Article  PubMed  CAS  Google Scholar 

  • Brahme A (1987) Design principles and clinical possibilities with a new generation of radiotherapy equipment. Acta Oncol 26: 403–412

    Article  PubMed  CAS  Google Scholar 

  • Brahme A (1992) Recent developments in radiation therapy planning. In: Breit A (ed) (1992), pp 379–390

    Google Scholar 

  • Brahme A (1994a) Treatment optimization using physical and biological objective functions. In: Smith A (ed) Radiation therapy physics. Springer, Berlin Heidelberg New York Tokyo

    Google Scholar 

  • Brahme A (1994b) Radiobiologically based treatment plan optimization. In: Gobbi G, Latini P (eds) Proc Advanced Diagnostic Modalities and New Irradiatin Techniques in Radiotherapy. Casa Editrice l’Antologia, Napoli

    Google Scholar 

  • Brahme A (1994c) Inverse radiation therapy planning, principles and possibilities. In: Hounsell AR, Wilkinson JM, Williams PC (eds) Proc XIth Int Conf on the Use of Cornputers in Radiation Therapy. Handley, Stockport, pp 6–7

    Google Scholar 

  • Brahme A (1995, in press) Radiobiologically based treatment plan optimization. In: Bayer K, Baltas D (eds) Proceedings: Modelling in clinical radiobiology. Würzburg

    Google Scholar 

  • Brahme A, Lind B, Näfstadius P (1987) Radiotherapeutic computed tomography with scanned photon beams. Int J Radiat Oncol Biol Phys 13: 95–101

    PubMed  CAS  Google Scholar 

  • Brahme A, Chavaudra J, Landberg T et al. (1988) Accuracy requirements and quality assurance of external beam therapy with photons and electrons. Acta Oncol [Suppl 1]

    Google Scholar 

  • Brahme A, Lind B, Källman P (1990) Inverse radiation therapy planning as a tool for 3D dose optimization. Physica Medica 6: 53–63

    Google Scholar 

  • Brahme A, Lind BK, Källman P (1992) Application of radiation-biological data for dose optimization in radiation therapy. In: Breit A (ed) (1992), pp 407–416

    Google Scholar 

  • Breit A (ed) (1992) Tumor response monitoring and treatment planning. Advanced radiation therapy. Springer, Berlin Heidelberg New York Tokyo

    Google Scholar 

  • Burman C, Kutcher GJ, Emami B, Goitein M (1991) Fitting of normal tissue tolerance data to an analytic function. Int J Radiat Oncol Biol Phys 21: 123–135

    PubMed  CAS  Google Scholar 

  • Byhardt RW, Pajak TF, Emami B, Herskovic A, Doggett RS, Olsen LA (1993) A phase I/II study to evaluate accelerated fractionation via concomitant boost for squamous, adeno, and large cell carcinoma of the lung: report of radiation oncology group 84–07. Int J Radiat Oncol Biol Phys 26: 459–468

    Article  PubMed  CAS  Google Scholar 

  • Carol MP, Targovnik H, Campbell C et al. (1993) An automatic 3D treatment planning and implementation system for optimized conformal therapy. In: Minet P (ed) Three-dimensional treatment planning. WHO, Geneva, pp 173–187

    Google Scholar 

  • CART (1985) Proc CART-Project, VIIth Int Conf Medical Physics, Espoo. Med Biol Eng Comput 1: 173–177

    Google Scholar 

  • Clarkson JR (1941) A note on depth dosis in fields of irregular shape. Brit J Radiol 14: 265–268

    Article  Google Scholar 

  • Collaborative Working Group (1991) Three-dimensional photon treatment planning: report of the Collaborative Working Group on the evaluation of treatment plans for external photon beam radiotherapy. Int J Radiat Oncol Biol Phys 21: 25–36

    Google Scholar 

  • Cox JD, Pajak TF, Marcial VA et al. (1991) Interfraction interval is a major determinant of late effects, with hyperfractionated radiation therapy of carcinomas of upper respiratory and digestive tracts: results from Radiation Therapy Oncology Group protocol 83–13. Int J Radiat Oncol Biol Phys 20: 1191–1195

    Article  PubMed  CAS  Google Scholar 

  • Creutzberg CL, Althof VGM, Huizenga H, Visser AG, Leven-dag PC (1993) Quality assurance using portal imaging: the accuracy of patient positioning in irradiation of breast cancer. Int J Radiat Oncol Biol Phys 25: 529–539

    Article  PubMed  CAS  Google Scholar 

  • Dahlin H, Lamm IL, Landberg T, Levernes S, Ulso N (1983) User requirements of CT-based computed dose planning systems in radiation therapy. Acta Radiol Oncol 22: 398–415

    Article  Google Scholar 

  • Dahlin H, Ekström P, Högström B (1992) Treatment management system: the integrated network solution for better cancer treatment. In: Breit A (ed) (1992), pp 567–572

    Google Scholar 

  • Day MJ (1950) A note on the calculation of dose in X-ray fields. Brit J Radiol 23: 368–369

    Article  PubMed  CAS  Google Scholar 

  • DIN 6814–8 (1996, im Druck) Begriffe und Benennungen in der radiologischen Technik. Strahlentherapie. Beuth, Berlin

    Google Scholar 

  • DIN 6814–16 (1995) Begriffe in der radiologischen Technik. Prüfung der Qualität einschließlich Sicherheit; Allgemeines. Beuth, Berlin

    Google Scholar 

  • DIN 6827–1 (1991) Entwurf: Protokollierung bei der medizinischen Anwendung ionisierender Strahlung. Therapie mit Röntgen-, Gamma-und Elektronenbestrahlungseinrichtungen. Beuth, Berlin

    Google Scholar 

  • DIN 6827–3 (1985) Protokollierung bei der medizinischen Anwendung ionisierender Strahlung. Lokale Anwendung umschlossener radioaktiver Strahler in der Therapie. Beuth, Berlin

    Google Scholar 

  • DIN 6846–4 (1990) Gammabestrahlungs-Anlagen. Apparative Qualitätsmerkmale. Beuth, Berlin

    Google Scholar 

  • DIN 6846–5 Entwurf (1990) Medizinische Gammabestrahlungs-Anlagen. Konstanzprüfungen apparativer Qualitätsmerkmale. Beuth, Berlin

    Google Scholar 

  • DIN 6847–4 (1990) Medizinische Elektronenbeschleuniger- Anlagen. Apparative Qualitätsmerkmale. Beuth, Berlin

    Google Scholar 

  • DIN 6847–5 Entwurf (1995) Medizinische Elektronenbeschleuniger-Anlagen. Konstanzprüfungen von Kennmerkmalen. Beuth, Berlin

    Google Scholar 

  • DIN 6873–5 Entwurf (1992) Bestrahlungsplanungssysteme. Konstanzprüfungen apparativer Qualitätsmerkmale. Beuth, Berlin

    Google Scholar 

  • DIN IEC 62B(CO)105 (1994) Beurteilung und routinemäßige Überprüfung in medizinischen bildgebenden Abteilungen. Konstanzprüfungen, Bildwiedergabegeräte (Monitore). Beuth, Berlin

    Google Scholar 

  • DIN IEC 62B(CO)106 (1994) Beurteilung und routinemäßige Überprüfung in medizinischen bildgebenden Abteilungen. Konstanzprüfungen, Bilddokumentationssysteme. Beuth, Berlin

    Google Scholar 

  • DIN IEC 62B(CO)107 (1994) Beurteilung und routinemäßige Überprüfung in medizinischen bildgebenden Abteilungen. Konstanzprüfungen an Geräten für die Computertomographie. Beuth, Berlin

    Google Scholar 

  • DIN ISO 9000–1 (1994) Normen zum Qualitätsmanagement und zur Qualitätssicherung, QM-Darlegung - Leitfaden zur Auswahl und Anwendung. Beuth, Berlin

    Google Scholar 

  • Dörr W, Kummermehr J (1990) Accelerated repopulation of mouse tongue epithelium during fractionated irradiations or following single doses. Radiother Onco 117: 249–259

    Article  Google Scholar 

  • Dutreix A (1984) When and how can we improve precision in radiotherapy? Radiother Oncol 2: 275–292

    CAS  Google Scholar 

  • El-Gayed AAH, Bel A, Vijlbrief R, Bartelink H, Lebesque JV (1993) Time trend of patient setup deviations during pelvic irradiation using electronic portal imaging. Radiother Oncol 26: 162–171

    Article  PubMed  CAS  Google Scholar 

  • Emami B, Lyman J, Brown A et al. (1991) Tolerance of normal tissue to therapeutic irradiation. Int J Radiat Oncol Biol Phys 21: 109–122

    PubMed  CAS  Google Scholar 

  • EORTC (1987) Quality assurance in radiotherapy. Proc of a workshop of the European Organization for Research on Treatment of Cancer. Les Menuires, pp 7–9

    Google Scholar 

  • Fletcher (1980) s. Weiterführende Literatur, S. 268

    Google Scholar 

  • Fifths D, Quast U, Kolanoski H, Heintz M (1994) Dosimetric treatment planning - Fast 2-D/3-D dosimetry. In: Hounsel AR, Wilkinson JM, Williams PC (eds) Proc XIth Conf on the Use of Computers in Radiation Therapy. Handley, Stockport, pp 38–39

    Google Scholar 

  • Flühs D, Heintz M, Indenkämpen F, Wieczorek C, Kolanoski H, Quast U (1996, in press) Direct reading measurement of absorbed dose with plastic scintillators - the general concept and applications to ophthalmic plaque dosimetry. Med Phys 22

    Google Scholar 

  • Fowler JF (1991) The linear quadratic formula in progress in fractionated radiotherapy. Br J Cancer 61: 679–694

    Google Scholar 

  • Fowler JF, Lindstrom MJ (1992) Loss of local control with prolongation in radiotherapy. Int J Radiat Oncol Biol Phys 23: 457–467

    Article  PubMed  CAS  Google Scholar 

  • Gauwerky F (1975) Liber das Zielvolumenkonzept in der strahlentherapeutischen Planung. Radiologe 15: 217

    PubMed  CAS  Google Scholar 

  • Glaeser L, Quast U (1981) Derivation, evidence and physical validity of a weighted beam-zone method for dose determination in blocked photon fields of arbitrary shape. In: Biomedical Dosimetry, IEEA, Vienna, pp 61–77

    Google Scholar 

  • Gill SS, Thomas DGT, Warrington AP, Brada M (1991) Relocatable frame for stereotactic external beam radiotherapy. Int J Radiat Oncol Biol Phys 20: 599–603

    Article  PubMed  CAS  Google Scholar 

  • Goitein M, Abrams M (1983) Multi-dimensional treatment planning: I. Delineation of anatomy. Int J Radiat Oncol Biol Phys 9: 777–788

    Article  PubMed  CAS  Google Scholar 

  • Goitein M, Abrams M, Rowell D, Pollari H, Wiles J (1983) Multi-dimensional treatment planning: II. Beam’s eye-view, back projection, and projections through CT sections. Int J Radiat Oncol Biol Phys 9: 789–797

    Article  PubMed  CAS  Google Scholar 

  • Guttenberger R, Thames HD, Ang KK (1992) Is the experience with Chart compatible with experimental data? A new model of repair kinetics and computer simulations. Radiother Oncol 25: 280–286

    Article  PubMed  CAS  Google Scholar 

  • Harari PM (1992) Adding dose escalation to accelerated hyperfractionated therapy for head and neck cancer. Sem Radiat Oncol 2: 58–61

    Article  Google Scholar 

  • Harrison D, Crennan E, Cruickshank D, Hughes P, Ball D (1988) Hypofractionation reduces the therapeutic ratio in early glottic carcinoma. Int J Radiat Oncol Biol Phys 15: 364–372

    Google Scholar 

  • Heisig S, Shentall GS, Mirzak K, Mayles WPM (1994) Application of the GE target planning computer to multi-leaf collimator treatment. In: Hounsel AR, Wilkinson JM, Williams PC (eds) Proc Xlth Conf on the Use of Computers in Radiation Therapy. Handley, Stockport, pp 16–17

    Google Scholar 

  • Hendrickson FR (1988) Dose prescription dilemma. Int J Radiat Oncol Biol Phys 14: 595–596

    Article  PubMed  CAS  Google Scholar 

  • Höckel M, Knop C, Schlenger K et al. (1993) Intratumoral pO, predicts survival in advanced cancer in the uterine cervix. Radiother Oncol 26: 286–288

    Article  Google Scholar 

  • Horiot JC, Le Fur R, N’Guyen T et al. (1992) Hyperfractionation versus conventional fractionation in oropharyngeal carcinoma: final analysis of a randomized trial of the EORTC Cooperative Group of Radiotherapy. Radiother Oncol 25: 231–242

    Article  PubMed  CAS  Google Scholar 

  • IAEA (1987) Absorbed dose determination in photon and electron beams. An international code of practice. Technical Report Series No 277, IAEA, Vienna

    Google Scholar 

  • IEC u68 (1993) Radiotherapy simulators - functional performance characteristics. IEC, Geneva

    Google Scholar 

  • ICRU Report 29 (1978) Landberg T et al. (eds) Dose specification for reporting external beam therapy with photons and electrons. ICRU, Bethesda/MD

    Google Scholar 

  • ICRU Report 38 (1985) Landberg T et al. (eds) Dose and volume specification for reporting intracavitary therapy in gynecology. ICRU, Bethesda/MD

    Google Scholar 

  • ICRU Report 42 (1987) Landberg T et al. (eds) Use of computers in external beam radiotherapy procedures with high-energy photons and electrons. ICRU, Bethesda/MD

    Google Scholar 

  • ICRU Report 50 (1993) Landberg T et al. (eds) Prescribing, recording, and reporting photon beam therapy. ICRU, Bethesda/MD

    Google Scholar 

  • Jackson A, Kutcher GJ (1993) Probability of radiation-induced complications for normal tissues with parallel architecture subject to non-uniform irradiation. Med Phys 20: 621–625

    Google Scholar 

  • Jani SK (1993) CT simulation in radiotherapy. Medical Physics Publishing, Madison/WI

    Google Scholar 

  • Jenkins TM, Nelson WR, Rindi A (1988) Monte Carlo transport of electrons and photons. Plenum, New York

    Book  Google Scholar 

  • Källman P (1992) Optimization of radiotherapy planning using physical and biological objective functions. Thesis, Stockholm University, Sweden

    Google Scholar 

  • Källman P, Lind B, Brahme A (1988) Shaping of arbitrary dose distributions by dynamic multileaf collimator. Phys Med Biol 33: 1291–1300

    Article  PubMed  Google Scholar 

  • Källman P, Lind B, Brahme A (1992a) An algorithm for maximizing the probability of complication free tumor control in radiation therapy. In: Källman P (1992) Thesis, Stockholm University

    Google Scholar 

  • Källman P, Agren A, Brahme A (1992b) Tumor and normal tissue responses to fractionated nonuniform dose delivery. Int J Radiat Biol 62: 249–262

    Article  Google Scholar 

  • Kijewski PK, Chin LM, Bjärngard BE (1978) Wedge-shaped dose distributions by computer-controlled collimator motion. Med Phys 5: 426

    Article  PubMed  CAS  Google Scholar 

  • Kutcher GJ, Mohan R (1995) s. Weiterführende Literatur, S. 268

    Google Scholar 

  • Kutcher GJ (1994) Planning and delivery of conformal therapy. In: Gobbi G, Latini P (eds) Proc Advanced Diagnostic modalities and New Irradiating Techniques in Radiotherapy. Casa Editrice l’Antologia, Napoli, pp 107–115

    Google Scholar 

  • Kutcher GJ, Burman C, Brewster L, Goitein M, Mohan R (1991) Histogram reduction method for calculating complication probabilities for three dimensional treatment planning evaluations. Int J Radiat Oncol Biol Phys 21:137–146

    PubMed  CAS  Google Scholar 

  • Late effects of normal tissues consensus conference (1995) Int J Radiat Oncol Biol Phys 31: 1035–1364

    Article  Google Scholar 

  • Leibel SA (1994) Clinical trials with 3-dimensional conformal radiation therapy in carcinoma of the prostate, head and neck, and lung: In: Gobbi G, Latini P (eds) Proc Advanced Diagnostic Modalities and New Irradiatin Techniques in Radiotherapy. Casa Editrice l’Antollogìa, Napoli, pp 117–123

    Google Scholar 

  • Leibel SA, Ling CC, Kutcher GJ, Mohan R, Cordon-Cordo C, Fuks Z (1991) The biological basis for conformal three-dimensional radiation therapy. Int J Radiat Oncol Biol Phys 21: 805–811

    Article  PubMed  CAS  Google Scholar 

  • Lichter AS (1991) Three-dimensional conformal radiotherapy: a testable hypothesis. Int J Radiat Oncol Biol Phys 21: 853–855

    Article  PubMed  CAS  Google Scholar 

  • Lichter AS, Sandler H, Robertson J, Lawrence T (1993) The role of 3D treatment planning in radiation oncology. In: Minet P (ed) Three-dimensional treatment planning. WHO, Geneva, pp 1–6

    Google Scholar 

  • Ling CC, Burman C, Chui CS et al. (1993) Perspectives of multidimensional conformal radiation treatment. Radiat Oncol 29: 129–139

    Article  CAS  Google Scholar 

  • Lyman JT, Wolbarst A (1989) Optimization of radiation therapy; IV: A dose-volume histogram reduction algorithm. Int J Radiat Oncol Biol Phys 17: 433–436

    Article  PubMed  CAS  Google Scholar 

  • Mackie TR, Holmes T, Swerdloff S et al. (1992) Tomotherapy: A new concept for the delivery of dynamic conformal radiotherapy. Med Phys 20: 1709–1719

    Article  Google Scholar 

  • Mackie TR, Holmes TW, Reckwerdt PJ et al. (1994) Tomotherapy: A proposal for a dedicated computer-controlled delivery and verification system for conformal radiotherapy. In: Hounsel AR, Wilkinson JM, Williams PC (eds) Proc XIth Conf on the Use of Computers in Radiation Therapy. Handley, Stockport, pp 176–177

    Google Scholar 

  • Mayles WPM, Chow M, Dyer J et al. (1993) The Royal Marsden Hospital pelvic radiotherapy trial: technical aspects and quality assurance. Radiother Oncol 29: 184–191

    Article  PubMed  CAS  Google Scholar 

  • McGinn CJ, Haradi PM, Fowler JF, Ford CN, Pyle GM, Kinsella TJ (1993) Dose intensification in curative head and neck cancer radiotherapy - linear quadratic analysis and preliminary assessment of clinical results. Int J Radiat Oncol Biol Phys 27: 363–369

    Article  PubMed  CAS  Google Scholar 

  • Mitine C, Leunens G, Verstraete N et al. (1991) It is necessary to repeat quality control procedures for head and neck patients? Radiother Oncol 21: 201–210

    Article  PubMed  CAS  Google Scholar 

  • Möller TR, Nordberg UB, Gustafsson T, Johansson J-E, Landberg TG, Svahn-Tapper G (1976) Planning, control, and documentation of external beam therapy. Acta Radiol 353 [Suppl]

    Google Scholar 

  • Mohan R, Wang X, Jackson A et al. (1994) The potential and limitations of inverse radiotherapy technique. Radiother Oncol 32: 322–348

    Article  Google Scholar 

  • Molls M, Stuschke M (1991) Radiotherapy in childhood: Normal tissue injuries and carcinogenesis. In: Scherer E, Streffer C, Tritt KR (eds) Radiopathology of organs and tissues. Springer, Berlin Heidelberg New York Tokyo, pp 461–477

    Chapter  Google Scholar 

  • Molls M, Sauerwein W, Quast U (1987) Gonadendosis, Fertilitätsstörungen und genetisches Risiko bei der Strahlentherapie männlicher Patienten. In: Katzorke T (Hrsg) Fertilitätserhaltung bei Tumorpatienten. Grosse, Berlin (Fortschritte der Fertilitätsforschung 14)

    Google Scholar 

  • Morrill SM, Lane RG, Rosen II (1991) Treatment planning optimization using constrained simulated annealing. Phys Med Biol 36: 1341–1361

    Article  PubMed  CAS  Google Scholar 

  • NACP (1993) Specification of dose delivery in Radiotherapy. Recommendations by the Nordic Association of Clinical Physics, pp 1–32

    Google Scholar 

  • Niemierko A, Goitein M (1991) Calculation of normal tissue complication probability and dosevolume histogram reduction schemes for tissues with a critical element architecture. Radiother Oncol 20: 166–176

    Article  PubMed  CAS  Google Scholar 

  • Niemierko A, Goitein M (1993) Modeling of normal tissue response to radiation: the critical volume model. Int J Radiat Oncol Biol Phys 25: 135–145

    Article  PubMed  CAS  Google Scholar 

  • Niemierko A, Urie M, Goitein M (1990) Computer optimization of 3D radiotherapy treatment plans with biological models of tissue response. Int J Radiat Oncol Biol Phys 19 [Supp11]: 208

    Google Scholar 

  • Overgaard J, Hjelm-Hansen M, Vendelbo Johansen L, Andersen AP (1987) Comparison of conventional and split-course radiotherapy as primary treatment in carcinoma of the larynx. Acta Oncol 27: 147–152

    Article  Google Scholar 

  • Peacock JH, Eady JJ, Edwards SM, McMillan TJ, Steel GG (1992) The intrinsic a/ß ratio for human tumour cells: is it a constant? Int J Radiat Oncol Biol Phys 61: 479–487

    CAS  Google Scholar 

  • Perez CA, Stanley K, Rubin P et al. (1980) A prospective randomized study of various irradiation doses and fractionation schedules in the treatment of inoperable non-oat-cell carcinoma of the lung. Cancer 45: 2744–2753

    Article  PubMed  CAS  Google Scholar 

  • Pinto LHJ, Canary PCV, Araújo CMM, Bacelar SC, Souhami L (1991) Prospective randomized trial comparing hyperfractionated versus conventional radiotherapy in stages III and IV oropharyngeal carcinoma. Int J Radiat Oncol Biol Phys 2: 557–562

    Google Scholar 

  • Price P, Hoskin PJ, Easton D, Austin D, Palmer SG, Yarnold JR (1986) Postoperative randomised trial of single and multi-fraction radiotherapy schedules in the treatment of painful bony metastases. Radiother Oncol 6: 247–255

    Article  PubMed  CAS  Google Scholar 

  • Quast U (1983) Dosisbestimmung in Zielvolumina und in abgeschirmten kritischen Organen bei irregulär geformten Photonenfeldern. In: Schoen HD, Stieve FE (Hrsg) Strahlenschutzkurs für Ärzte, Teil II: Strahlentherapie. Hoffmann, Berlin

    Google Scholar 

  • Quast U (1984) Bestrahlungsplanung - Weitere Entwicklung. In: Schmidt T (Hrsg) Medizinische Physik 84, pp 79–86

    Google Scholar 

  • Quast U (1985) Treatment planning for high energy photon beams. Proc VII Int Conf Med Physics, Espoo. Med Biol Eng Comput 23 [Suppl 1]: 583–584

    Google Scholar 

  • Quast U (1992) The key to evaluation of cure rate and tissue tolerance: Clear dose specification. In: Breit A (ed) (1992), pp 597–600

    Google Scholar 

  • Quast U (1993) Target volume concept and tolerance dose concept clearing dose specification in ICRU-Report 50. In: Minet P (ed) Three-dimensional treatment planning. WHO, Geneva, pp 17–25

    Google Scholar 

  • Quast U (1994) 3D-Tumortherapie-Management. Logistik und Organisation in der Radioonkologie. Z Med Phys 4: 107–109

    Google Scholar 

  • Quast U, Glaeser L (1981) Das Zielvolumenkonzept bei der Protokollierung in der perkutanen Strahlentherapie. Strahlentherapie 157: 317–328

    PubMed  CAS  Google Scholar 

  • Quast U, Glaeser L (1982) Irregular field dose determination with the weighted beam-zone method. Int J Radiat Oncol Biol Phys 8: 1637–1645

    Article  PubMed  CAS  Google Scholar 

  • Quast U, Krause K (1978) New individual tissue compensators for high-energetic photons. Principle and procedure. Strahlentherapie 154: 133–341

    Google Scholar 

  • Quast U, Szy D (1995, in press) Dose specification for organs at risk - the importance for biological modelling. In: Bayer K, Baltas D (eds): Proceedings: Modelling in clinical radiobiology. Würzburg

    Google Scholar 

  • Quast U, Glaeser L, Nocken U (1990) Precision in radiotherapy through clear dose specification. Proc 2nd European Mevatron Users’ Conference, Berlin, pp 247–260

    Google Scholar 

  • Quast U, Glaeser L, Dahlin H, Sauerwein W, Sack H (1992) 3D tumor therapy management. In: Breit A (ed) (1992), pp 573–577

    Google Scholar 

  • Quast U, Reinhardt S, Glaeser L (1993) Anforderungen an 3DBestrahlungs-Planungssysteme. In: Müller RG (Hrsg) Medizinische Physik ‘83, DGMP, Erlangen, S 22–23

    Google Scholar 

  • Richtlinie Strahlenschutz in der Medizin (1992) Gem. Ministerialblatt Nr 40, S 989–1022

    Google Scholar 

  • Robinson M, Barr L, Fisher C et al. (1990) Treatment of extremity soft tissue sarcomas with surgery and radiotherapy. Radiother Oncol 18: 221–233

    Article  PubMed  CAS  Google Scholar 

  • Rubin P (1989) Law and order radiation sensitivity. Front Radiat Ther Oncol 23: 7–40

    PubMed  CAS  Google Scholar 

  • Rubin P, Casarett G (1972) A direction for clinical radiation pathology. Front Radiat Ther Oncol 6: 1–16

    Google Scholar 

  • Sanchíz F, Millâ A, Torner J et al. (1990) Single fraction per day versus two fractions per day versus radiochemotherapy in the treatment of head and neck cancer. Int J Radiat Oncol Biol Phys 19: 1347–1350

    Article  PubMed  Google Scholar 

  • Saunders MI, Dische S, Grosch EJ, Fermont DC, Ashford RFU, Maher EJ, Makepeace AR (1991) Experience with CHART. Int J Radiat Oncol Biol Phys 21: 871–878

    Article  PubMed  CAS  Google Scholar 

  • Saylor WL, Ames TE (1979) Dosage calculations in radiation therapy. Urban & Schwarzenberg, München

    Google Scholar 

  • Scherer E (1967) s. Weiterführende Literatur, S.268

    Google Scholar 

  • Schlegel W (1993) Impact of 3D treatment planning on treatment techniques. In: Minet P (ed) Three-dimensional treatment planning. WHO, Geneva, pp 131–142

    Google Scholar 

  • Schlegel W, Pastyr 0, Bortfeld T, Gademann G, Menke M, Maier-Borst W (1993) Stereotactically guided fractionated radiotherapy: technical aspects. Radiat Oncol 29: 197–204

    Article  CAS  Google Scholar 

  • Shalev S (1993) Interventional verification: implications for conformal therapy. In: Minet P (ed) Three-dimensional treatment planning. WHO, Geneva, pp 121–130

    Google Scholar 

  • Soffen EM, Hanks GE, Hwang CC, Chu JCH (1991) Conformal field therapy for low volume low grade prostate cancer with rigid immobilization. Int J Radiat Oncol Biol Phys 20: 141–146

    Article  PubMed  CAS  Google Scholar 

  • Stuschke M, Budach V, Sack H (1993) Radioresponsiveness of human glioma, sarcoma, and breast cancer spheroids depends on tumor differentiation. Int J Radiat Oncol Biol Phys 27: 627–636

    Article  PubMed  CAS  Google Scholar 

  • Suit HD (1982) Potential for improving survival rates for the cancer patient by increasing the efficacy of treatment of the primary lesion. Cancer 50: 1227–1234

    Google Scholar 

  • Takahashi S (1965) Conformal radiotherapy. Rotational techniques as applied to radiography and radiotherapy of cancer. Acta Radiol 242 [Suppl]: 1–142

    Google Scholar 

  • Thames HD (1985) An „incomplete-repair“ model for survival after fractionated and continuous irradiations. Int J Radiat Oncol Biol Phys 47: 319–339

    CAS  Google Scholar 

  • Thames HD, Hendry JH, Moore JV, Ang KK, Travis EL (1989) The high steepness of dose-response curves for late-responding normal tissues. Radiother Onco 115: 49–53

    Article  Google Scholar 

  • Thames HD, Bentzen SM, Turesson I, Overgaard M, van den Bogaert W (1990) Time-dose factors in radiotherapy: a review of the human data. Radiother Oncol 19: 219–235

    Article  PubMed  CAS  Google Scholar 

  • Thames HD, Schultheiss TE, Hendry JH, Tucker SL, Dubray BM, Brock WA (1991) Can modest escalations of dose be detected as increased tumor control? Int J Radiat Oncol Biol Phys 22: 241–246

    Google Scholar 

  • Thornton AF, Ten Haken RK, Gerhardsson A, Correll M (1991) Three-dimensional motion analysis of an improved head immobilization system for simulation, CT, MRI, and PET imaging. Radiother Oncol 20: 224–228

    Article  PubMed  Google Scholar 

  • Trott KR (1990) Cell repopulation and overall treatment time. Int J Radiat Oncol Biol Phys 19: 1071–1075

    Article  PubMed  CAS  Google Scholar 

  • Trott KR, Kummermehr J (1991) Rapid repopulation in radiotherapy: a debate on mechanisms. Radiother Oncol 22: 159–160

    Article  PubMed  CAS  Google Scholar 

  • Vaeth JM, Meyer J (1987) s. Weiterführende Literatur, S. 268

    Google Scholar 

  • Valdagni R, Italia C (1991) Early breast cancer irradiation after conservative surgery: quality control by portal localization films. Radiother Oncol 22: 311–313

    Article  PubMed  CAS  Google Scholar 

  • Wang CC, Blitzer PH, Suit H (1985) Twice-a-day radiation therapy for cancer of the head and neck. Cancer 55: 2100–2104

    Article  PubMed  CAS  Google Scholar 

  • Webb S (1993a) Beam geometry and beam shaping. In: Minet P (ed) Three-dimensional treatment planning. WHO, Geneva, pp 75–88

    Google Scholar 

  • Webb S (1993b) Techniques for optimization of dose with a multileaf collimator for conformal radiotherapy of target volumes with concave outlines. In: Minet P (ed) Three-dimensional treatment planning. WHO, Geneva, pp 163–187

    Google Scholar 

  • Webb S (1993c) The physics of three-dimensional radiotherapy. Edge, Bristol

    Book  Google Scholar 

  • Weltens C, Leunens G, Dutreix A, Cosset JM, Eschwege F, van der Schueren E (1993) Accuracy in mantle field irradiations: irradiated volume and daily dose. Radiother Oncol 29: 18–26

    Article  PubMed  CAS  Google Scholar 

  • Wendt TG, Hartenstein RC, Wustrow TPU, Lissner J (1989) Cisplatin, fluorouracil with leucovorin calcium enhancement, and synchronous accelerated radiotherapy in the management of locally advanced head and neck cancer: a phase II study. J Clin Oncol 7: 471–476

    PubMed  CAS  Google Scholar 

  • West CML, Davidson SE, Roberts SA, Hunter RD (1993) Intrinsic radiosensitivity and prediction of patient response to radiotherapy for carcinoma of the cervix. Br J Cancer 68: 819–823

    Article  PubMed  CAS  Google Scholar 

  • Williams MV, Denekamp J, Fowler JF (1985) A review of a/13 ratios for experimental tumors: implications for clinical studies of altered fractionation. Int J Radiat Oncol Biol Phys 11: 87–96

    Article  PubMed  CAS  Google Scholar 

  • Withers HD, Taylor MG (1993) Critical volume model. Int J Radiat Oncol Biol Phys 25: 151–152

    Article  PubMed  CAS  Google Scholar 

  • Withers HR, Thames HD, Peters LJ (1983) A new isoeffect curve for change in dose per fraction. Radiother Oncol 1: 187–191

    Article  PubMed  CAS  Google Scholar 

  • Withers HR, Taylor JMG, Maciejewski B (1988a) Treatment volume and tissue tolerance. Int J Radiat Oncol Biol Phys 14: 751–759

    Article  CAS  Google Scholar 

  • Withers HR, Taylor JMG, Maciejewski B (1988b) The hazard of accelerated tumor clonogen repopulation during radiotherapy. Acta Oncol 27: 131–146

    Article  CAS  Google Scholar 

  • Wolbarst AB (1984) Optimization of radiotherapy II: The critical-voxel model. Int J Radiat Oncol Biol Phys 10: 741–745

    Google Scholar 

  • Wrede (1972) Central axis tissue-air ratios as a function of area/perimeter at depth and their applicability to irregularly shaped fields. Phys Med Bio1 17: 548–554

    Article  CAS  Google Scholar 

  • Yorke ED, Kutcher GJ, Jackson A, Ling CC (1993) Probability of radiation-induced complications in normal tissues with parallel architecture under conditions of uniform whole or partial organ irradiation. Radiother Oncol 26: 226–237

    Article  PubMed  CAS  Google Scholar 

  • Zhu Y, Boyer AL, Desobry GE (1992) Dose distributions of X-ray fields as shaped with multileaf collimators. Phys Med Bio137: 163–174

    Google Scholar 

  • Bentel GC, Nelson CE, Noell KT (1989) Treatment planning and dose calculation in radiation oncology, 4th edn. Perga-mon, New York

    Google Scholar 

  • Bleehen NM, Glatstein E, Haybittle JC (1983) Radiation therapy planning. Dekker, New York

    Google Scholar 

  • Bohndorf W, Richter J (Hrsg) (1993) Computer-Tomographie und Bestrahlungsplanung in der Radioonkologie. Biermann, Zülpich

    Google Scholar 

  • Dobbs J, Barrett A, Ash D (1992) Practical radiotherapy planning, 2nd edn. Arnold, London

    Google Scholar 

  • Du Mesnil de Rochmont R (1958) Lehrbuch der Strahlenheilkunde. Enke, Stuttgart

    Google Scholar 

  • Fletcher GH (1980) Textbook of radiation therapy, 3rd edn. Lea & Febiger, Philadelphia

    Google Scholar 

  • Kutcher GJ, Mohan R (eds) (1995) Innovations in treatment delivery. In: Tepper JE (ed) Seminars in radiation oncology, vol 5/2. Saunders, Philadelphia

    Google Scholar 

  • Levitt SH, Khan FM, Potish RA (eds) (1992) Technological basis of radiation therapy: practical clinical application, 2nd edn. Lea & Febiger, Philadelphia

    Google Scholar 

  • Mizer S, Scheller RR, Deye JA (1985) Radiation therapy simulation workbook. Pergamon, New York

    Google Scholar 

  • Mould RF (1985) Radiotherapy treatment planning, 2nd edn. Hilger, Bristol

    Google Scholar 

  • Sack H, Thesen N (1993) Bestrahlungsplanung. Thieme, Stuttgart

    Google Scholar 

  • Scherer E (1967) Strahlentherapie. Thieme, Stuttgart

    Google Scholar 

  • Scherer E (Hrsg) (1987) Strahlentherapie – Radiologische Onkologie, 3. Aufl. Springer, Berlin Heidelberg New York Tokyo (1. Aufl 1976)

    Google Scholar 

  • Steel GG (1993) Basic clinical radiobiology. Arnold, London Vaeth JM, Meyer J (eds) (1987) Treatment planning in the radiation therapy of cancer. Karger, Basel (Frontiers of radiation therapy and oncology, vol 21)

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sack, H., Quast, U., Stuschke, M. (1996). Bestrahlungsplanung. In: Scherer, E., Sack, H. (eds) Strahlentherapie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79432-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79432-2_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79433-9

  • Online ISBN: 978-3-642-79432-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics