Skip to main content

31P Magnetic Resonance Spectroscopy Study of Brain Metabolism in Schizophrenia

  • Conference paper

Abstract

The underlying neurobiological basis of schizophrenia remains poorly understood after over 30 years of intensive research. Although progress has been made in neuroanatomical, neurochemical, neurophysiolgic, and genetic research in schizophrenia, only a few integrative models have been proposed (for reviews see Bachneff 1991; Csernansky et al. 1991; Hoffman and McGlashan 1993; Keshavan and Ganguli 1990; Wyatt et al. 1989). Anatomical research has provided evidence that the frontal and limbic systems and their interconnections are involved in schizophrenia. However, structural changes in other brain areas have been reported and, taken together, the anatomical studies do not support a localized structural abnormality in schizophrenia. Cerebral metabolic functional imaging studies, discussed below, also provide evidence for frontal lobe involvement in schizophrenia. From a pathophysiological perspective, the dopaminergic system has been implicated (Meltzer and Stahl 1976; Seeman 1987), However, extensive research in this area has not provided unequivocal support for the classical dopamine hypothesis (Carlsson 1988; Crow 1987; Henley 1991; Reynolds 1989). The argument for the involvement of dopaminergic pathways in schizophrenia comes largely from the analysis of the mechanisms of action of antipsychotic drugs. The glutamatergic neurotransmitter system also has been implicated in schizophrenia (Kim et al. 1980).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akbarian S, Bunney WE, Potkin SG, Wigal SB, Hagman JO, Sandman CA, Jones EG (1993) Altered distribution of nicotinamide-adenine dinucleotide phosphate-diaphorase cells in frontal lobe of schizophrenics implies disturbances of cortical development. Arch Gen Psychiatry 50:169–177

    Article  PubMed  CAS  Google Scholar 

  • American Psychiatric Association (1987) DSM-III-R diagnostic and statistical manual of mental disorders, 3rd edn. Workgroup to revise DSM-III, Washington DC

    Google Scholar 

  • Andreasen NC (1988) Brain Imaging: Applications in psychiatry. Science 239:1381–1388

    Article  PubMed  CAS  Google Scholar 

  • Andreasen N, Nasrallah HA, Dunn V, Olson SC, Grove WM, Ehrhardt JC, Coffman JA, Crossett JHW (1986) Structural abnormalities the frontal system in schizophrenia. Arch Gen Psychiatry 43:136–144

    Article  PubMed  CAS  Google Scholar 

  • Aue WP (1986) Localization methods for in vivo nuclear magnetic resonace spectroscopy. Magn Reson Med 1:21–72

    Google Scholar 

  • Bachneff SA (1991) Position emission tomography and magnetic resonance imaging: a review and a local circuit neurons hypo (dys) function hypothesis of schizophrenia. Biol Psychiatry 30:857–886

    Article  PubMed  CAS  Google Scholar 

  • Bendall MR (1986) Surface coil techniques for in vivo NMR. Bull Magn Reson 8:17–44

    Google Scholar 

  • Berman KF, Illowsky BP, Weinberger DR (1988) Physiological dysfunction of dorsolateral prefontal cortex in schizophrenia. Arch Gen Psychiatry 45:616–622

    Article  PubMed  CAS  Google Scholar 

  • Blass JP, Hanin I, Barclay L, Kopp U, Reding MJ (1985) Red blood cell abnormalities in Alzheimer’s disease. J Am Geriatr Soc 33:401–405

    PubMed  CAS  Google Scholar 

  • Bottomley PA, Charles HC, Roemer PB, Flaming D, Engeseth H, Edelstein WA, Mueller OM (1988) Human in vivo phosphate metabolite imaging with 31P NMR. Magn Reson Med 7:319–336

    Article  PubMed  CAS  Google Scholar 

  • Bottomley PA, Cousins JP, Pendrey DL, Wagle WA, Hardy CJ, Eames FA, McCaffrey RJ, Thompson DA (1992) Alzheimer dementia: quantification of energy metabolism and mobile phosphoesters with P-31 NMR spectroscopy. Radiology 183:695–699

    PubMed  CAS  Google Scholar 

  • Brown GG, Levine SR, Goreil JM, Pettegrew JW, Gdowski JW, Bueri JA, Helpern JA, Welch KM (1989) In vivo 31P NMR profiles of Alzheimer’s disease and multiple subcortical infarct dementia. Neurology 39:1423–1427

    PubMed  CAS  Google Scholar 

  • Buchsbaum MS (1987) Positron emission tomography in schizophrenia. In: Meitzer HY (ed) Psychopharmacology, the third generation of progress. Raven, New York, pp 783–792

    Google Scholar 

  • Buchsbaum MS, Ingvar DH, Kessler R, Waters RN, Cappelette J, van Kämmen DP, King C, Johnson JL, Manning RB, Flynn RW, Mann LS, Bunney WE, Sokoloff L (1982) Cerebral glucography with positron tomography. Arch Gen Psychiatry 39:251–259

    Article  PubMed  CAS  Google Scholar 

  • Butterfield DA, Markesbery WR (1980) Specificity of biophysical and biochemical alterations in erythrocyte membranes with neurological disorders. J Neurol Sci 97:261–271

    Article  Google Scholar 

  • Butterfield DA, Oeswein JW, Markesbery WR (1977) Electron spin resonance study of membrane protein alterations in erythrocytes in Huntington’s disease (letter). Nature 267:453–455

    Article  PubMed  CAS  Google Scholar 

  • Butterfield DA, Oeswein JW, Prunty ME, Hisle KC, Markesbery WR (1978) Increased sodium plus potassium adenosine triphosphatase activity in erythrocyte membranes in Huntington’s disease. Ann Neurol 4:60–62

    Article  PubMed  CAS  Google Scholar 

  • Butterfield DA, Nicholas MM, Markesbery WR (1985) Evidence for an increased rate of choline efflux across erythrocyte membranes in Alzheimer’s disease. Neurochem Res 10:909–918

    Article  PubMed  CAS  Google Scholar 

  • Cady EB, Dawson MJ, Hope PL, Tofts PS, Costello AM, Delpy DT, Reynolds EOR, Wilkie DR (1983) Non-invasive investigation of cerebral metabolism in newborn infants by phosphorus nuclear magnetic resonance spectroscopy. Lancet 1:1059–1062

    Article  PubMed  CAS  Google Scholar 

  • Carlsson A (1988) The current status of the dopamine hypothesis of schizophrenia. Neuropsycho-pharmacology 1:179–186

    Article  CAS  Google Scholar 

  • Carruthers A, Helgerson AL, Herbert DN, Tefft RE Jr, Naderi S, Melchior DL (1989) Effects of calcium, ATP and lipids on human erythrocyte sugar transport. Ann N Y Acad Sci 568:52–67

    Article  PubMed  CAS  Google Scholar 

  • Clarke PG (1985) Neuronal death in the development of the vertebrate nervous system. Trends Neurosci 8:345–349

    Article  Google Scholar 

  • Cohen MM, Pettegrew JW, Kopp SJ, Minshew N, Glonek T (1984) P-31 nuclear magnetic resonance analysis of brain: normoxic and anoxic brain slices. Neurochem Res 9:785–801

    Article  PubMed  CAS  Google Scholar 

  • Cowan WM, Fawcett JW, O’Leary DD, Stanfield BB (1984) Regressive events in neurogenesis. Science 225:1258–1265

    Article  PubMed  CAS  Google Scholar 

  • Crow RJ (1987) The dopamine hypothesis survives, but there must be a way ahead. Br J Psychiatry 151:460–465

    Article  PubMed  CAS  Google Scholar 

  • Csernansky JG, Murphy GM, Faustman WO (1991) Limbic/mesolimbic connections and the pathogenesis of schizophrenia. Biol Psychiatry 30:383–400

    Article  PubMed  CAS  Google Scholar 

  • Demisch L, Gerbaldo H, Heinz K, Kirsten R (1987) Transmembranal signalling in schizophrenic and affective disorders: studies on arachidonic acid and phospholipids. Schizophr Res 22:275–282

    CAS  Google Scholar 

  • Diamond JM, Matsuyama SS, Meier K, Jarvik LF (1983) Elevation of erythrocyte countertransport rates in Alzheimer’s dementia (letter). N Engl J Med 309:1061–1062

    PubMed  CAS  Google Scholar 

  • Endicott J, Spitzer RL (1978) A diagnostic interview: the schedule for affective disorders and schizophrenia. Arch Gen Psychiatry 35:837–844

    Article  PubMed  CAS  Google Scholar 

  • Falkai P, Bogerts B, Rozumek M (1988) Cell loss and volume reduction in the entorhinal cortex of schizophrenics. Eur Arch Psychiatry Neurol Sci 24:515–521

    CAS  Google Scholar 

  • Farde L, Wiesel FA, Hall H, Halldin C, Stone-Elander S, Sedvall G (1987) No D2 receptor increase in PET study of schizophrenia (letter). Arch Gen Psychiatry 44:671–672

    Article  PubMed  CAS  Google Scholar 

  • Feinberg I (1982) Schizophrenia: caused by a fault in programmed synaptic elimination during adolescence? J Psychiatr Res 17[Suppl 4]:319–334

    Article  PubMed  Google Scholar 

  • Frahm J, Bruhn H, Gyngell ML, Merboldt KD, Hanicke W, Sauter R (1989) Localized proton NMR spectroscopy in different regions of the human brain in vivo. Relaxation times and concentrations of cerebral metabolites. Magn Reson Med 11:47–63

    Article  PubMed  CAS  Google Scholar 

  • Fukuzako H, Takeuchi K, Fujimoto T, Hokazono Y, Hirakawa K, VeYama K, Matsumoto K, Fukuzako T (1992) 31P magnetic resonance spectroscopy of schizophrenic patients with neuroleptic resistant positive and negative symptoms. Biol Psychiatry 31[Suppl]:204A-205A

    Google Scholar 

  • Gattaz WF, Kolisch M, Thuren T, Virtanen JA, Kinnunen PKJ (1987) Increased plasma phospholipase A2 activity in schizophrenic patients: reduction after neuroleptic therapy. Biol Psychiatry 22:421–426

    Article  PubMed  CAS  Google Scholar 

  • Glonek T, Kopp SJ, Kot E, Pettegrew JW, Harrison WH, Cohen MM (1982) P-31 nuclear magnetic resonance analysis of brain: the perchloric acid extract spectrum. J Neurochem 39:1210–1219

    Article  PubMed  CAS  Google Scholar 

  • Grace AA (1991) Phasic versus tonic dopamine release and the modulation of dopamine system responsivity: a hypothesis for the etiology of schizophrenia. Neuroscience 41:1–24

    Article  PubMed  CAS  Google Scholar 

  • Gruetter R, Rothman DL, Novotny EJ, Shulman RG (1992) Localized 13C NMR spectroscopy of myo-inositol in the human brain in vivo. Magn Reson Med 25:204–210

    Article  PubMed  CAS  Google Scholar 

  • Healey D (1991) D1 and D2 and D3. Br J Psychiatry 159:319–324

    Article  Google Scholar 

  • Henn F (1980) Biological concepts of schizophrenia. In: Baxter C, Melnachuk T (eds) Perspectives in schizophrenia research. Raven, New York, pp 209–223

    Google Scholar 

  • Hitzemann R, Hirschowitz D, Garver D (1984) Membrane abnormalities in the psychoses and affective disorders. J Psychiatr Res 18:319–326

    Article  PubMed  CAS  Google Scholar 

  • Hoffman RE, McGlashan TH (1993) Neurodynamics and schizophrenia research: editors’ introduction. Schizophr Bull 19:15–19

    PubMed  CAS  Google Scholar 

  • Huttenlocher PR (1979) Synaptic density in human frontal cortex. Developmental changes and effects of aging. Brain Res 163:195–205

    Article  PubMed  CAS  Google Scholar 

  • Huttenlocher PR, deCourten C, Garey LJ, Van Der Loos H (1982) Synaptogenesis in human visual cortex-evidence for synapse elimination during normal development. Neurosci Lett 33:247–252

    Article  PubMed  CAS  Google Scholar 

  • Ingvar DH, Franzen G (1974) Abnormalities of cerebral blood flow distribution in patients with chronic schizophrenics. Acta Psychiatr Scand 50:425–462

    Article  PubMed  CAS  Google Scholar 

  • Jaskiw G, Kleinman J (1988) Postmortem neurochemistry studies in schizophrenia. In: Schulz SC, Tamminga HK (eds) Schizophrenia: a scientific focus. Oxford University Press, New York, pp 264–273

    Google Scholar 

  • Kaiya H, Takeuchi K, Namba M, Imai A, Nakashima S, Nozawa Y (1984) Abnormal phosphatidylinositol-cycle of platelet membrane in schizophrenia - a preliminary study. Folia Psychiatr Neurol Jpn 38:437–444

    PubMed  CAS  Google Scholar 

  • Keshavan MS, Ganguli R (1990) Biology of schizophrenia. In: Gershon S, Pohl R (eds) Progress in basic and clinical pharmacology 3: biological basis of psychiatric treatment. Karger, Basel, pp 1–33

    Google Scholar 

  • Keshavan MS, Pettegrew JW, Panchalingam KS, Kaplan D, Bozik E (1991) Phosphorus 31 magnetic resonance spectroscopy detects altered brain metabolism before onset of schizophrenia. Arch Gen Psychiatry 48:1112–1113

    Article  PubMed  CAS  Google Scholar 

  • Kim JS, Kornhuber HH, Schid-Burgk W et al (1980) Low cerebrospinal fluid glutamate in schizophrenic patients and a new hypothesis on schizophrenia. Neurosci Lett 20:379–392

    Article  PubMed  CAS  Google Scholar 

  • Klunk WE, Xu CJ, Panchalingam K, McClure RJ, Pettegrew JW (1994) Analysis of magnetic resonance spectra by mole percent: comparison to absolute units. Neurobiol Aging 15:133–140

    Article  PubMed  CAS  Google Scholar 

  • Kornhuber J, Riederer P, Reynolds GP, Beckmann H, Jellinger K, Gabriel E (1989) 3H-spiperone binding sites in post-mortem brains from schizophrenia patients: relationship to neuroleptic drug treatment, abnormal movements, and positive symptoms. J Neural Transm 75:1–10

    Article  PubMed  CAS  Google Scholar 

  • Kraepelin E (1919) Dementia praecox and paraphrenia. Churchill Livingston, Edinburgh.

    Google Scholar 

  • Markesbery WR, Leung PK, Butterfield DA (1980) Spin label and biochemical studies of erythrocyte membranes in Alzheimer’s disease. J Neurol Sci 45:323–330

    Article  PubMed  CAS  Google Scholar 

  • Mcllwain H, Bachelard HS (1985) Biochemistry and the central nervous system, 5th edn. Churchill Livingstone, Edinburgh.

    Google Scholar 

  • Meltzer T, Stahl SM (1976) Dopamine hypothesis of schizophrenia: a review. Schizophr Bull 2:19–76

    PubMed  CAS  Google Scholar 

  • Miller BL, Jenden D, Tang C, Read S (1989) Choline and choline-bound phospholipids in aging and Alzheimer’s disease (abstract). Neurology 39[Suppl 1]:254

    Google Scholar 

  • Minshew NJ, Goldstein G, Dombrowski SM, Panchalingam K, Pettegrew JW (1993) A preliminary 31P MRS study of autism: evidence for undersynthesis and increased degradation of brain membranes. Biol Psychiatry 33:762–773

    Article  PubMed  CAS  Google Scholar 

  • Morel BA (1860) Traitement des maladies mentales. Masson, Paris

    Google Scholar 

  • O’Callaghan EO, Redmond O, Ennis R, Stack J, Kinsella A, Ennis JT, Conall L, Waddington JL (1991) Initial investigation of the left temporoparietal region in schizophrenia by 31P magnetic resonance spectroscopy. Biol Psychiatry 29:1149–1152

    Article  PubMed  Google Scholar 

  • Oppenheim RW (1985) Naturally occurring cell death during neural development. Trends Neurosci 8:487–493

    Article  Google Scholar 

  • Overall JE, Gorham DR (1962) The brief psychiatric rating scale. Psychol Rep 10:799–812

    Google Scholar 

  • Panchalingam K, Pettegrew JW, Strychor S, Tretta M (1990) Effect of normal aging on membrane phospholipid metabolism by 31P in vivo NMP spectroscopy (abstract). Soc Neurosci Abstr 16:843

    Google Scholar 

  • Petroff OAC, Prichard JW, Behar KL, Alger JR, den Hollander JA, Shulman RG (1985) Cerebral intracellular pH by 31P nuclear magnetic resonance spectroscopy. Neurology 35:781–788

    PubMed  CAS  Google Scholar 

  • Pettegrew JW (1991) Nuclear magnetic resonance: principles and applications to neuroscience research. In: Boiler F, Grafman J (eds) Handbook of neuropsychology, 5th edn. Elsevier Science, New York, pp 39–56

    Google Scholar 

  • Pettegrew JW, Minshew NJ (1992) Molecular insights into schizophrenia. J Neural Transm 36:23–40

    CAS  Google Scholar 

  • Pettegrew JW, Glonek T, Baskin F, Rosenberg RN (1979a) Phosphorus-31 NMR of neuroblastoma clonal lines: effect of cell confluency state and dibutyryl cyclic AMP. Neurochem Res 4:795–801

    Article  PubMed  CAS  Google Scholar 

  • Pettegrew JW, Nichols JS, Stewart RM (1979b) Studies of the fluorescence of fibroblasts from Huntington’s disease: evidence of a membrane abnormality. N Engl J Med 300:678

    PubMed  CAS  Google Scholar 

  • Pettegrew JW, Nichols JS, Stewart RM (1979c) Fluorescence spectroscopy on Huntington’s fibroblasts. J Neurochem 33:905–911

    Article  PubMed  CAS  Google Scholar 

  • Pettegrew JW, Nichols JS, Stewart RM (1981) Membrane studies in Huntington’s disease: steady-state and time-dependent fluorescence spectroscopy of intact lymphocytes. J Neurochem 36: 1966–1976

    Article  PubMed  CAS  Google Scholar 

  • Pettegrew JW, Nichols JS, Minshew NJ, Rush AJ, Stewart RM (1982) Membrane biophysical studies of lymphocytes and erythrocytes in manic-depressive illness. J Affective Disord 4:237–247

    Article  CAS  Google Scholar 

  • Pettegrew JW, Minshew NJ, Diehl J, Smith T, Kopp SJ, Glonek T (1983a) Anatomical considerations for interpreting topical P-31 NMR (letter). Lancet 2:913

    Article  PubMed  CAS  Google Scholar 

  • Pettegrew JW, Minshew NJ, Stewart RM (1983b) Dynamic membrane studies in individuals at risk for Huntington’s disease. Life Sci 32:1207–1212

    Article  PubMed  CAS  Google Scholar 

  • Pettegrew JW, Minshew NJ, Cohen MM, Kopp SJ, Glonek T (1984) P-31 NMR changes in Alzheimer’s and Huntington’s disease brain (abstract). Neurology 34[Suppl 1]:281

    Google Scholar 

  • Pettegrew JW, Kopp SJ, Minshew NJ, Glonek T, Feliksik JM, Tow JP, Cohen MM (1987a) 3lP nuclear magnetic resonance studies of phosphoglyceride metabolism in developing and degenerating brain: preliminary observations. J Neuropathol Exp Neurol 46:419–430

    Article  PubMed  CAS  Google Scholar 

  • Pettegrew JW, Withers G, Panchalingam K, Post JF (1987b) 31P nuclear magnetic resonance (NMR) spectroscopy of brain in aging and Alzheimer’s disease. J Neural Transm Suppl 24:261–268

    PubMed  CAS  Google Scholar 

  • Pettegrew JW, Moossy J, Withers G, McKeag D, Panchalingam K (1988a) 31P nuclear magnetic resonance study of the brain in Alzheimer’s disease. J Neuropathol Exp Neurol 47:235–248

    Article  PubMed  CAS  Google Scholar 

  • Pettegrew JW, Panchalingam K, Moossy J, Martinez J, Rao G, Boiler F (1988b) Correlation of phosphorus-31 magnetic resonance spectroscopy and morphologic findings in Alzheimer’s disease. Arch Neurol 45:1093–1096

    Article  PubMed  CAS  Google Scholar 

  • Pettegrew JW, Panchalingam K, Strychor S, Branthoover G (1990a) Analysis of membrane phospholipids in Alzheimer’s disease brain by 31P NMR (abstract). Soc Neurosci Abstr 16:498

    Google Scholar 

  • Pettegrew JW, Panchalingam K, Withers G, McKeag D, Strychor S (1990b) Changes in brain energy and phospholipid metabolism during development and aging in the Fischer 344 rat. J Neuropathol Exp Neurol 49:237–249

    Article  PubMed  CAS  Google Scholar 

  • Pettegrew JW, Keshavan MS, Panchalingam K, Strychor S, Kaplan DB, Tretta MG, Allen M (1991) Alterations in brain high-energy phosphate and phospholipid metabolism in first episode, drug-naive schizophrenia. A pilot study of the dorsal prefrontal cortex by in vivo 31P NMR spectroscopy. Arch Gen Psychiatry 48:563–568

    Article  PubMed  CAS  Google Scholar 

  • Pettegrew JW, Keshavan MS, Minshew NJ (1993a) 31P Nuclear magnetic resonance spectroscopy: neurodevelopment and schizophrenia. Schizophr Bull 19:35–53

    PubMed  CAS  Google Scholar 

  • Pettegrew JW, Minshew NJ, Spiker D, Tretta M, Strychor S, McKeag D, Munez LR, Miller GM, Carbone D, McClure RJ (1993b) Alterations in membrane molecular dynamics in erythrocytes of patients with affective illness. Depress 1:88–100

    Article  Google Scholar 

  • Pettegrew JW, Panchalingam K, Klunk WE, McClure RJ, Muenz LR (1994) Alterations of cerebral metabolism in probable Alzheimer’s disease; a preliminary study. Neurobiol Aging 15:117–132

    Article  PubMed  CAS  Google Scholar 

  • Pittman R, Oppenheim RW (1979) Cell death of motoneurons in the chick embryo spinal cord. IV. Evidence that a functional neuromuscular interaction is involved in the regulation of naturally occurring cell death and the stabilization of synapses. J Comp Neurol 187:425–446

    Article  PubMed  CAS  Google Scholar 

  • Purves D, Lichtman JW (1980) Elimination of synapses in the developing nervous system. Science 210:153–157

    Article  PubMed  CAS  Google Scholar 

  • Rakic P, Riley KP (1983) Overproduction and elimination of retinal axons in the fetal rhesus monkey. Science 219:1441–1444

    Article  PubMed  CAS  Google Scholar 

  • Reynolds GP (1989) Beyond the dopamine hypothesis; the neurochemical pathology of schizophrenia. Br J Psychiatry 155:305–316

    PubMed  CAS  Google Scholar 

  • Rotrosen J, Wolkin A (1987) Phospholipid and prostaglandin hypothesis in schizophrenia. In: Meltzer HY (ed) Psychopharmacology: the third generation of progress. Raven, New York, pp 759–764

    Google Scholar 

  • Rumsey JM, Duara R, Grady C, Rapoport JL, Margolin RA, Rapoport SI, Cutler NR (1985) Brain metabolism in autism. Resting cerebral glucose utilization rates as measured with positron emission tomography. Arch Gen Psychiatry 42:448–455

    Article  PubMed  CAS  Google Scholar 

  • Sappey-Marinier D, Calabrese G, Hetherington HP, Fisher SN, Deicken R, Van Dyke C, Fein G, Weiner MW (1992) Proton magnetic resonance spectroscopy of human brain: applications to normal white matter, chronic infarction, and MRI white matter signal hyperintensities. Magn Reson Med 26:313–327

    Article  PubMed  CAS  Google Scholar 

  • Seeman P (1987) Dopamine receptors and the dopamine hypothesis of schizophrenia. Synapse 1:133–152

    Article  PubMed  CAS  Google Scholar 

  • Seeman P, Ulpian C, Bergeron C, Riederer P, Jellinger K, Gabriel E, Reynolds GP, Tourtellotte WW (1984) Bimodal distribution of dopamine receptor densities in brains of schizophrenics. Science 225:728–731

    Article  PubMed  CAS  Google Scholar 

  • Sherman KA, Gibson SE, Blass JP (1986) Human red blood cell choline uptake with age and Alzheimer’s disease. Neurobiol Aging 7:205–209

    Article  PubMed  CAS  Google Scholar 

  • Spitzer RL, Endicott J, Robins E (1978) Research diagnostic criteria (RDC) for a selected group of functional disorders, 3rd edn. New York State Psychiatric Institute Biometric Division, New York

    Google Scholar 

  • Stevens JD (1972) The distribution of phospholipid fractions in the red cell membrane of schizophrenics. Schizophr Bull 6:60–61

    Google Scholar 

  • Suddath RL, Christison GW, Torrey EF, Casanova MF, Weinberger DR (1990) Anatomical abnormalities in the brains of monozygotic twins discordant for schizophrenia. N Engl J Med 322:789–794

    Article  PubMed  CAS  Google Scholar 

  • Ulas J, Cotman CW (1993) Excitatory amino acid receptors in schizophrenia. Schizophr Bull 19:105–117

    PubMed  CAS  Google Scholar 

  • Vance DE (1991) Phospholipid metabolism and cell signalling in eucaryotes. In: Vance DE, Vance J (eds) Biochemistry of lipids, lipoproteins and membranes, vol 20. Elsevier, New York, pp 205–240

    Google Scholar 

  • Volpe J J (1987) Neuronal proliferation, migration, organization, and myelination. In: Volpe J J (ed) Neurology of the newborn, 2nd edn. Saunders, Philadelphia, pp 33–68

    Google Scholar 

  • Waddington JL (1993) Neurodynamics of abnormalities in cerebral metabolism and structure in schizophrenia. Schizophr Bull 19:55–69

    PubMed  CAS  Google Scholar 

  • Weinberger DR (1987) Implications of normal brain development for the pathogenesis of schizophrenia. Arch Gen Psychiatry 44:464–469

    Google Scholar 

  • Weinberger DR, Berman KF, Zee DF (1986) Physiological dysfunction of the dorsolateral prefrontal cortex in schizophrenia. Arch Gen Psychiatry 43:114–124

    Article  PubMed  CAS  Google Scholar 

  • Williamson P, Drost D, Stanley J, Carr T, Morrison S, Merskey H (1991) Localized phosphorus 31 Magnetic Resonance Spectroscopy in chronic schizophrenic patients and normal controls (letter). Arch Gen Psychiatry 48:578

    Article  PubMed  CAS  Google Scholar 

  • Wong DF, Wagner HN, Tune LE, Dannals RF, Pearlson GD, Links JM, Tamminga CA, Broussolle EP, Ravert HT, Wilson AA, Toung JKT, Malat J, Williams JA, Lorcan A, O’Tuama O, Snyder SH, Kuhar MJ, Gjedde A (1986) Positron emission tomography reveals elevated D2 dopamine receptors in drug-naive schizophrenics. Science 234:1558–1563

    Article  PubMed  CAS  Google Scholar 

  • Wyatt RJ, Alexander RC, Egan MF, Kirch DG (1988) Schizophrenia just the facts; What do we know; How well do we know it? Schizophr Res 1:3–18

    Article  PubMed  CAS  Google Scholar 

  • Zubenko GS, Cohen BM, Reynolds CF, Boiler F, Malinakova I, Keefe MA (1987) Platelet membrane fluidity in Alzheimer’s disease and major depression. Am J Psychiatry 144:860–868

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

McClure, R., Keshavan, M., Minshew, N.J., Panchalingam, K., Pettegrew, J.W. (1995). 31P Magnetic Resonance Spectroscopy Study of Brain Metabolism in Schizophrenia. In: Häfner, H., Gattaz, W.F. (eds) Search for the Causes of Schizophrenia. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79429-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79429-2_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79431-5

  • Online ISBN: 978-3-642-79429-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics