Skip to main content

Calcineurin as a Pivotal Ca2+-Sensitive Switching Element in Biological Responses: Implications for the Regulation of Tau Phosphorylation in Alzheimer’s Disease

  • Conference paper
Alzheimer’s Disease: Lessons from Cell Biology

Part of the book series: Research and Perspectives in Alzheimer’s Disease ((ALZHEIMER))

  • 93 Accesses

Summary

Reversible protein phosphorylation provides a key strategy for biological control, as it allows the informational status of a cell to be modified dynamically en route to changes in cellular response. A hallmark feature of Alzheimer’s disease is the presence of “hyperphosphorylated” forms of the microtubule-associated protein, tau, in paired helical filaments. Although the relationship of this biochemical abnormality to disease etiology and pathology is unknown, it may reflect aberrant cytoskeletal regulation. One hypothesis to explain tau hyperphosphorylation is a dysregulation of phosphoprotein phosphatases. Consistent with this idea, incubation of human brain tissue slices with the phosphatase inhibitor okadaic acids leads to production of the characteristic tau epitope (Harris et al. 1993). Studies in vitro have shown that each of the three major serine-threonine phosphatases inhibited by okadaic acid (PP-1, PP-2A, PP-2B) can dephosphorylate tau, with PP-2A having the highest activity. Recently, studies carried out with cerebellar macroneuron model cultures showed that the protein phosphatase, calcineurin (PP-2B), is intimately associated with developing microtubule/ microfilament structures; thus, calcineurin may have “privileged access” to substrates that modulate the cytoskeleton. Provocatively in this study, specific calcineurin inhibitors blocked elements of neuronal “decision-making” (axonal determination) while, at the same time, causing tau hyperphosphorylation (Ferreira et al. 1993). These data suggest that this Ca2+-sensitive phosphatase may play a role in regulating tau function in vivo.

Calcineurin is uniquely suited to influence signal transduction events because it is under the direct control of the second messenger, Ca2+. However, because it shows rather narrow substrate specificity in vitro, it seems likely that it acts on relatively few target proteins which may affect broader signaling cascades. This appears to be true in skeletal muscle, where calcineurin mediates a reversal of epinephrine-induced glycogen breakdown by dephosphorylating an inhibitor of the broad specificity protein phosphatase (PP-1). A related scenario may occur in T cell lymphokine responses, where multiple trans-acting factors are activated through events controlled by calcineurin, although the details of these events are not clear. Similarly, the regulation of tau dephosphorylation described above may also be indirect, operating via pathways that are tightly linked to calcineurin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baeuerle PA, Baltimore D (1991) The physiology of the NF-KB transcription factor. In: Cohen P, Foulkes J (eds) The hormonal control of gene transcription. Amsterdam, Elsevier, pp 423–446

    Google Scholar 

  • Bamburg JR, Bray D, Chapman K (1986) Assembly of microtubules at the tip of growing axons. Nature 321: 788–790

    Article  PubMed  CAS  Google Scholar 

  • Baudier J, Cole RD (1987) Phosphorylation of tau proteins to a state like that in Alzheimer’s brain is catalyzed by a calcium/calmodulin-dependent kinase and modulated by phospholipids. J Biol Chem 262: 17577–17583

    PubMed  CAS  Google Scholar 

  • Biernat J, Mandelkow EM, Schroter C, Lichtenberg-Kraag B, Steiner B, Berling B, Meyer H, Mercken M, Vandermeeren A, Goedert M, Mandelkow E (1992) The switch of tau protein to an Alzheimer-like state includes phosphorylation of two serine-proline motifs upstream of the microtubule binding region. EMBO J 11: 1593–1597

    PubMed  CAS  Google Scholar 

  • Caceres A, Kosik KS (1990) Inhibition of neurite polarity by tau antisense oligonucleotides in primary cerebellar neurons. Nature 343: 461–463

    Article  PubMed  CAS  Google Scholar 

  • Clipstone NA, Crabtree GR (1992) Identification of calcineurin as a key signalling enzyme in T-lymphocyte activation. Nature 357: 695–697

    Article  PubMed  CAS  Google Scholar 

  • Cohen P, Klumpp S, Schelling DL (1989) An improved procedure for identifying and quantitating protein phosphatases in mammalian tissues. FEBS Lett 250: 596–600

    Article  PubMed  CAS  Google Scholar 

  • Curran T, Franza BR (1988) Fos and Jun: the AP-1 connection. Cell 55: 315–397

    Article  Google Scholar 

  • Ferreira A, Caceres A (1989) The expression of acetylated microtubules during axonal and dendritic growth in cerebellar macro-neurons which develop in vitro. Dev Brain Res 49: 204–213

    Google Scholar 

  • Ferreira A, Busciglio J, Caceres A (1989) Microtubule formation and neurite growth in cerebellar macroneurons which develop in vitro: evidence for the involvement of the microtubule associated proteins, MAP-la, HMW-MAP2, and tau. Dev Brain Res 49: 215–228

    Article  CAS  Google Scholar 

  • Ferreira A, Kincaid RL, Kosik K (1993) Calcineurin is associated with the cytoskeleton of cultured neurons and has a role in the acquisition of polarity. Mol Biol Cell 4: 1225–1238

    PubMed  CAS  Google Scholar 

  • Frantz B, Nordby EC, Bren G, Steffan N, Paya CV, Kincaid RL, Tocci MJ, O’Keefe SJ, O’Neill EA (1994) Calcineurin acts in synergy with PMA to inactivate IKB/MAD3, an inhibitor of NF-KB. EMBOJ 13: 861–870

    CAS  Google Scholar 

  • Goedert M, Crowther RA, Garner CC (1991) Molecular characterization of microtubuleassociated proteins tau and MAP2. Trends Neurosci 14: 193–199

    Article  PubMed  CAS  Google Scholar 

  • Goedert M, Cohen ES, Jakes R, Cohen P (1992) p42 MAP kinase phosphorylation sites in microtubule-associated protein tau are dephosphorylated by protein phosphatase 2A1. FEBS Lett 312: 95–99

    Google Scholar 

  • Goto S, Yamamoto H, Fukunaga K, Iwasa T, Matsukado Y, Miyamoto E (1985) Dephosphorylation of microtubule associated protein 2, tau factor and tubulin by calcineurin. J Neurochem 45: 276–283

    Article  PubMed  CAS  Google Scholar 

  • Grundke-Igbal I, Iqbal K, Tung Y-C, Quinlan M, Wisniewski H, Binder L (1986) Abnormal phosphorylation of the microtubule-associated protein tau in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci USA 83: 4913–4917

    Article  Google Scholar 

  • Guerini D, Klee CB (1989) Cloning of human calcineurin A: Evidence for two isozymes and identification of a polyproline structural domain. Proc Natl Acad Sci USA 86: 9183–9187

    Article  PubMed  CAS  Google Scholar 

  • Harris KA, Oyler GA, Doolittle GM, Vincent I, Lehman RAW, Kincaid RL, Billingsley ML (1993) Okadaic acid induces hyperphosphorylated forms of Tau protein in human brain slices. Ann Neurol 32: 635–645

    Google Scholar 

  • Hashimoto Y, Perrino BA, Soderling TR (1990) Identification of an autoinhibitory domain in calcineurin. J Biol Chem 265: 1924–1927

    PubMed  CAS  Google Scholar 

  • Hubbard MJ, Klee CB (1989) Functional domain structure of calcineurin A: mapping by limited proteolysis. Biochemistry 28: 1868–1874

    Article  PubMed  CAS  Google Scholar 

  • Ingebritsen TS, Cohen P (1983) The protein phosphatases involved in cellular regulation. I Classification and substrate specificities. Eur J Biochem 132: 255–261

    Article  PubMed  CAS  Google Scholar 

  • Ingebritsen TS, Stewart AA, Cohen P (1983) The protein phosphatases involved in cellular regulation. 6. Measurement of type-1 and type-2 protein phosphatases in extracts of mammalian tissues: An assessment of their physiological roles. Eur J Biochem 132: 297–307

    Article  PubMed  CAS  Google Scholar 

  • Kincaid R (1993) Calmodulin-dependent protein phosphatases from microorganisms to man: A study in structural conservatism and biological diversity. In: Shenolikar S, Nairn AC (eds) Advances in second messenger and phosphoprotein research, vol 27, pp 1–23

    Google Scholar 

  • Kincaid RL, O’Keefe SJ (1993) Calcineurin and immunosuppression: A calmodulin-stimulated protein phosphatase acts as the “gatekeeper” to interleukin-2 gene transcription Adv. Prot. Phosphatases 7: 543–583

    CAS  Google Scholar 

  • Kincaid RL, Nightingale MS, Martin BM (1988) Characterization of a cDNA clone encoding the calmodulin-binding domain of mouse brain calcineurin. Proc Natl Acad Sci USA 85: 8983–8987

    Article  PubMed  CAS  Google Scholar 

  • Kincaid RL, Rathna Giri P, Higuchi S, Tamura J, Dixon SC, Marietta CA, Amorese DA Martin BM (1990) Cloning and characterization of molecular isoforms of the catalytic subunit of calcineurin using nonisotopic methods. J Biol Chem 265: 11312–11319

    PubMed  CAS  Google Scholar 

  • King MM, Huang CY (1984) The calmodulin-dependent activation and deactivation of the phosphoprotein phosphatase, calcineurin, and the effect of nucleotides, pyrophosphate and divalent metal ions. J Biol Chem 259: 8847–8856

    PubMed  CAS  Google Scholar 

  • King MM, Huang CY, Chock PB, Nairn AC, Hemmings HC, Jr, Chan K-FJ, Greengard P (1984) Mammalian brain phosphoproteins as substrates for calcineurin. J Biol Chem 259: 8080–8083

    PubMed  CAS  Google Scholar 

  • Klee CB, Krinks MH (1978) Purification of cyclic 3’,5’-nucleotide phosphodiesterase inhibitory protein by affinity chromatography on activator protein coupled to Sepharose. Biochemistry 17: 120–126

    Article  PubMed  CAS  Google Scholar 

  • Klee CB, Haiech J (1980) Concerted role of calmodulin and calcineurin in calcium regulation. Ann NY Acad Sci 356: 43–54

    Article  PubMed  CAS  Google Scholar 

  • Klee CB, Crouch TH, Krinks MH (1979) Calcineurin: a calcium-and calmodulin-binding protein of the nervous system. Proc Natl Acad Sci USA 79: 6270–6273

    Article  Google Scholar 

  • Knops J, Kosik KS, Lee G, Pardee JD, Cohen-Gould L, McConlogue L (1991) Overexpression of tau in a non-neuronal cell induces long cellular processes. J Cell Biol 114: 725–733

    Article  PubMed  CAS  Google Scholar 

  • Kosik KS, Orecchio LD, Binder LI, Trojanowski J, Lee V, Lee G (1988) Epitopes that span the tau molecule are shared with paired helical filaments. Neuron 1: 817–825

    Article  PubMed  CAS  Google Scholar 

  • Lee G, Cowan N, Kirschner M (1988) The primary structure and heterogeneity of tau protein from mouse brain. Science 239: 285–288

    Article  PubMed  CAS  Google Scholar 

  • Lindwall G, Cole RD (1984) Phosphorylation affects the ability of tau protein to promote microtubule assembly. J Biol Chem 259: 5301–5305

    PubMed  CAS  Google Scholar 

  • Matsui H, Doi A, Itano T, Shimada M, Wang JH, Hatase O (1987) Immunohistochemical localization of calcineurin, the calmodulin-stimulated phosphatase, in the rat hippocampus using a monoclonal antibody. Brain Res 402: 193–196

    Article  PubMed  CAS  Google Scholar 

  • Merat DL, Hu ZY, Carter TE, Cheung WY (1985) Bovine brain calmodulin-dependent protein phosphatase. Regulation of subunit A activity by calmodulin and subunit B. J Biol Chem 260: 11053–11059

    PubMed  CAS  Google Scholar 

  • Muramatsu T, Rathna Giri P, Higuchi S, Kincaid RL (1992) Molecular cloning of a calmodulindependent phosphatase from murine testis: Identification of a developmentally expressed nonneural isoenzyme. Proc Natl Acad Sci USA 89: 529–533

    Article  PubMed  CAS  Google Scholar 

  • O’Keefe SJ, Tamura J, Kincaid RL, Tocci MJ, O’Neill EA (1992) FK-506- and CsA-sensitive activation of the interleukin-2 promoter by calcineurin. Nature 357: 692–694

    Article  PubMed  Google Scholar 

  • Polli JW, Billingsley ML, Kincaid RL (1991) Expression of the calmodulin-dependent phosphatase, calcineurin, in rat brain: developmental patterns and the role of nigrostriatal innervation. Devel Brain Res 61: 105–119

    Article  Google Scholar 

  • Rathna Giri P, Mariettâ CA, Higuchi S, Kincaid RL (1992) Molecular and phylogenetic analysis of calmodulin-dependent protein phosphatase (calcineurin) catalytic subunit genes. DNA Cell Biol 11: 415–424

    Article  Google Scholar 

  • Singh H, Sen R, Baltimore D, Sharp PA (1986) A nuclear factor that binds to a conserved sequence motif in transcriptional control elements of immunoglobulin genes. Nature 319: 154–158

    Article  PubMed  CAS  Google Scholar 

  • Stewart AA, Ingebritsen TS, Manalan A, Klee CB, Cohen P (1982) Discovery of Ca2+ nd calmodulin-dependent protein phosphatase. Probable identity with calcineurin (CaM-BP80) EBS Lett 137: 80–84

    CAS  Google Scholar 

  • Swanson SKH, Born T, Zydowsky LD, Cho H, Chang HY, Walsh CT, Rusnak F (1992) Cyclosporin-mediated inhibition of bovine calcineurin by cyclophilins A and B. Proc Natl Acad Sci USA 89: 3741–3745

    Article  PubMed  CAS  Google Scholar 

  • Tallant EA, Cheung WY (1984) Activation of bovine brain calmodulin-dependent protein phosphatase by limited trypsinization. Biochemistry 23: 973–979

    Article  PubMed  CAS  Google Scholar 

  • Tanaka EM, Kirschner MW (1991) Microtubule behavior in the growth cones of living neurons during axon elongation. J Cell Biol 115: 345–363

    Article  PubMed  CAS  Google Scholar 

  • Ullman KS, Northrop JP, Verweij CL, Crabtree GR (1990) Transmission of signals from the T lymphocyte antigen receptor to the genes responsible for cell proliferation and immune function: the missing link. Ann Rev Immunol 8: 421–452

    Article  CAS  Google Scholar 

  • Wallace RW, Lynch TJ, Tallant EA, Cheung WY (1978) Purification and characterization of an inhibitor protein of brain adenylate cylase and cyclic nucleotide phosphodiesterase. J Biol Chem 254: 377–382

    Google Scholar 

  • Wolozin B, Davies P (1987) Alzheimer-related neuronal protein A68: specificity and distribution. Ann Neurol 22: 521–526

    Article  PubMed  CAS  Google Scholar 

  • Wood JG, Wallace RW, Whitaker JN, Cheung WY (1980) Immunocytochemical localization of calmodulin and a heat-labile calmodulin-binding protein (CaM-BP80) in basal ganglia of mouse brain. J Cell Biol 84: 66–76

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto H, Fukunaga K, Tanaka E, Miyamoto E (1983) Ca2+- and calmodulin-dependent phosphorylation of microtubule-associated protein 2 and r factor, and inhibition of microtubule assembly. J Neurochem 41: 1119–1125

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kincaid, R.L. (1995). Calcineurin as a Pivotal Ca2+-Sensitive Switching Element in Biological Responses: Implications for the Regulation of Tau Phosphorylation in Alzheimer’s Disease. In: Kosik, K.S., Selkoe, D.J., Christen, Y. (eds) Alzheimer’s Disease: Lessons from Cell Biology. Research and Perspectives in Alzheimer’s Disease. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79423-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79423-0_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79425-4

  • Online ISBN: 978-3-642-79423-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics