Advertisement

Combining In Vitro Cell Biology and In Vivo Mouse Modelling to Study the Mechanisms Underlying Alzheimer’s Disease

  • B. De Strooper
  • D. Moechars
  • K. Lorent
  • I. Dewachter
  • F. Van Leuven
Conference paper
Part of the Research and Perspectives in Alzheimer’s Disease book series (ALZHEIMER)

Abstract

The pathology of Alzheimer’s disease (AD) as a major neurodegenerative disorder is characterized by the presence of senile plaques, neurofibrillary tangles and cerebrovascular deposits. Neither the molecular mechanisms of the formation of these structures nor their direct bearing on the neurodegeneration per se are understood. The major component of the senile plaques and vascular deposits is the β-amyloid peptide (βA4), a 39–43 amino acid fragment derived from a larger precursor, the amyloid precursor protein (APP; Goldgaber et al. 1987; Kang et al. 1987). APP is proteolytically processed by at least three as yet unidentified proteinases, named secretases, into several proteins and peptides, including the proteinase Nexin II or ectodomain of APP and the βA4-peptide, recovered from the amyloid plaques in AD (Haass and Selkoe 1993). The nature of the mechanisms involved requires an experimental approach that combines in vitro and in vivo techniques, that is a combination of cell biology with an experimental animal model system.

Keywords

Amyloid Precursor Protein MDCK Cell Senile Plaque Cerebral Amyloid Angiopathy Amyloid Precursor Protein Processing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ashkom JD, Tiller SE, Dickerson K, Cravens JL, Argraves WS, Strickland DK (1990) The human Alpha-2-macroglobulin receptor: identification of a 420 kDa cell surface glycoprotein specific for the activated conformation of Alpha-2-Macroglobulin. J Cell Biol 110: 1041–1048CrossRefGoogle Scholar
  2. Auwerx J, Leroy P, Schoonjans K (1992) Lipoprotein lipase: recent contributons from molecular biology. Crit Rev Lab Sci 29: 243–268CrossRefGoogle Scholar
  3. Beisiegel U, Weber W, Bengtsson-Olivecrona G. (1991) Lipoprotein lipase enhances the binding of chylomicrons to low density lipoprotein receptor-related protein. Proc Natl Acad Sci USA 88: 8342–8346PubMedCrossRefGoogle Scholar
  4. Blangy A, Leopold P, Vidal F, Rassoulzadegan M, Cuzin F (1991) Recognition of the CDEI otif GTÇACATG by mouse nuclear proteins and interference with the early development of the mouse embryo. Nucl Acids Res 19: 7243–7250PubMedCrossRefGoogle Scholar
  5. Caparoso G, Gandy S, Buxbaum J, Greengard P (1992) Choloroquine inhibits intracellular degradation but not secretion of Alzheimer β/A4 amyloid precursor protein. Proc Natl Acad Sci USA 89: 2252–2256CrossRefGoogle Scholar
  6. Caplan M, Stow J, Newman A, Madri J, Andrson HC, Farquhar M, Palade G, Jamieson JD (1987) Dependence on pH of polarized sorting of secreted proteins. Nature 329: 632–635PubMedCrossRefGoogle Scholar
  7. Cataldo AM, Nixon RA (1990) Enzymatically active lysosomal proteases are associated with amyloid deposits in Alzheimer brain. Proc Natl Acad Sci USA 87: 3861–3865PubMedCrossRefGoogle Scholar
  8. Chappell DA, Fry GL, Waknitz MA, Iverius P-H, Williams SE, Strickland DK (1992) The Low Density Receptor related protein/a2Macroglobulin receptor binds and mediates catabolism of bovine milk lipase. J Biol Chem 267: 25764–25767PubMedGoogle Scholar
  9. Chen W, Goldstein J, Brown M (1990) NPXY, a sequence often found in cytoplasmic tails, is required for coated pit-mediated internalization of the low density lipoprotein receptor. J Biol Chem 265: 3116–3123PubMedGoogle Scholar
  10. Corder EH, Saunders AM, Strittmatter WJ, Schmechel DE, Gaskell PC, Small GW, Roses AD, Haines JL, Pericak-Vance MA (1993) Gene doses of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 261: 921–923Google Scholar
  11. Cras P, Kawai M, Lowery D, Gonzalez-DeWhitt P, Greenberg B, Perry G (1991) Senile plaque neurites in Alzheimer disease accumulate amyloid precursor protein. Proc Natl Acad Sci USA 88: 7552–7556PubMedCrossRefGoogle Scholar
  12. Creemers JWM, Siezen RJ, Roebroek AJM, Ayoubi TAY, Huylebroeck D, Van de Ven, WJM (1993) Modulation of furin-mediated proprotein processing by site-directed muta-genesis. J Biol Chem 268: 21826–21834Google Scholar
  13. Da Cruz Silva OAB, Lverfeldt K, Oltersdorf T, Sinha S, Lieberburg I, Ramabhadran, T, Suzuki T, Sisodia S, Gandy S, Greengard P (1993) Regulated cleavage of Alzheimer) 3amyloid precursor protein in the absence of the cytoplasmic tail. Neuroscience 57: 873–877CrossRefGoogle Scholar
  14. De Strooper B, Umans L, Van Tuven F, Van den Berghe H (1993) Study of the synthesis and secretion of normal and artificial mutants of murine amyloid precursor protein (APP): Cleavage of APP occurs in a late compartment of the default secretion pathway. J Cell Biol 121: 295–304Google Scholar
  15. De Strooper B, Van Leuven F, Van den Berghe H (1992) a-2-Macroglobulin and other proteinase inhibitors do not interfere with the secretion of Amyloid Precursor Protein in mouse neuroblastoma cells. FEBS Lett 308: 50–53Google Scholar
  16. Diedrich JF, Minnigan J, Carp RI, Whitaker JN, Race R, Frey W, II, Haase AT (1991) Neuropathological changes in Scrapie and Alzheimer’s disease are associated with increased expression of apolipoprotein E and cathepsin D in astrocytes. J Virol 65: 4759–4768Google Scholar
  17. Dotti C, Simons K (1990) Polarized sorting of viral glycoproteins to the axon and dendrites of hippocampal neurons in culture. Cell 62: 63–72PubMedCrossRefGoogle Scholar
  18. Dotti C, Parton R, Simons K (1991) Polarized sorting of glypiated proteins in hippocampal neurons. Nature 349: 158–161PubMedCrossRefGoogle Scholar
  19. Elshourbagy NA, Liao WS, Mahley RW, Taylor JM (1985) Apolipoprotein E mRNA is abundant in the brain and adrenals, as well as in the liver, and is present in other peripheral tissues of rats and marmosets. Proc Natl Acad Sci USA 82: 203–207Google Scholar
  20. Emi M, Wu LL, Robertson MA, Myers RL, Hegele RA, Williams RR, White R, Lalouel JM (1988) Genotyping and sequence analysis of apolipoprotein E isoforms. Genomics 3: 373–379CrossRefGoogle Scholar
  21. Enerbäck S, Gimble JM (1993) Lipoprotein lipase gene expression: physiological regulators at the transcriptional and post-transcriptional level Biochim. Biophys. Acta 1169: 107–125Google Scholar
  22. Esch FS, Keim EC, Beattie RW, Blacher AR, Culwell T, Oltersdorf D, McClure PS, Ward PJ (1990) Cleavage of Amyloid /3 peptide during constitutive processing of its precursor. Science 248: 1122–1124PubMedCrossRefGoogle Scholar
  23. Feurst TO, Niles EG, Studier FW, Moss B, Loh YP (1986) Eukaryotic transient expression system based on recombinant vaccinia virus that synthesizes bacteriophage T7 RNA polymerase, Proc. Natl. Acad Sci USA 83: 8122–8126CrossRefGoogle Scholar
  24. Furukawa T, Masayuki O, Huang R-P, Muramatsu T (1990) A heparin binding protein whose expression increases during differentiation of embryonal carcinoma cells to parietal endoderm cells: cDNA cloning and sequence analysis. J Biochem. 108: 297–302PubMedGoogle Scholar
  25. Giguére V, Isobe K, Grosveld F (1985) Structure of the murine Thy-1 gene. EMBO 4: 2017–2024Google Scholar
  26. Glenner GG, Wong CW (1984) Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem. Biophys Res Commun 120: 885–890CrossRefGoogle Scholar
  27. Goldgaber D, Lerman MI, McBridge OW, Saffiot U, Gajdusek DC (1987) Characterization and chromosomal localization of a cDNA encoding brain amyloid of Alzheimer’s disease. Science 235: 877–880PubMedCrossRefGoogle Scholar
  28. Haass C, Selkoe D (1993) Cellular processing of β-amyloid precursor protein and the genesis of amyloid β-peptide. Cell 75: 1039–1042PubMedCrossRefGoogle Scholar
  29. Haass C, E, Koo A, Mellon A, Hung A, Selkoe D (1992) Targeting of cell-surface β-amyloid precursor protein to lysosomes: alternative processing into amyloid-bearing fragments. Nature 357: 500–502PubMedCrossRefGoogle Scholar
  30. Halban P, Irminger JC (1994) Sorting and processing of secretory proteins. Biochem. J. 299: 1–18PubMedGoogle Scholar
  31. Harter C, Mellman I (1992) Transport of the lysosomal membrane glycoprotein lgp 120 (lgp-A) to lysosomes does not require appearance on the plasma membrane. J Cell Biol 117: 311–325PubMedCrossRefGoogle Scholar
  32. Hendriks L, CM, van Duijn P, Cras M, Cruts W, Van Hul F, van Harskamp A, Warren MG, Mclnnis SE, Antonorakis JJ, Martin A, Hofman Van Broekhoven C (1992). Presenile dementia and cerebral haemorrhage linked to a mutation at codon 692 of the β-amyloid precursor protein gene. Nature Gen 1: 218–222CrossRefGoogle Scholar
  33. Herz J, Goldstein JL, Strickland DK, Ho YK, Brown MS (1991) 39-kDa Protein modulates binding of ligands to low density lipoprotein receptor-related protein/a2-macroglobulin receptor. J Biol Chem 266: 21232–21238Google Scholar
  34. Herz J, Clouthier DE, Hammer RE (1992) LDL receptor-related protein internalizes and degrades uPA-PA1–1 complexes and is essential for embryo implantation. Cell 71: 411–421PubMedCrossRefGoogle Scholar
  35. Huber L, De Hoop M, Dupree P, Zerial M, Simons K, Dotti C (1993) Protein transport to the dendritic plasma membrane of cultured neurons is regulated by rab8p. J Cell Biol 123: 47–55PubMedCrossRefGoogle Scholar
  36. Ingraham H, Lawless G, Evans G (1986) The mouse Thy-1.2 glycoprotein gene: complete sequence and identification of an unusual promoter. J Immunol 136: 1482–1489PubMedGoogle Scholar
  37. Joachim CL, Games D, Morris J, Ward P, Frenkel D, Selkoe D (1991) Antibodies to non-β regions of the β-amyloid precursor protein detect a subset of senile plaques. Am J Pathol 138: 373–384PubMedGoogle Scholar
  38. Kang J, Lemaire H, Unterbeck A, Salbaum JM, Masters CL, Grzeschik KH, Multhaup G, Beyreuther K, Muller-Hill B (1987) The precursor of Alzheimer’s disease amyloid A4 protein resembles a cell-surface receptor. Nature 325: 733–736PubMedCrossRefGoogle Scholar
  39. Kim SK, Miller D, Sapienza V, Chen CM, Bai C, Grundke-lqbal I, Currie, J, Wisniewski H. (1988) Production and characterization of monoclonal antibodies reactive to synthetic cerebrovascular amyloid peptide. Neurosci Res Commun 2: 121–130Google Scholar
  40. Koo EH, Sisodia S, Archer D, Martin L, Weidemann A, Beyreuther K, Fischer P, Masters C, Price D (1990). Precursor of amyloid protein in Alzheimer disease undergoes fast anterograde axonal transport. Proc. Natl Acad Sci USA 87: 1561–1565CrossRefGoogle Scholar
  41. Kowal RC, Herz J, Goldstein JL, Esser V, Brown MS (1989) Low density lipoprotein receptor-related protein mediates uptake of cholesteryl esters derived from apoprotein E-enriched lipoproteins. Proc Natl Acad Sci USA 86: 5810–5814PubMedCrossRefGoogle Scholar
  42. Kuentzel S, Ali S, Altman R, Greenberg B, Raub T (1993) The Alzheimer β-amyloid protein precursor/protease nexin II is cleaved by secretase in a trans-Golgi secretory compartment in human neuroglioma cells. Biochem J 295: 367–378PubMedGoogle Scholar
  43. Lorent K, Overbergh L, Delabie J, Van Leuven F, Van Den Berghe H (1994) Study of the distribution of mRNA coding for Alpha-2-Macroglobulin, the Murinoglobulins, the Alpha2-Macroglobulin Receptor and the Alpha-2-Macroglobulin receptor associated protein during mouse embryogenesis and in adult tissues. Differentiation 55: 213–223PubMedCrossRefGoogle Scholar
  44. Maruyama K, Kametani F. Usami M, Yamao-Harigaya W, Tanaka K (1991) “Secretase,” Alzheimer Amyloid protein precursor secreting enzyme is not sequence-specific. Biochem Biophys Res Commun 179: 1670–1676PubMedCrossRefGoogle Scholar
  45. Matter K, Hunziker W, Mellman I (1992) Basolateral sorting of LDL receptor in MDCK cells: the cytoplasmic domain contains two tyrosine-dependent targeting determinants. Cell 71: 741–753PubMedCrossRefGoogle Scholar
  46. Misumi Y, Oda K, Fujiwara T, Takami N, Tashiro K, and Ikehara Y (1991) Functional expression of furin demonstrating its intracellular localization and endoprotease activity for processing of proalbumin and complement pro-C3. J Biol Chem 266: 1695416959Google Scholar
  47. Moestrup SK, Gliemann J (1989) Analysis of ligand recognition by the purified a2-macroglobulin receptor/low density lipoprotein receptor-related protein. J Biol Chem 264: 15574–15577PubMedGoogle Scholar
  48. Molloy SS, Brenahan PA, Leppla L. Klimpel K, Thomas G (1992) Human furin is a calcium-dependent serine endoprotease that recognizes the sequence Arg-X-X-Arg and efficiently cleaves anthrax toxin protective antigen. J. Biol. Chem. 267: 16396–16402PubMedGoogle Scholar
  49. Molloy SS, Thomas L, Van Slyke JK, Stenberg PE, Thomas G (1994) Intracellular trafficking and activation of the furin proprotein convertase: localization to the TGN and recycling from the cell surface. EMBO J 13: 18–33PubMedGoogle Scholar
  50. Mullan M, Houlden H, Windelspecht M, et al (1992) A locus for familial early-onset Alzheimer’s disease on the long arm of chromosome 14, proximal to the al-antichymotrypsin gene. Nature Gen 2: 340–342CrossRefGoogle Scholar
  51. Namba Y, Tomonaga M, Kawasaki H, Otomo E, Ikeda K (1991) Apolipoprotein E immunoreactivity in cerebral amyloid deposits and neurofibrillary tangles in Alzheimer’s disease and Kuru plaque amyloid in Creutzfeld-Jacob disease. Brain Res 541: 163–166Google Scholar
  52. Oda K, Ikehara Y (1985) Weakly basic amines inhibit the proteolytic conversion of proalbumin to serum albumin in cultured rat hepatocytes. Eur J Biochem 152: 605–609PubMedCrossRefGoogle Scholar
  53. Oda K, Koriyama Y, Yamada Y, Ikehara Y (1986) Effects of weakly basic amines on proteolytic processing and terminal glycosylation of secretory proteins in cultured rat hepatocytes. Biochem J 240: 739–745PubMedGoogle Scholar
  54. Pericak-Vance MA, Bebout JL, Gaskell PC, Yamaoka LH, Hung WY, Alberts MJ, Walker AP, Bartlett RJ, Haynes CA, Welsh KA, Earl NL, Heyman A, Clark CM, Roses AD (1991) Linkage studies in familial Alzheimer disease: Evidence for chromosome 19 linkage. Am J Human Genet 48: 1034–1050Google Scholar
  55. Rebeck GW, Reiter JS, Strickland DK, Hyman BT (1993) Apolipoprotein E in sporadic Alzheimer’s disease: allelic variation and receptor interactions. Neuron 11: 575–580Google Scholar
  56. Rodriguez-Boulan E, Powell S (1992) Polarity of epithelial and neuronal cells. Ann Rev Cell Biol 8: 395–427PubMedCrossRefGoogle Scholar
  57. Roebroek AJM, Creemers JWM, Pauli IGL, Bogaert T, Van De Ven WJM (1993) Generation of structural and functional diversity in furin-like proteins in Drosophila melanogaster by alternative splicing of the DFUR1 gene. EMBO J 12: 1853–1870PubMedGoogle Scholar
  58. Rosen DR, Martin-Morris L, Luo L, White K (1989) A Drosophila gene encoding a protein resembling the human β-amyloid protein precursor. Proc Natl Acad. Sci USA 86: 2478–2482PubMedCrossRefGoogle Scholar
  59. Saunders AM, Schmader K, Breitner JCS, Benson MD, Brown WT, Goldfarb L, Goldgaber D, Manwaring MG, Szymanski MH, McCown N, Dole KC, Schmechel DE, Strittmatter WJ, Pericak-Vance M.A. Roses AD (1993) Apolipoprotein E e4 allele distributions in late-onset Alzheimer’s disease and in other amyloid-forming diseases. Lancet 342: 710–711PubMedCrossRefGoogle Scholar
  60. Saunders AM, Strittmatter WJ, Schmechel D, St. George-Hyslop MD, Perivak-Vance MA, Joo SH, Rosi BL, Gusella JF, Crapper-McLachlan DR, Alberts M. J, Hulette C, Crain B, Goldgaber.D, Roses AD (1993) Association of apolipoprotein E allele e4 with late onset familial and sporadic Alzheimer’s disease. Neurology 43: 1467–1472Google Scholar
  61. Schmechel DE, Saunders AM, Strittmatter WJ, Crain BJ, Hulette CM, Joo SH, Pericak-Vance MA, Goldgaber D, Roses AD (1993) Increased amyloid β-peptide deposition in late cerebral cortex as a consequence of apolipoprotein E genotype in late-onset Alzheimer disease. Proc Natl Acad Sci USA 90: 9649–9653CrossRefGoogle Scholar
  62. Simons K, Zerial M (1993) Rab proteins and the road maps for intracellular transport. Neuron 11: 789–799PubMedCrossRefGoogle Scholar
  63. Sisodia S (1992) β-Amyloid precursor protein cleavage by a membrane-bound protease. Proc Natl Acad Sci USA 89: 6075–6079PubMedCrossRefGoogle Scholar
  64. Steiner DF, Smeekens SP. Ohagi S, Chan SJ (1992) The new enzymology of precursor processing endoproteases. J Biol Chem 267: 23435–23438PubMedGoogle Scholar
  65. Strittmatter WJ, Saunders AM, Schmechel D, Pericak-Vance M, Enghild J, Salvesen GS, Roses AD (1993a) Apolipoprotein E: High-avidity binding to β-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease Proc Natl Acad Sci USA 90: 1977–1981Google Scholar
  66. Strittmatter WJ, Weisgraber KH, Huang DY, Dong L-M, Salvesen GS, Pericak-Vance M, Schmechel D, Saunders AM, Goldgaber D, Roses AD (1993b) Binding of apolipoprotein E to βA4 peptide: isoform-specific effects and implications for late-onset Alzheimer disease. Proc Natl Acad Sci USA 90: 8098–8102Google Scholar
  67. Strittmatter WJ, Weisgraber KH, Goedert M, Saunders AM, Huang D, Corder EH, Dong LM, Jakes R, Alberts MJ, Gilbert JR, Han S-H, Hulette C, Einstein G, Schmechel DE, Pericak-Vance MA, Roses AD (1994) Hypothesis: microtubule instability and paired helical filament formation in the Alzheimer disease brain are related to apolipoprotein E genotype. Exp Neurol 125: 163–171CrossRefGoogle Scholar
  68. Tooyama I, Kawamata T, Akiyama H, Moestrup SK, Gliemann J, McGeer PL (1993) Immunohistochemical study of a2 macroglobulin receptor in Alzheimer and control postmortem human brain. Mol Chem. Neuropathol. 18: 153–160PubMedCrossRefGoogle Scholar
  69. Van Broeckhoven C,H, Backhovens M, Cruts G, De Winter M, Bruyland P, Cras J-J. Martin (1992) Mapping of a gene predisposing to early-onset Alzheimer’s disease to chromosome 14q24.3. Nature Gen 2: 335–339CrossRefGoogle Scholar
  70. Van De Ven WJM, Voorberg J, Fontijn R, Pannekoek H, Van den Ouweland AMW, Siezen RJ. (1990) Furin is a subtilisin-like proprotein-processing enzyme in higher eukaryotes. Mol Biol Rep 14: 265–275PubMedCrossRefGoogle Scholar
  71. Van De Ven WJM, Van Duynhoven JLP, Roebroek AJM (1992) Structure and function of mammalian proprotein processing enzymes of the subtilisin family of serine proteases. Crit Rev Oncogen 4: 115–136Google Scholar
  72. Van Gool D, De Strooper B, Van Leuven F. Triau E, Dom R (1993) a2-macroglobulin expression in neuritic-type plaques in patients with Alzheimer’s disease. Neurobiol. Aging 14: 233–237PubMedCrossRefGoogle Scholar
  73. Vidal F, Blangy A, Rassoulzadegan M, Cuzin F (1992) A murine sequence-specific DNA binding protein shows extensive local similarities to the amyloid precursor protein. Biochem Biophys Res Comm 189: 1336–1341PubMedCrossRefGoogle Scholar
  74. von der Kammer H, Hanes J, Klaudiny J, Scheit KH (1994) A human amyloid precursor-like protein is highly homologous to a mouse sequence-specific DNA binding protein L. DNA Cell BiolGoogle Scholar
  75. Wang R, JF, Meschia RJ, Cotter, Sisodia SS (1991) Secretion of the β/A4 amyloid precursor protein. Identification of a cleavage site in cultured mammalian cells J Biol Chem 266: 16960–16964Google Scholar
  76. Wasco W, Brook JD, Tanzi RE (1993) The amyloid precursor-like protein (APLP) gene maps to the long arm of human chromosome 19. Genomics 15: 237–239PubMedCrossRefGoogle Scholar
  77. Wasco W, Bupp K, Magendantz M, Gusella JF, Tanzi RE, Solomon F (1992) Identification of a mouse brain cDNA that encodes a protein related to the Alzheimer disease-associated amyloid β protein precursor. Proc Natl Acad Sci USA 89: 10758–10762PubMedCrossRefGoogle Scholar
  78. Weidemann A, G, König D, Bunke P, Fischer JM, Salbaum CL, Masters Beyreuther K (1989). Identification, biogenesis, and localization of precursors of Alzheimer’s disease A4 amyloid protein. Cell 57: 115–126PubMedCrossRefGoogle Scholar
  79. Williams SE, Ashcom JD, Argraves WS, Strickland DK (1992) A novel mechanism for controlling the activity of a2-macroglobulin receptor/low density lipoprotein receptor-related protein. Multiple regulatory sites for 39-kDa receptor-associated protein. J Biol Chem 267: 9035–9040PubMedGoogle Scholar
  80. Wirak DO, Bayney R, Kundel CA, Lee A, Scangos GA, Trapp BD, Unterbeck AJ (1991) Regulatory region of human amyloid precursor protein (APP) gene promotes neuron-specific gene expression in the CNS of transgenic mice. EMBO J 10: 289–296PubMedGoogle Scholar
  81. Wise RJ, Barr PJ, Wong PA, Kiefer MC, Brake AJ, Kaufman RJ (1990) Expression of a human proprotein processing enzyme: correct cleavage of the von Willebrand factor precursor at a paired basic amino acid site. Proc Natl Acad Sci USA 87: 9378–9382PubMedCrossRefGoogle Scholar
  82. Wisniewski T, Ghiso J, Frangione B (1991) Peptides homologous to the amyloid protein of Alzheimer’s disease containing a glutamine for glutamic acid substitution have accelerated amyloid fibril formation. Biochem Biophys Res Comm 179: 1247–1254PubMedCrossRefGoogle Scholar
  83. Zhong Z, Higaki J, Murakami K, Wang Y, Catalano R, Quon D, Cordell B (1994) Secretion of β-amyloid Precursor Protein involves multiple cleavage sites. J. Biol. Chem. 269: 627–632PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • B. De Strooper
    • 1
  • D. Moechars
  • K. Lorent
  • I. Dewachter
  • F. Van Leuven
  1. 1.Experimental genetics group, Center for Human GeneticsK.U. Leuven, Campus Gasthuisberg O&NLeuvenBelgium

Personalised recommendations