Advertisement

Neuronal Death, Proinflammatory Cytokines and Amyloid Precursor Protein: Studies on Staggerer Mutant Mice

  • B. Brugg
  • Y. Lemaigre-Dubreuil
  • G. Huber
  • B. Kopmels
  • N. Delhaye-Bouchaud
  • E. E. Wollman
  • J. Mariani
Part of the Research and Perspectives in Alzheimer’s Disease book series (ALZHEIMER)

Summary

In Alzheimer’s, disease (AD), a combination of genetic predisposition and environmental factors may contribute to changes in β-amyloid precursor protein (APP) expression, β-amyloid deposition and neuronal loss. Head injury and acute infection that triggers inflammatory processes are known to be risk factors. In the present in vivo study we show that peripheral endotoxin injection induces a phasic increase of IL-lβ and IL-6 mRNA in mouse cerebellum, followed within 24 hours by an increase in the APPKPI/APP-695 ratio. In the cerebellum of the staggerer mouse mutant, where a severe deficit of Purkinje and granule cells occurs, elevated basal levels of IL-lβ and IL-6 mRNA and an increase in the APP-KPI/APP-695 ratio compared to wild type mice was observed. LPS stimulation further accentuated these differences for cytokines and APP isoforms. Our in vivo studies suggest that interaction loops between cytokines and APP could play an important role in the regulation of APP expression in degenerating Alzheimer’s disease brain tissue.

Keywords

Wild Type Mouse Purkinje Cell Down Syndrome Staggerer Mouse Staggerer Mutant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abraham CR, Shirihama T, Potter H (1990) The protease inhibitor a 1-antichymotrypsin is associated solely with amyloid deposits containing the β -protein and is localized in specific cells of both normal and diseased brain. Neurobiol Aging 11: 525–527CrossRefGoogle Scholar
  2. Allsop D, Haga S, Bruton CJ, Ishini T, Roberts GW (1990) Neurofibrillary tangles in some cases of dementia pugilistica share antigens with amyloid beta-protein of Alzheimer’s disease. Am J Pathol 136: 255–260PubMedGoogle Scholar
  3. Bahmanyer S, Higgins GA, Goldgaber D, Lewis DA, Morison JW, Wilson MC Shaker SK, Gajdusek JDC (1987) Localization of amyloid protein mRNA in brains from patients with Alzheimer’s disease. Science 237: 77–80CrossRefGoogle Scholar
  4. Bandtlow CE, Meyer M, Lindholm D, Spranger M, Heumann R, Thoenen H (1990) Regional and cellular codistribution of interleukin 1 beta and nerve growth factor synthesis. J Cell Biol 111: 1701–1711PubMedCrossRefGoogle Scholar
  5. Bauer J, Strauss S, Schreiter-Gasser U, Ganter U, Schegel P, Witt I, Volk B, Berger M (1991) Interleukin-6 and alpha-2-macroglobulin indicate an acute phase state in Alzheimer’s disease cortices. FEBS Lett 258: 111–114CrossRefGoogle Scholar
  6. Bendotti C, Forloni GL, Morgan R, O’hara BF, Oster-Granite ML, Reeves RH, Gearhart JD, Coyle JT (1988) Neuroanatomical localization and quantification of amyloid precursor protein mRNA by in situ hybridization in the brain of normal, aneuploid and lesioned mice. Proc Natl Acad Sci USA 85: 3628–3632PubMedCrossRefGoogle Scholar
  7. Buxbaum JD, Oishi M, Chen HI, Pinkas-Kramarski R, Jaffe EA, Gandy SE, Greengard P (1992) Cholinergic agonist and interleukin 1 regulate processing and secretion of the Alzheimer β /A4 amyloid protein precursor. Proc Natl Acad Sci USA 89: 10075–10078PubMedCrossRefGoogle Scholar
  8. Cai X-D, Golde TE, Younkin SG (1993) Release of excess amyloid β protein from a mutant amyloid β protein precursor. Science 259: 514–516PubMedCrossRefGoogle Scholar
  9. Chartier-Harlin M-C, Crawford F, Houlden H, Warren A, Hughes D, Fidani L, Goate A, Rossor M, Roques P, Hardy J, Mullan M (1991) Early-onset Alzheimer’s disease caused by mutations at codon 717 of the β -amyloid precursor protein gene. Nature 353: 844–846PubMedCrossRefGoogle Scholar
  10. Chirgwing JM, Przybyla AE, Macdonald RJ, Rutter, WJ (1979) Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry 18: 5294–5299CrossRefGoogle Scholar
  11. Citron M, Oltersdorf T, Haass C, McConlogue L, Hung AY, Seubert P, Vigo-Pelfrey C, Lieberburg I, Selkoe DJ (1992) Mutation of the β -amyloid precursor, protein in familial Alzheimer’s disease increases fl-protein production. Nature 360: 672–674PubMedCrossRefGoogle Scholar
  12. Corder EH, Saunders AM, Strittmatter WJ, Schmechel DE, Gaskell PC, Small GW, Roses AD, Haines JL, Pericak-Vance MA (1993) Gene dose of Apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 261: 921–923Google Scholar
  13. Esch FS, Keim PS, Beattie EC, Blacher RW, Culwell AR, Oltersdorf T, McClure D, Ward PJ (1990) Cleavage of amyloid β peptide during constitutive processing of its precursor. Science 248: 1122–1124PubMedCrossRefGoogle Scholar
  14. Fontana A, Weber E, Dayer JM (1984) Synthesis of Interleukin-1/endogenous pyrogen in the brain of endotoxin-treated mice: a step in fever induction? J Immunol 133: 1696–1698PubMedGoogle Scholar
  15. Forloni G, Demicheli D, Giorgi S, Bendotti C, Angeletti N (1992) Expression of amyloid precursor protein mRNAs in endothelial, neuronal and glial cells: modulation by interleukin-1. Mol Brain Res 16; 128–134PubMedCrossRefGoogle Scholar
  16. Frautschy SA, Baird A, Cole GM (1991) Effects of injected Alzheimer β -cores in rat brain. Proc Natl Acad Sci USA 88: 8362–8366PubMedCrossRefGoogle Scholar
  17. Giulian D, Lachman LB (1985) Interleukin-1 stimulation of astroglial proliferation after brain injury. Science 228: 497–500PubMedCrossRefGoogle Scholar
  18. Glenner GG, Wong CW (1984) Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun 120: 885–890PubMedCrossRefGoogle Scholar
  19. Goa W-Q, Liu X-L, Hatten ME (1992) The weaver gene encodes a nonautonomus signal for CNS neuronal differentiation. Cell 68: 841–854CrossRefGoogle Scholar
  20. Goate A, Chartier-Harlin M-C, Mullan M, Brown J, Crawford F, Fidani L, Giuffra L, Haynes A, Irving N, James L, Mant R, Newton P, Rocke K, Roques P, Talbot C, Pericak-Vance M, Roses A, Williamson R, Rossor M, Owen M, Hardy J (1991) Segregation of a missence mutation in the amyloid precursor gene with familial Alzheimer’s disease. Nature 349: 704–706PubMedCrossRefGoogle Scholar
  21. Goldgaber D, Harris HW, Hla T, Maciag T, Donnely RJ, Jacobson JS, Vitek MD, Gajdusek DC (1989) Interleukin-1 regulation of synthesis of amyloid protein precursor in human endothelial cells. Proc Natl Acad Sci USA 86: 7606–7610PubMedCrossRefGoogle Scholar
  22. Gray CW, Patel AJ (1993) Regulation of β -amyloid precursor protein isoform mRNAs by transforming growth factor-β l and interleukin-lβ in astrocytes. Mol Brain Res 19: 251–256PubMedCrossRefGoogle Scholar
  23. Griffin WST, Stanley LC, Ling C, White L, MacLeod V, Perrot LJ, White CL, Arora C (1989) Brain interleukin 1 and S-100 immunoreactivity are elevated in Down syndrome and Alzheimer’s disease. Proc Natl Acad Sci USA 86: 7611–7615PubMedCrossRefGoogle Scholar
  24. Haass C, Schlossmacher MG, Hung AY, Vigo-Pelfrey C, Mellon A, Ostaszewski BL, Lieberburg I, Koo EH, Schenk D, Telplow DB, Selkoe DJ (1992) Amyloid β -peptide is produced by cultured cells during normal metabolism. Nature 359: 322–325PubMedCrossRefGoogle Scholar
  25. Hardy J, Allsop D (1991) Amyloid deposition as the central event in the aetiology of Alzheimer’s disease. Trends Pharmacol Sci 12: 383–388PubMedCrossRefGoogle Scholar
  26. Heinrich PC, Castell JV, Andus T (1990) Interleukin-6 and the acute phase response. Biochem J 265: 621–636PubMedGoogle Scholar
  27. Herrup K (1983) Role of staggerer gene in determining cell number in cerebellar cortex. I Granule cell death is an indirect consequence of staggerer gene action. Dev Brain Res 11: 267–274CrossRefGoogle Scholar
  28. Herrup K, Mullen R (1979a) Staggerer chimeras: intrinsic nature of Purkinje cell defect and implication for normal cerebellar development. Brain Res 178: 443–457PubMedCrossRefGoogle Scholar
  29. Herrup K, Mullen R (1979b) Regional variation and absence of large neurons in the cerebellum of the “staggerer” mouse. Brain Res 172: 1–12PubMedCrossRefGoogle Scholar
  30. Higgins GA, Oyler GA, Neve RL, Chen KS, Gage FH (1990) Altered levels of amyloid protein precursor transcripts in the basal forebrain of behaviorally impaired aged rats. Proc Natl Acad Sci USA 87: 3032–3037PubMedCrossRefGoogle Scholar
  31. Johnson SA, McNeill T, Cordell B, Finch CE (1990) Relation of neuronal APP-751/APP-695 mRNA ratio and neuritic plaque density in Alzheimer’s disease. Science 248: 854–857PubMedCrossRefGoogle Scholar
  32. Kang J, Lemaire HG, Unterbeck A, Salbaum JM, Masters CL, Greeschik K-H, Multhaupt G, Beyreuther, K, Muller-Hill B (1987) The precursor of Alzheimer’s disease amyloid A4 protein resembles a cell-surface receptor. Nature 325: 733–736PubMedCrossRefGoogle Scholar
  33. Kitaguchi NYT, Shiojiri S, Ito H (1988) Novel precursor of Alzheimer’s disease amyloid protein shows protease inhibitory activity. Nature 331: 530–532PubMedCrossRefGoogle Scholar
  34. Koh J-Y, Yang LL, Cotman CW (1990) β -Amyloid protein increase the vulnerability of cultured cortical neurons to excitotoxic damage. Brain Res 533: 315–320PubMedCrossRefGoogle Scholar
  35. Kopmels B, Wollman EE, Guastavino JM, Delhaye-Bouchaud N, Fradelizi D, Mariani J (1990) Interleukin-1 hyperproduction by in vitro activated peripheral macrophages. J Neurochem 55: 1980–1985PubMedCrossRefGoogle Scholar
  36. Kopmels B, Mariani J, Delhaye-Bouchaud N, Audibert F, Fradelizi D, Wollman EE (1992) Evidence for an hyperexcitability state of staggerer mutant mice macrophages. J Neurochem 58: 192–199PubMedCrossRefGoogle Scholar
  37. Lewis DA, Higgins GA, Young WG, Goldgaber D, Gajdusek, DC, Wilson C, Morrison JH (1988) Distribution of precursor amyloid-β -protein messenger RNA in human cerebral cortex: relationship to neurofibrillary tangles and neurite plaques. Proc Natl Acad Sci USA 85: 1691–1695PubMedCrossRefGoogle Scholar
  38. Löffler J, Huber G (1992) β -Amyloid precursor protein isoforms in various rat brain regions and during brain development. J Neurochem 59: 1316–1324PubMedCrossRefGoogle Scholar
  39. Maniatis T, Fritch EF, Sambrook J (1987) Molecular cloning A laboratory manual. Cold Spring Harbor LaboratoryGoogle Scholar
  40. Master CL, Simms G, Weinman NA, Multhaup G, McDonald, BL, Beyreuther, K (1985) Amyloid plaque core protein in Alzheimer’s disease and Down syndrome. Proc Natl Acad Sci USA 82: 4245–4249CrossRefGoogle Scholar
  41. Mortimer JA, van Dujin CM, Chandra V (1991) Head trauma as a risk factor for Alzheimer’s disease: a collaborative re-analysis of case-control studies. Int J Epidemiol 20: S28PubMedGoogle Scholar
  42. Nordstedt C, Gandy SE, Alafuzoff I, Caporaso GL, Iverfeldt K, Greeb JA, Winblad B, Greengard P (1991) Alzheimer β /A4 amyloid precursor protein in human brain: Aging-associated increases in holoprotein and in a proteolytic fragment. Proc Natl Acad Sci USA 88: 8910–8914PubMedCrossRefGoogle Scholar
  43. Ponte P, Gonzales-DeWhitt P, Schilling J, Miller J, Hsu D, Greenberg B, Davis K, Wallas W, Lieberburg I, Fuller F, Cordell B (1988) A new A4 amyloid mRNA contains a domain homologous to serine proteinase inhibitors. Nature 331: 525–527PubMedCrossRefGoogle Scholar
  44. Quon D, Wang Y, Catalano R, Scardina JM, Murakami K, Cordell B (1991) Formation of β amyloid protein deposits in brains of transgenic mice. Nature 352: 239–241PubMedCrossRefGoogle Scholar
  45. Roberts GW, Gentleman SM, Lynch A, Graham DI (1991) β -amyloid protein deposition in brain after head trauma. Lancet 338: 1422–1423PubMedCrossRefGoogle Scholar
  46. Schellenberg GD, Bird TD, Wijsman EM, Orr HT, Anderson, L, Nemens E, White JA Bonycastle L, Weber JL, Alonso ME, Potter H, Heston, LL, Martin GM (1992) Genetic linkage evidence for a familial Alzheimer’s disease locus on chromosome 14. Science 258: 668–671PubMedCrossRefGoogle Scholar
  47. Schnabel J (1993) New Alzheimer’s therapy suggested. Science 260: 1719–1720PubMedCrossRefGoogle Scholar
  48. Selkoe DJ (1993) Physiological production of the β -amyloid protein and the mechanism of Alzheimer’s disease. Trends Neurosci 16: 403–408PubMedCrossRefGoogle Scholar
  49. Seubert P, Vigo-Pelfrey C, Esch F, Lee M, Dovey H, Davies D, Sinna S, Schlossmacher M, Whaley J, Swindlehurst C, McCormack R, Wolfert R, Selkoe D, Lieberburg I, Schenk D (1992) Isolation and quantification of soluble Alzheimer’s β -peptide from biological fluids. Nature 359: 325–227PubMedCrossRefGoogle Scholar
  50. Siebert, PD, Larrick JW (1992) PCR MIMICS — Competitive DNA fragments for use as internal standards in quantitative PCR. Bio Techniques 14: 244–249Google Scholar
  51. Shojaeian H, Delhaye-Bouchaud N, Mariani J (1985) Decreased number of cells in the inferior olivary nucleus of the developing staggerer mouse. Dev Brain Res 21: 141–146CrossRefGoogle Scholar
  52. Shoji M, Golde TE, Ghiso J, Cheung TT, Estus S, Shaffer LM, Cai X-D, McKay DM, Tintner R, Frangione B, Younkin SG (1992) Production of Alzheimer amyloid β protein by normal proteolytic processing. Science 258: 126–129PubMedCrossRefGoogle Scholar
  53. Solà C, Garcia-Ladona FJ, Mengod G, Probst A, Frey P, Palacios JM (1993) Increased levels of the Kunitz protease inhibitor-containing /APP mRNA in rat brain following neurotoxic damage. Mol Brain Res 17: 41–52PubMedCrossRefGoogle Scholar
  54. Tanzi R, McClatchey A, Lamperti ED, Villa-Komaroff L, Gusella JF, Neve RL (1988) Protease inhibitor domain encoded by an amyloid protein precursor mRNA associated with Alzheimer’s disease brain. Nature 331: 528–530PubMedCrossRefGoogle Scholar
  55. Vandenabeele P, Fiers W (1991) Is amyloidogenesis during Alzheimer’s disease due to an IL1/IL-6-mediated “acute phase response” in the brain. Immunol Today 12: 217–219PubMedCrossRefGoogle Scholar
  56. Weidemann A, König G, Bunke D, Fischer P, Salbaum JM, Masters CL, Beyreuther K (1989) Identification, biogenesis, and localization of precursors of Alzheimer’s disease A4 amyloid protein. Cell 57: 115–126PubMedCrossRefGoogle Scholar
  57. Wollman EE, Kopmels B, Bakalian A, Delhaye-Bouchaud N, Fradelizi D, Mariani J (1992) Cytokine and neuronal degeneration. In: Dantzer R, Rothwell N (eds) Cytokine and neuronal degeneration Pergamon Press Oxford, pp 187–203Google Scholar
  58. Yankner BA, Duffy LK, Kirchner DA (1990) Neurotrophic and neurotoxic effects of amyloid β protein: reversal by tachykinin neuropeptides. Science 250: 279–282PubMedCrossRefGoogle Scholar
  59. Zanjani H, Mariani J, Herrup K (1990) Cell loss in the inferior olive of staggerer mutation mouse is an indirect effect of the gene. J Neurogenet 6: 229–241PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • B. Brugg
    • 1
  • Y. Lemaigre-Dubreuil
  • G. Huber
  • B. Kopmels
  • N. Delhaye-Bouchaud
  • E. E. Wollman
  • J. Mariani
  1. 1.Institut des Neurosciences, (URA CNRS 1488) Lab. de Neurobiologie du DéveloppementUniversité Pierre et Marie CurieParisFrance

Personalised recommendations