Capacity Controlling Parameters and Their Impact on Metal Toxicity in Soil Invertebrates

  • C. A. M. van Gestel
  • M. C. J. Rademaker
  • N. M. van Straalen
Part of the Environmental Science book series (ESE)


The behaviour of a chemical in a soil or sediment depends on its physical-chemical properties as well as on the environmental conditions prevalent in its immediate surroundings. In soils and sediments, contaminant behaviour may be determined by the content of organic matter, clay, and hydroxides of aluminium and iron and by pH (Alleyway 1990; Bolt and Bruggenwert 1976; Van Riemsdijk and Hiemstra 1993; Yong et al. 1992). These properties determine the storage capacity of soils for heavy metals and other pollutants, and are therefore called Capacity Controlling Parameters (CCP) (ter Meulen et al. 1993). The same properties are believed to determine bioavailability of contaminants for organisms living in soil or sediment.


Organic Matter Content Cation Exchange Capacity Clay Content Soil Organic Matter Content Artificial Soil 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adema DMM, Boer JLM de, Van Gestel CAM, De Jong P (1987) De invloed van bodemreiniging op de biologische beschikbaarheid van metalen, TNO–Rapport nr R87/120. Delft, The NetherlandsGoogle Scholar
  2. Aldenberg T, Slob W(1993) Confidence limits for hazardous concentrations based on logistically distributed NOEC toxicity data. Ecotox Environ Safety 25:48–63CrossRefGoogle Scholar
  3. Alloway BJ (ed)(1990) Heavy metals in soils. Blackie and Son Ltd, GlasgowGoogle Scholar
  4. Bengtsson, G, Rundgren S (1992) Seasonal variation of lead uptake in the earthworm Lumbricus terrestris and the influence of soil liming and acidification. Arch Environ Contam Toxicol 23:198–205CrossRefGoogle Scholar
  5. Bengtsson G, Tranvik L (1989) Critical metal concentrations for forest soil invertebrates. Water Air Soil Pollut 47:381–417CrossRefGoogle Scholar
  6. Bengtsson G, Gunnarsson T, Rundgren S (1986) Effect of metal pollution on the earthworm Dendrobaena rubida (sav.) in acidified soil. Water Air Soil Pollut 28:361–383Google Scholar
  7. Benninger-Traax M, Taylor DH (1993) Municipal sludge metal contamination of old-field ecosystems; do liming and tilling affect remediation? Environ Toxicol Chem 12 1931–1943CrossRefGoogle Scholar
  8. Beyer WN, Cromartie EJ (1987) A survey of Pb, Cu, Zn, Cd, As and Se in earthworms and soil from diverse sites. Environ Monit Assess 8:27–36CrossRefGoogle Scholar
  9. Beyer WN, Chaney RL, Mulhern BM (1982) Heavy metal concentrations in earthworms from soil amended with sewage sludge. J Environ Qual 11:381–385CrossRefGoogle Scholar
  10. Bolt GH, Braggenwert MGM (1976) Soil chemistry, A. Basic elements. developments in soil science, vol 5A. Elseviers, AmsterdamGoogle Scholar
  11. Corp N, Morgan AJ (1991) Accumulation of heavy metals from polluted soils by the earthworm Lumbricus rubellus: a laboratory exposure of control worms reduce biomonitoring problems. Environ Pollut 74:39–52CrossRefGoogle Scholar
  12. Denneman CAJ, Gestel CAM van (1990) Bodemverontreiniging en bodemecosystemen: voorstel voor C-(toetsings)waarden op basis van ecotoxicologische risico’s, Reportnr 725201001. National Institute for Public Health and Environmental Protection, Bilthoven, The NetherlandsGoogle Scholar
  13. Everts JW, Aukema B, Mullié WC, Van Gemerden A, Rottier A, Van Katz R, Gestel CAM van (1991) Exposure of the ground dwelling spider Oedothorax apicatus (Blackwall) (Erigonidae) to spray and residues of deltamethrin. Arch Environ Contam Toxicol 20:13–19CrossRefGoogle Scholar
  14. Gestel CAM van(1992) The influence of soil characteristics on the toxicity of chemicals for earthworms: a review. In: Greig-Smith PW, Becker H, Edwards PJ, Heimbach F (eds) Ecotoxicology of earthworms. Intercept Ltd, Andover, Hants, pp 44–54Google Scholar
  15. Gestel CAM van, Ma W (1988) Toxicity and bioaccumulation of chlorophenols in earthworms, in relation to bioavailability in soil. Ecotox Environ Safety 15:289–297CrossRefGoogle Scholar
  16. Gestel CAM van, Ma W (1990) An approach to quantitative structure-activity relationships in terrestrial ecotoxicology: earthworm toxicity studies. Chemosphere 21:1023–1033CrossRefGoogle Scholar
  17. Gestel CAM van, Van Dis WA (1988) The influence of soil characteristics on the toxicity of four chemicals for the earthworm Eisenia fetida andrei (Oligochaeta). Biol Fertil Soils 6:262–265CrossRefGoogle Scholar
  18. Gestel CAM van, Van Straalen NM (1994) Ecotoxicological test systems for terrestrial invertebrates. In: Donker MH, Eijsackers H, Heimbach F (eds) Ecotoxicology of soil organisms. Lewis Publ, Chelsea, Michigan, pp 205–228Google Scholar
  19. Gestel CAM van, Dirven-Van Breemen EM, Kamerman JW (1992a) Beoordeling van gereinigde grond, IV. Toepassing van bioassays met planten en regenwormen op referentiegronden, Reportnr 216402004. National Institute for Public Health and Environmental Protection, Bilthoven, The Netherlands.Google Scholar
  20. Gestel CAM van, Dirven-Van Breemen EM, Kamerman JW (1992b) Beoordeling van gereinigde grond, V. Toepassing van bioasays met planten en regenwormen op verontreinigde en gereinigde gronden, Reportnr 216402005. National Institute for Public Health and Environmental Protection, Bilthoven, The NetherlandsGoogle Scholar
  21. Houx NWH, Aben WJM (1993) Bioavailability of pollutants to soil organisms via the soil solution. Sci Total Environ Suppl pp 387–395Google Scholar
  22. Jäggy A, Streit B (1982) Toxic effect of soluble copper on Octolasium cyaneum Sav. (Lumbricidae). Revue Suisse Zool 89:881–889Google Scholar
  23. Kiewiet AT, Ma W (1991) Effect of pH and calcium on lead and cadmium uptake by earthworms in water. Ecotox Environ Safety 21:32–27CrossRefGoogle Scholar
  24. Ma W (1982) The influence of soil properties and worm-related factors on the concentration of heavy metals in earthworms. Pedobiologia 24:109–119Google Scholar
  25. Ma W (1983) Regenwormen als bio-indicators van bodemverontreiniging. Bodembescherming 15. Staatsuitgeverij, The Hague, The NetherlandsGoogle Scholar
  26. Ma W (1984) Sublethal toxic effects of copper on growth, reproduction and litter break down activity in the earthworm Lumbricus rubellus with observations on the influence of temperature and soil pH. Environ Pollut (Series A) 33:207–219CrossRefGoogle Scholar
  27. Ma W (1988) Toxicity of copper to Lumbricid earthworms in sandy agricultural soils amended with Cu-enriched organic-waste material. Ecol Bull 39:53–56Google Scholar
  28. Meulen GRB ter, Stigliani WM, Salomons W, Bridges EM, Imeson AC (eds)(1993) Chemical time bombs. Proceedings of the European state-of-the-art conference on delayed effects of chemicals in soils and sediments. Foundation for Ecodevelopment “Stichting Mondiaal Alternatief”, Hoofddorp, The NetherlandsGoogle Scholar
  29. MILBOWA (1991) Milieukwaliteitsdoelstellingen bodem en water. Ministry of Housing, Physical planning and the Environment, Tweede Kamer, The Hague 21990(1):1990–1991Google Scholar
  30. Morgan JE, Morgan AJ (1988a) Calcium-lead interactions involving earthworms. Part 1: the effect of exogenous calcium on lead accumulation by earthworms under field and laboratory conditions. Environ Pollut 54:41–53CrossRefGoogle Scholar
  31. Morgan JE, Morgan AJ (1988b) Earthworm as biological monitors of cadmium, copper, lead and zinc in metalliferous soils. Environ Pollut 54:123–138CrossRefGoogle Scholar
  32. Mueller BR, Roth M, Rittner P (1993) Influence of compost and lime on population structure and element concentrations of forest soil invertebrates. Biol Fertil Soil 15:165–173CrossRefGoogle Scholar
  33. Nederlof M, Van Riemsdijk WH, De Haan FAM (1993) Effect on pH on the bioavailability of metals in soil. In: Eijsacker HJP, Hamers T (eds) Integrated soil and sediment research: a basis for proper protection. Kluwer, Dordrecht, pp 215–219CrossRefGoogle Scholar
  34. OECD (1984) Guideline for testing of chemicals no 207: earthworm, acute toxicity tests. Adopted 4 April 1984, Organization for Economic Co-operation and Development, ParisGoogle Scholar
  35. OECD (1992) Report of the OECD workshop on the extrapolation of laboratory aquatic toxicity data to the real environment. Organization for Economic Co-operation and Development, ParisGoogle Scholar
  36. Stafford EA, McGrath SP (1986) The use of acid insoluble residue to correct for the presence of soil-derived metals in the gut of earthworms used as bio-indicator organisms. Environ Pollut (Series A) 42:233–246CrossRefGoogle Scholar
  37. Streit B (1984) Effects of high copper concentrations on soil invertebrates (earthworms and oribated mites): experimental results and a model. Oecologia 64:381–388CrossRefGoogle Scholar
  38. Suter GW II (1993) New concepts in the ecological aspects of stress: the problem of extrapolation. Sci Total Environ Suppl 63–76Google Scholar
  39. US-EPA (1984) Estimating concern levels for concentrations of chemical substances in the environment. Environmental Effects Branch, US Environmental Protection Agency, Washington, DCGoogle Scholar
  40. US-EPA (1989) EPA Office of Water Regulations and Standards, Report number 440/5-89-002. US Environmental Protection Agency, Washington, DCGoogle Scholar
  41. Van de Meent D, Aldenberg T, Canton JH, Gestel CAM van, Slooff W (1990) Streven naar waarden. Achtergrondstudie ten behoeve van de nota “Milieukwaliteitsnormering water en bodem”, Reportnr 670101001. National Institute for Public Health and Environmental Protection, Bilthoven, The NetherlandsGoogle Scholar
  42. Van Riemsdijk WH, Hiemstra T (1993) Adsorption to heterogeneous surfaces. In: Allen HE, Perdue EM, Brown DS (eds) Metals in groundwater. Lewis Publ, Chelsea, Michigan, pp 1–36Google Scholar
  43. Van Straalen NM, Denneman CAJ (1989) Ecotoxicological evaluation of soil quality criteria. Ecotox Environ Safety 18:241–251CrossRefGoogle Scholar
  44. Van Straalen NM, Gestel CAM van (1993) Soil invertebrates and micro-organisms. In: Calow P (ed) Handbook of ecotoxicology. Blackwell Sci Publ, Oxford, 1:251–277Google Scholar
  45. Wagner C, Løkke H (1991) Estimation of ecotoxicogical protection levels from NOEC toxicity data. Water Res 25:1237–1242CrossRefGoogle Scholar
  46. Wohlgemuth D, Kratz W, Weigmann G (1990) The influence of soil characteristics on the toxicity of an environmental chemical (cadmium) on the newly developed mono-species test with the springtail Folsomia candida (Willem). In: Barcelo J (ed) Environmental Contamination 4th International Conference, Barcelona. CEP-press, Edinburgh, pp 260–262Google Scholar
  47. Wright MA, Stringer A (1980) Lead, zinc and cadmium content of earthworms from pasture in the vicinity of an industrial smelting complex. Environ Pollut (Series A) 23:313–321CrossRefGoogle Scholar
  48. Yong RN, Mohamed AMO, Warkentin BP (1992) Principles of contaminant transport in soils. Developments in Geotechnical Engineering, 73. Elsevier, AmsterdamGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • C. A. M. van Gestel
  • M. C. J. Rademaker
  • N. M. van Straalen

There are no affiliations available

Personalised recommendations