Advertisement

Non-linear Release of Metals from Aquatic Sediments

  • U. Förstner
Part of the Environmental Science book series (ESE)

Abstract

Modern research on particle-bound contaminants quite probably originated with the idea, that sediments reflect the biological, chemical and physical conditions in a water body (Züllig 1956). Based on this concept, the historical evolution of limnological parameters could be traced back from the study of vertical sediment cores. In fact, already early in this century, Nipkow (1920) suggested that the alternating sequence of layers in a sediment core from Lake Zürich might be related to variations in the trophic status of the lake system. Geochemical investigations of stream sediment has become standard practice in mineral exploration since the beginning of the sixties (Hawkes and Webb 1962). Similarly, lake sediment geochemistry has been used as a guide to mineralization, particularly intensive on lakes of the Canadian shield. This approach attracted even more attention when mineral exploration was followed by large-scale mining and processing activities: “Both the exploration and environmental geochemist can be looking to the same type of areas, those with high metal concentrations, but obviously from a different motivation” (Allan 1974). During the past 20 years, research on metal-contaminated sediments evolved to four aspects, which in an overlapping succession also reflect the development of knowledge on particle-bound pollutants:
  • The evaluation of solid/solution relations of metals in surface water;

  • The study of in situ processes and mechanisms of metal transfer in various compartments of the aquatic ecosystems;

  • The assessment of the environmental impact of particle-bound metals, i.e. development of sediment quality criteria;

  • The development of remedial measures, in particular, of dredged materials, by integrated, multidisciplinary research

Keywords

Pore Water Mine Tailing Aquatic Sediment Acid Volatile Sulphide Anoxic Sediment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahlf W (1983) The River Elbe: behaviour of Cd and Zn during estuarine mixing. Environ Tech Letts 4:405–410CrossRefGoogle Scholar
  2. Ahlf W, Munawar M (1988) Biological assessment of environmental impact of dredged material. In: Salomons W, Förstner U (eds) Chemistry and biology of solid waste — dredged material and mine tailings. Springer, Berlin Heidelberg New York pp 127–142.Google Scholar
  3. Ahlf W et al. (1992) Mikrobielle Biotests mit Sedimenten. Schr Reihe Verein WaBoLu/Berlin 89:427–435Google Scholar
  4. Allan RJ (1974) Metal contents of lake sediment cores from established mining areas: an interface of exploration and environmental geochemistry. Geol Surv Can 74–1/8:43–49Google Scholar
  5. Ankley GT, Katko A, Arthur JW (1990) Identification of ammonia as an important sediment-associated toxicant in the Lower Fox River and Green Bay, Wisconsin. Environ Toxicol Chem 9:313–322CrossRefGoogle Scholar
  6. Anonymous (1979) Suggested guidelines for methods of operation in surface mining of areas of potentially acid-producing materials. West Virginia Surface Mine Drainage Task Force. WV Dept Nat Resour, Charleston, WVGoogle Scholar
  7. Anonymous (1986) Leitbild für die schweizerische Abfallwirtschaft (Guidelines for the Waste Management in Switzerland), Schriftenreihe Umweltschutz No 51. Eidgenössische Kommission für Abfallwirtschaft, Bundesamt für Umweltschutz, Bern/SwitzerlandGoogle Scholar
  8. Anonymous (1993) ARCS Overview of risk assessment and modeling in the assessment and remediation of contaminated sediments. Prepared by ASCI for the US Environmental Protection Agency, Great Lakes National Program Office, Chicago, IllinoisGoogle Scholar
  9. Anonymous (1990) Technische Verordnung über Abfälle (TVA). Der Schweizerische Bundesrat (Swiss Federal Parliament), SR 814.015, Dec 10, 1990. Bern/SwitzerlandGoogle Scholar
  10. Anonymous (1994) Remediation guidance document. USEPA Oceans and Coastal Protection Division and Great Lakes National Programme Office. Draft, Aug 20, 1993Google Scholar
  11. Baccini P (ed)(1989) The landfill — reactor and final storage. Lecture Notes in Earth Sciences 20. Springer, Berlin Heidelberg New York, 439 ppGoogle Scholar
  12. Belevi H, Stämpfli DM, Baccini P (1992) Chemical behaviour of municipal solid waste incinerator bottom ash in monofills. Waste Management Research 10:153–167Google Scholar
  13. Benjamin MM, Hayes KL, Leckie JO (1982) Removal of toxic metals from power-generated waste streams by adsorption and co-precipitation. J Water Pollut Control Fed 54:1472–1481Google Scholar
  14. Berner RA (1981) A new geochemical classification of sedimentary environments. J Sediment Petrol 51:359–365Google Scholar
  15. Berner RA, Rainwell R (1984) C/S method for distinguishing freshwater from marine sedimentary rocks. Geology 12:365–368CrossRefGoogle Scholar
  16. Bernhard M, Brinckman FE, Sadler PJ (Editors)(1986) The importance of chemical “speciation” in environmental processes. Dahlem Konferenzen, Life Sciences Research Report 33. Springer, Berlin Heidelberg New York, 763 ppGoogle Scholar
  17. Binkley D et al. (1989) Acidic deposition and forest soils. Springer, Berlin Heidelberg New York, 146 pCrossRefGoogle Scholar
  18. Bokuniewicz HJ (1982) Submarine borrow pits as containments for dredged sediments. In: Kester PR, Ketchum BH, Duedall IW, Parks PK (eds) Dredged material disposal in the ocean. John Wiley & Sons, New York, pp 215–227Google Scholar
  19. Breemen N van (1975) Acidification and deacidification of coastal plain soils as a result of periodic flooding. Soil Sci Soc Amer Proc 39:1153–1157CrossRefGoogle Scholar
  20. Breemen, N van (1987) Effects of redox processes on soil acidity. Neth J Agric Sci 35:271–279Google Scholar
  21. Breemen N van (1988a) Effects of seasonal redox processes involving iron on the chemistry of periodically reduced soils. In: JW Stucki, BA Goodman, U. Schwertmann (eds) Iron in soils and clay minerals. D Reidel Publishing Company, Dordrecht, The Netherlands, pp 197–809.Google Scholar
  22. Breemen N van (1988b) Long-term chemical, mineralogical, and morphological effects of iron-redox processes in periodically flooded soils. In: Stucki JW, Goodman BA, Schwertmann U (eds) Iron in soils and clay minerals. D Reidel Publ Co, Dordrecht, The Netherlands, pp 825–841Google Scholar
  23. Breemen N van, Mulder J, Driscoll CJ (1983) Acidification and alkalinization of soils. Plant Soil 75:283–308CrossRefGoogle Scholar
  24. Breemen N van, Driscoll CT, Mulder J (1984) Acidic deposition and internal proton sources in acidification of soils and water. Nature 307:599–604CrossRefGoogle Scholar
  25. Brinkman R (1970) Ferrolysis, a hydromorphic soil forming process. Geoderma 3:199–206CrossRefGoogle Scholar
  26. Brinkman R (1979) Ferrolysis, a soil-forming process in hydromorphic conditions. Agricultural Research Reports 887. PUDOC, Wageningen.Google Scholar
  27. Bruynesteyn A, Hackl RP (1984) Evaluation of acid production potential of mining waste materials. Miner Environ 4:5–8CrossRefGoogle Scholar
  28. Calmano W (1988) Stabilization of dredged mud. In: Salomons W, Förstner U (eds) Environmental management of solid waste: dredged materials and mine tailings, pp 80–98. Springer, Berlin Heidelberg New YorkGoogle Scholar
  29. Calmano W, Förstner U, Kersten M, Krause D (1986) Behaviour of dredged mud after stabilization with different additives. In: Assink JW, Van Den Brink WJ (eds) Contaminated soil. Martinus Nijhoff Publ, Dordrecht, pp 737–746CrossRefGoogle Scholar
  30. Calmano W, Ahlf W, Förstner U (1988) Study of metal sorption/desorption processes on competing sediment components with a multi-chamber device. Environ Geol Water Sci 11:77–84CrossRefGoogle Scholar
  31. Calmano W, Hong J, Förstner U (1992) Einfluß von pH-Wert und Redoxpotential auf die Bindung und Mobilisierung von Schwermetallen in kontaminierten Sedimenten. Vom Wasser 78:245–257Google Scholar
  32. Calmano W, Hong J, Förstner U (1993) Binding and mobilization of heavy metals in contaminated sediments affected by pH and redox potential. In: Christensen E et al. (eds) Proc 1st Intern Spec Conf on Contaminated Aquatic Sediments: Historical Records, Environmental Impact, and Remediation. Water Sci Technol 28:223–235Google Scholar
  33. Calmano W, Förstner U, Hong J (1994) Mobilization and scavenging of heavy metals following resuspension of anoxic sediments from the Elbe River. In: Alpers CN, Blowes DW (eds) Environmental geochemistry of sulfide oxidation. American Chemical Society, Washington DC, ACS Symp Ser 550:298–321Google Scholar
  34. Carignan R, Rapin F, Tessier A (1985) Sediment pore water sampling for metal analysis: a comparison of techniques. Geochim. Cosmochim. Acta 49:2493–2497CrossRefGoogle Scholar
  35. Chapman PM (1986) Sediment quality criteria from the sediment quality triad: an example. Environ Toxicol Chem 5:957–964CrossRefGoogle Scholar
  36. Church TM (1986) Biogeochemical factors influencing the residence time of microconstituents in a large tidal estuary, Delaware Bay. Marine Chemistry 18:393–406CrossRefGoogle Scholar
  37. Craig PJ, Moreton PA (1984) The role of sulphide in the formation of dimethyl mercury in river and estuary sediments. Mar Pollut Bull 15:406–408CrossRefGoogle Scholar
  38. Darby DA, Adams DD, Nivens WT (1986) Early sediment changes and element mobilization in a man-made estuarine marsh. In: Sly PG (ed) Sediment and water interactions. Springer, Berlin Heidelberg New York, pp 343–351CrossRefGoogle Scholar
  39. Davison W (1988) Interactions of iron, carbon and sulphur in marine and lacustrine sediments. In: Fleet AJ, Kelts K, Talbot MR (eds) Lacustrine Petroleum Source Rocks. Spec Publ 40, Geological Society of America, Boulder, CO, pp 131–137Google Scholar
  40. Davison W, Lishman JP, Hilton J (1985) Formation of pyrite in freshwater sediments. Implications for C/S ratios. Geochim Cosmochim Acta 49:1615–1620CrossRefGoogle Scholar
  41. DiToro DM et al. (1990) Toxicity of cadmium in sediments: the role of acid volatile sulfide. Environ Toxicol Chem 9:1487–1502CrossRefGoogle Scholar
  42. DiToro DM et al. (1992) Acid volatile sulfide predicts the acute toxicity of cadmium and nickel in sediments. Environ Sci Technol 26:96–101CrossRefGoogle Scholar
  43. Drever JI (1982) The geochemistry of natural waters. Prentice-Hall, Englewood Cliffs New YorkGoogle Scholar
  44. Duinker JC (1980) Suspended matter in estuaries: adsorption and desorption processes. In: Olausson E, Cato I (eds) (1980) Chemistry and biogeochemistry of estuaries. John Wiley & Sons Chichester, New York, pp 121–151Google Scholar
  45. Duinker JC (1986) Formation and transformation of element species in estuaries. In: Bernhard M, Brinckman FE, Sadler PJ (eds) The importance of chemical “speciation” in environmental problems. Dahlem-Konferenzen Life Sciences Research Report 33, pp 365–384. Springer, Berlin Heidelberg New YorkCrossRefGoogle Scholar
  46. Duinker JC, Nolting RF (1978) Mixing, removal and mobilization of trace metals in the Rhine estuary. Neth J Sea Res 12:205–223CrossRefGoogle Scholar
  47. Duinker JC, Nolting RF, Michel D (1982) Effects of salinity, pH, and redox conditions on the behaviour of Cd, Zn, Ni and Mn in the Scheldt estuary. Thalassia Jugoslavica 18:191–202Google Scholar
  48. Eaqub M, Blume HP (1982) Genesis of a so-called ferrolysed soil of Bangladesh. Z Pflanzen- ernähr Bodenkde. 145:470–482CrossRefGoogle Scholar
  49. Edmond JM, Spivack A, Grant BC, Hu M-H, Chen Z, Sung C, Zeng X (1985) Chemical dynamics of the Changjiang Estuary. Cont Shelf Res 4:17–36CrossRefGoogle Scholar
  50. Ehrenfeld J, Bass J (1983) Handbook for evaluating remedial action technology plans. Municipal Environ Res Lab Cincinnati. EPA-600/2-83-076. Aug 1983Google Scholar
  51. Elbaz-Poulichet F, Martin JM, Huang WW, Zhu JX (1987) Dissolved Cd behaviour in some selected French and Chinese estuaries, consequences on Cd supply to the ocean. Marine Chemistry 22:125–136CrossRefGoogle Scholar
  52. Emerson S, Jahnke R, Heggie D (1984) Sediment-water exchange in shallow water estuarine sediments. J Mar Res 42:709–730CrossRefGoogle Scholar
  53. Ferguson KD, Erickson PM (1988) Pre-mine prediction of acid mine drainage. In: Salomons W, Förstner U (eds) Environmental management of solid waste — dredged material and mine tailings. Springer, Berlin Heidelberg New York, pp 24–43Google Scholar
  54. Förstner U (1981) Trace metals in fresh waters (with particular reference to mine effluents). In: Wolf KH (Ed) Handbook of strata-bound and stratiform ore deposits, vol 9. Elsevier, Amsterdam, pp 271–303Google Scholar
  55. Förstner U (1985) Chemical forms and reactivities of metals in sediments. In: Leschber R, Davis RD, and L’Hermite P (eds) Chemical methods for assessing bio-available metals in sludges and soils. Elsevier Applied Science, London, pp 1–30Google Scholar
  56. Förstner, U (1989) Contaminated sediments. Lecture Notes in Earth Sciences No 21. Springer, Berlin Heidelberg New York, 157 ppGoogle Scholar
  57. Förstner U (1993) Metal speciation — an overview. Intern J Environ Anal Chem 51:5–27CrossRefGoogle Scholar
  58. Förstner, U, Kersten, M (1988) Assessment of metal mobility in dredged material and mine waste by pore water chemistry and solid speciation. In: Salomons W, Förstner U (eds) Chemistry and biology of solid waste — dredged material and mine tailings. Springer, Berlin Heidelberg New York, pp 214—237Google Scholar
  59. Förstner U, Kersten M, Wienberg R (1989) Geochemical processes in landfills. In: Baccini P (ed) The landfill — reactor and final storage. Lecture Notes in Earth Sciences 20. Springer, Berlin Heidelberg New York, pp 39–81Google Scholar
  60. Förstner U, Schoer J, Knauth H-D (1990) Metal pollution in the tidal Elbe River. Sci Total Environ 97/98:347–368CrossRefGoogle Scholar
  61. Förstner U et al. (1990) Sediment criteria development — contributions from environmental geochemistry to water quality management. In: Heling et al. D (eds) Sediments and environmental geochemistry. Springer, Berlin Heidelberg New York, pp 311–338CrossRefGoogle Scholar
  62. Froelich PN et al. (1979) Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis. Geochim Cosmochim Acta 43:1075–1090CrossRefGoogle Scholar
  63. Gambrell RP, Reddy CN, Khalid RA (1983) Characterization of trace and toxic materials in sediments of a lake being restored. J Water Pollut Control Fed 55:1271–1279Google Scholar
  64. Gendron A, Silverberg N, Sundby B, Lebel J (1986) Early diagenesis of cadmium and cobalt in sediments of the Laurentian Trough. Geochim Cosmochim Acta 50:741–747CrossRefGoogle Scholar
  65. Giesy J.P., Hoke R.A. (1990) Freshwater sediment quality criteria: Toxicity bioassessment. In: Baudo R, Giesy J, Muntau H (eds) Sediments: chemistry and toxicity of in-place pollutants. Lewis Publ. Chelsea/Michigan, pp. 265–348Google Scholar
  66. Goumans JJJM, Van der Sloot HA, Aalbers ThG (eds)(1991) Waste materials in construction. Studies in environmental science 48. Elsevier, Amsterdam, 672 ppGoogle Scholar
  67. Hawkes HE, Webb JS (1962) Geochemistry in mineral exploration. Harper & Row, New York, 415 ppGoogle Scholar
  68. Herms U, Brümmer G (1978) Löslichkeit von Schwermetallen in Siedlungsabfällen und Böden in Abhängigkeit von pH-Wert, Redoxbedingungen und Stoffbestand. Mitt Dt Bodenk Ges 27:23–43Google Scholar
  69. Hines ME, Lyons BWM, Armstrong PB, Orem WH, Spencer MJ, Gaudette HE (1984) Seasonal metal remobilization in the sediments of Great Bay, New Hampshire. Mar Chem 15:173–187CrossRefGoogle Scholar
  70. Holmes CW, Slade EA, McLerran CJ (1974) Migration and redistribution of zinc and cadmium in marine estuarine systems. Environ Sci Technol 8:255–259CrossRefGoogle Scholar
  71. Hong J, Förstner U, Calmano W (1994) Effects of redox processes on the acid-producing potential and metal mobility in sediments. In: Hamelink J, Landrum PF, Bergman HL, Benson WH (eds) Bioavailability — physical, chemical, and biological interactions. Lewis Publ, Boca Raton, pp 119–141Google Scholar
  72. Hunt CD, Smith DL (1983) Remobilization of metals from polluted marine sediments. Can J Fish Aquat Sci 40:132–142CrossRefGoogle Scholar
  73. Irmer U, Weiler K, Wolter K (1986) Untersuchungen zur Schwermetall- und Schwebstoffdynamik im Elbeästuar — Mögliche Folgerungen für die Überwachungspraxis. Vom Wasser 67:111–123Google Scholar
  74. Irmer U, Knauth H-D, Weiler K (1988) Einfluß des Schwebstoffregimes auf die Schwermetall- Verschmutzung der gezeitenbeeinflußten Elbe bei Hamburg. Z Wassere Abwasser Forsch 21:236–240Google Scholar
  75. Kersten M (1988) Geochemistry of priority pollutants in anoxic sludges: cadmium, arsenic, methyl mercury, and chlorinated organics. In: Salomons W, Förstner U (eds) Chemistry and biology of solid waste — dredged material and mine tailings. Springer Berlin Heidelberg New York, pp 170–213Google Scholar
  76. Kersten M (1989) Mechanismus und Bilanz der Schwermetallfreisetzung aus einem Süßwasser- watt der Elbe. Dissertation Technische Universität Hamburg-Harburg.Google Scholar
  77. Kersten M, Förstner U (1986) Chemical fractionation of heavy metals in anoxic estuarine and coastal sediments. Water Sci Technol 18:121–130Google Scholar
  78. Kersten M, Förstner U (1987) Effect of sample pretreatment on the reliability of solid speciation data of heavy metals — implications for the study of early diagenetic processes. Mar Chem 22:299–312CrossRefGoogle Scholar
  79. Kersten M, Förstner U (1991) Geochemical characterization of the potential trace metal mobility in cohesive sediment. Geo-Marine Letts 11:184–187CrossRefGoogle Scholar
  80. Kersten M et al. (1985) Freisetzung von Metallen bei der Oxidation von Schlämmen. Vom Wasser 65:21–35.Google Scholar
  81. Kester DR, Ketchum BH, Duedall IW, Park PK (eds)(1983) Wastes in the ocean. Vol 2: Dredged-material disposal in the ocean. Wiley, New York, 299 ppGoogle Scholar
  82. Kittrick JA, Fanning DS, Hossner LR (eds)(1982) Acid sulfate weathering, SSSA special publ 10, Soil Sci Soc Amer Madison, WI, pp 234Google Scholar
  83. Knauth H-D, Schroeder F, Irmer U (1986) Investigations on the heavy metal variability in the River Elbe estuary upstream and downstream of Hamburg Harbour. In: Ernst WHO (ed) Proc 2nd Intern Conf Environ Contam, Amsterdam. CEP Consultants Edinburgh, pp 186–188Google Scholar
  84. Knauth H-D,Schwedhelm E, Sturm R, Weiler K, Salomons W (1989) The importance of physical processes on contaminant behaviour in estuaries. GKSS Report, Research Centre Geesthacht/GermanyGoogle Scholar
  85. Krebs J, Belevi H, Baccini P (1988) Long-term behavior of bottom ash landfills. Proc 5th Intern Solid Wastes Exhibition and Conf, ISWA 1988, CopenhagenGoogle Scholar
  86. Lee GF, Plumb RH (1974) Literature review on research study for the development of dredged material disposal criteria. US Army Corps of Engineers, Dredged Material Research Program, report D-74-1. Vicksburg MS 1974, 145 ppGoogle Scholar
  87. Lichtensteiger T, Brunner PH, Langmeier M (1988) Klärschlamm in Deponien. EAWAG Project No 30–681. EC-COSTGoogle Scholar
  88. Luoma SN, Davis JA (1983) Requirements for modeling trace metal pardoning in oxidized estuarine sediments. Mar Chem 12:159–181CrossRefGoogle Scholar
  89. Maaß B, Miehlich G (1988) Die Wirkung des Redoxpotentials auf die Zusammensetzung der Porenlösung in Hafenschlickspülfeldern. Mitt Dtsch Bodenkunde Ges 56:289–294Google Scholar
  90. Maaß B, Miehlich G, Gröngröft A (1985) Untersuchungen zur Grundwassergefährdung durch Hafenschlick-Spülfelder. II. Inhaltsstoffe in Spülfeldsedimenten und Porenwässern. Mitt Dtsch Bodenkundl Ges 43/1:253–258Google Scholar
  91. Malone PG, Jones LW, Larson RJ (1982) Guide to the disposal of chemically stabilized and solidified waste. Report SW-872, Office of Water and Waste Management. Washington DC: US Environmental Protection AgencyGoogle Scholar
  92. Meyer JS, Davidson W, Sundby B, Oris JT, Laurén DJ, Förstner U, Hong J, Crosby DG (1994) The effects of variable redox potentials, pH, and light on bioavailability in dynamic water-sediment environments. In: Hamelink J, Landrum PF, Bergman HL, Benson WH (eds) Bioavailability — physical, chemical, and biological interactions. Lewis Publ, Boca Raton, pp 155–170Google Scholar
  93. Moore JN, Luoma SN (1990) Hazardous wastes from large-scale metal extraction. Environ Sci Technol 24:1278–1285CrossRefGoogle Scholar
  94. Morse JW, Mackenzie FT (1990) Geochemistry of sedimentary carbonates. Elsevier Publ Co, New YorkGoogle Scholar
  95. Morton RW (1980) “Capping” procedures as an alternative technique to isolate contaminated dredged material in the marine environment. In: Dredge spoil disposal and PCB Contamination: Hearings before the Committee on Merchant Marine and fisheries. House of Representatives, Ninety-Sixth Congress, 2nd Session, on exploring the various aspects of dumping of dredged spoil material in the ocean and the PCB contamination issue, Mar 14, May 21, 1980. USGPO Ser No 96–43, Washington DC, pp 623–652Google Scholar
  96. Müller G (1979) Schwermetalle in den Sedimenten des Rheins — Veränderungen seit 1971. Umschau Wiss Tech 79:778–783Google Scholar
  97. Nipkow F (1920) Vorläufige Mitteilungen über Untersuchungen des Schlammabsatzes im Zürichsee. Z Hydrol 1:101–123Google Scholar
  98. Obermann P, Cremer S (1992) Mobilisierung von Schwermetallen in Porenwässern von belasteten Böden und Deponien: Entwicklung eines aussagekräftigen Elutions- verfahrens. Landesamt für Wasser und Abfall Nordrhein-Westfalen, Düsseldorf/-Germany, vol 6, 127 ppGoogle Scholar
  99. Patrick WH, Williams BG, Moraghan JT (1973) A simple system for controlling redox potential and pH in soil suspensions. Soil Sci Soc Amer Proc 37:331–332CrossRefGoogle Scholar
  100. Peiffer S (1989) Biogeochemische Regulation der Spurenmetallöslichkeit während der anaeroben Zersetzung fester kommuler Abfälle. Dissertation Universität Bayreuth, 197 ppGoogle Scholar
  101. Plant JA, Raiswell R (1983) Principles of environmental geochemistry. In: Thornton I (ed) Applied environmental geochemistry. Academic Press, London, pp 1–39Google Scholar
  102. Prause B, Rehm E, Schulz-Baldes M (1985) The mobilisation of Pb and Cd from contaminated dredge spoil after dumping in the marine environment. Environ Technol Letts 6:261–266CrossRefGoogle Scholar
  103. Prenzel L (1985) Verlauf und Ursache der B odenversauerung. Z Dt Geol Ges 136:293–302Google Scholar
  104. Reynoldson RB (1987) Interactions between sediment contaminants and benthic organisms. In: Thomas RL et al. (eds) Ecological effects of in situ sediment contaminants. Hydrobiologia 149:53–66CrossRefGoogle Scholar
  105. Sahm H, Brunner M, Schobert SM (1986) Anaerobic degradation of halogenated aromatic compounds. Microbial Ecol 12:147–53CrossRefGoogle Scholar
  106. Salomons W (1980) Adsorption processes and hydrodynamic conditions in estuaries. Environ. Technol Letts 1:356–365CrossRefGoogle Scholar
  107. Salomons W (1985) Sediment and water quality. Environ Technol Letts 6:315–326CrossRefGoogle Scholar
  108. Salomons W (1993) Non-linear responses of toxic chemicals in the environment: a challenge for sustainable development. In: ter Meulen GRB et al. (eds) Chemical time bombs, Proceedings of the European State-of-the-art Conference on Delayed Effects of Chemicals in Soils and Sediments, Veldhoven/The Netherlands, 2–5 Sept 1992, pp 31–43Google Scholar
  109. Salomons W, Eysink W (1981) Pathways of mud and particulate trace metal from rivers to the southern North Sea. In: Nio SD, Schuettenhelm RTE, Weering TCE (eds) Holocene marine sedimentation in the North Sea Basin. Spec Publ Intern Assoc Sedimentologists 5:429–450.Google Scholar
  110. Salomons W, Forstoer U (1984) Metals in the hydrocycle. Springer, Berlin Heidelberg New YorkCrossRefGoogle Scholar
  111. Salomons W, Förstner U (eds)(1988a) Chemistry and biology of solid waste: dredged materials and mine tailings. Springer, Berlin Heidelberg New York, 305 ppGoogle Scholar
  112. Salomons W, Förstner U (eds)(1988b) Environmental management of solid waste: dredged materials and mine tailings. Springer, Berlin Heidelberg New York, 396 ppGoogle Scholar
  113. Salomons W, De Rooij NM, Kerdijk H, Bril J (1987) Sediments as a source of contaminants. In: Thomas RL et al. (eds) Ecological effects of in situ sediment contaminants. Hydrobiologia 149:13–30CrossRefGoogle Scholar
  114. Santschi PH (1982) Application of enclosures to the study of oceanic chemistry. In: Grice GD, Reeve (eds) Marine mesocosms. Biological and chemical research in experimental ecosystems. Springer, Berlin Heidelberg New York, pp 63–80Google Scholar
  115. Schoer J, Förstner U. (1987) Abschätzung der Langzeitbelastung von Grundwasser durch die Ablagerung metallhaltiger Feststoffe. Vom Wasser 69:23–32Google Scholar
  116. Sholkovitz ER (1976) Flocculation of dissolved organic and inorganic matter during the mixing of riverwater and seawater. Geochim Cosmochim Acta 40:831–845CrossRefGoogle Scholar
  117. Sholkovitz ER (1978) The flocculation of dissolved Fe, Mn, Al, Cu, Ni, Co and Cd during estuarine mixing. Earth Planet Sci Lett 41:77–86CrossRefGoogle Scholar
  118. Sholkovitz ER, Copland D (1981) The coagulation, solubility and adsorption properties of Fe, Mn, Cu, Ni, Cd, Co and humic acids in a river water. Geochim Cosmochim Acta 45:181–189CrossRefGoogle Scholar
  119. Sobek AA, Schuller WA, Freeman JR, Smith RM (1978) Field and laboratory methods applicable to overburden and mine spoils. Report EPA-600/2-78-054. US Environmental Protection Agency, Washington DCGoogle Scholar
  120. Stief K (1987) Zukünftige Anforderungen an die Deponietechnik und Konsequenzen für die Sickerwasserbehandlung. In: Deponiesickerwasserbehandlung. UBA Materialien 1/87. Erich Schmidt Verlag, Berlin, pp 27–36Google Scholar
  121. Stigliani WM (1991) Chemical time bombs: definition, concepts, and examples. Executive report 16 (CTB basic document). II ASA Laxemburg, Austria, 23 ppGoogle Scholar
  122. Stigliani WM (1992) Chemical time bombs, predicting the unpredictable. In: Chemical time bombs. European State-of-the-Art Conference on Delayed Effects of Chemicals in Soils and Sediments. Veldhoven, The Netherlands, Sept 2–5, pp 12Google Scholar
  123. Stumm W, Morgan JJ (1981) Aquatic chemistry. John Wiley & Sons, New YorkGoogle Scholar
  124. Swift RS (1977) Soil organic matter studies. IAEA Vienna, pp 275–281Google Scholar
  125. Tabatabei MA (1987) Physico-chemical fate of sulfate in soils. J Amer Phys Chem Assoc 37:34–38Google Scholar
  126. Tent L (1987) Contaminated sediments in the Elbe estuary: Ecological and economic problems for the Port of Hamburg. In: Thomas RL et al. (eds) Ecological effects of in situ sediment contaminants. Hydrobiologia 149:189–199CrossRefGoogle Scholar
  127. Tessier A, Campbell PGC, Bisson M (1979) Sequential extraction procedure for the speciation of particulate trace metals. Anal Chem 51:844–851CrossRefGoogle Scholar
  128. Ure AM, Quevauviller Ph, Muntau H, Griepink B (1993) Speciation of heavy metals in soils and sediments, an account of the improvement and harmonization of extraction techniques undertaken under the auspices of the BCR of the Commission of the European Communities. Intern J Environ Anal Chem 51:135–151CrossRefGoogle Scholar
  129. Van Gemert WJT, Quakernaat J, Van Veen HJ (1988) Methods for the treatment of contaminated dredged sediments. In: Salomons W, Förstner U (eds) Environmental management of solid waste — dredged material and mine tailings. Springer, Berlin Heidelberg New York, pp 44—64Google Scholar
  130. Wallmann K, Kersten M, Gruber J Förstner U (1993) Artifacts in the determination of trace metal binding forms in anoxic sediments by sequential extraction. Intern J Environ Anal Chem 51:187–200CrossRefGoogle Scholar
  131. Wangersky PJ (1986) Biological control of trace metal residence time and speciation: a review and synthesis. Marine Chemistry 18:269–297CrossRefGoogle Scholar
  132. Wiedemann HU (1982) Verfahren zur Verfestigung von Sonderabfällen und Stabilisierung von verunreinigten Böden. Ber Umweltbundesamt 1/82. Erich Schmidt Verlag, BerlinGoogle Scholar
  133. Wiles CC, Barth E, de Percin P (1988) Status of solidification/stabilization in the United States and factors affecting its use. In: Wolf K, Van den Brink WJ, Colon FJ (eds) Contaminated Soil ’88. vol 1, Kluwer Academic Publ, Dordrecht, The Netherlands pp 947–956CrossRefGoogle Scholar
  134. Williamson KJ, Bella DA (1980) Estuarine sediments: successional model. J Environ Engin Div ASCE 106:695–710Google Scholar
  135. Windom H, Wallace G, Smith R, Dudek N, Maeda M, Dulmage R, Storti F (1983) Behaviour of copper in southeastern United States estuaries. Mar Chem 12:183–193CrossRefGoogle Scholar
  136. Wollast R (1988) The Scheld Estuary. In: Salomons W, Bayne BL, Duursma EK, Förstner U (eds) Pollution of the North Sea — an assessment. Springer, Berlin Heidelberg New York, pp 184—193Google Scholar
  137. Ziillig H (1956) Sedimente als Ausdruck des Zustandes eines Gewässers. Schweiz Z Hydrol 18:7—143Google Scholar
  138. Zwolsman JJG, Van Eck GTM (1993) Behaviour of trace metals in the Scheldt Estuary, S.W. Netherlands. Neth J Aquatic Ecol 27:287–300CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • U. Förstner

There are no affiliations available

Personalised recommendations