Skip to main content

Non-linear Release of Metals from Aquatic Sediments

  • Chapter
Biogeodynamics of Pollutants in Soils and Sediments

Part of the book series: Environmental Science ((ENVSCIENCE))

Abstract

Modern research on particle-bound contaminants quite probably originated with the idea, that sediments reflect the biological, chemical and physical conditions in a water body (Züllig 1956). Based on this concept, the historical evolution of limnological parameters could be traced back from the study of vertical sediment cores. In fact, already early in this century, Nipkow (1920) suggested that the alternating sequence of layers in a sediment core from Lake Zürich might be related to variations in the trophic status of the lake system. Geochemical investigations of stream sediment has become standard practice in mineral exploration since the beginning of the sixties (Hawkes and Webb 1962). Similarly, lake sediment geochemistry has been used as a guide to mineralization, particularly intensive on lakes of the Canadian shield. This approach attracted even more attention when mineral exploration was followed by large-scale mining and processing activities: “Both the exploration and environmental geochemist can be looking to the same type of areas, those with high metal concentrations, but obviously from a different motivation” (Allan 1974). During the past 20 years, research on metal-contaminated sediments evolved to four aspects, which in an overlapping succession also reflect the development of knowledge on particle-bound pollutants:

  • The evaluation of solid/solution relations of metals in surface water;

  • The study of in situ processes and mechanisms of metal transfer in various compartments of the aquatic ecosystems;

  • The assessment of the environmental impact of particle-bound metals, i.e. development of sediment quality criteria;

  • The development of remedial measures, in particular, of dredged materials, by integrated, multidisciplinary research

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahlf W (1983) The River Elbe: behaviour of Cd and Zn during estuarine mixing. Environ Tech Letts 4:405–410

    Article  CAS  Google Scholar 

  • Ahlf W, Munawar M (1988) Biological assessment of environmental impact of dredged material. In: Salomons W, Förstner U (eds) Chemistry and biology of solid waste — dredged material and mine tailings. Springer, Berlin Heidelberg New York pp 127–142.

    Google Scholar 

  • Ahlf W et al. (1992) Mikrobielle Biotests mit Sedimenten. Schr Reihe Verein WaBoLu/Berlin 89:427–435

    CAS  Google Scholar 

  • Allan RJ (1974) Metal contents of lake sediment cores from established mining areas: an interface of exploration and environmental geochemistry. Geol Surv Can 74–1/8:43–49

    Google Scholar 

  • Ankley GT, Katko A, Arthur JW (1990) Identification of ammonia as an important sediment-associated toxicant in the Lower Fox River and Green Bay, Wisconsin. Environ Toxicol Chem 9:313–322

    Article  CAS  Google Scholar 

  • Anonymous (1979) Suggested guidelines for methods of operation in surface mining of areas of potentially acid-producing materials. West Virginia Surface Mine Drainage Task Force. WV Dept Nat Resour, Charleston, WV

    Google Scholar 

  • Anonymous (1986) Leitbild für die schweizerische Abfallwirtschaft (Guidelines for the Waste Management in Switzerland), Schriftenreihe Umweltschutz No 51. Eidgenössische Kommission für Abfallwirtschaft, Bundesamt für Umweltschutz, Bern/Switzerland

    Google Scholar 

  • Anonymous (1993) ARCS Overview of risk assessment and modeling in the assessment and remediation of contaminated sediments. Prepared by ASCI for the US Environmental Protection Agency, Great Lakes National Program Office, Chicago, Illinois

    Google Scholar 

  • Anonymous (1990) Technische Verordnung über Abfälle (TVA). Der Schweizerische Bundesrat (Swiss Federal Parliament), SR 814.015, Dec 10, 1990. Bern/Switzerland

    Google Scholar 

  • Anonymous (1994) Remediation guidance document. USEPA Oceans and Coastal Protection Division and Great Lakes National Programme Office. Draft, Aug 20, 1993

    Google Scholar 

  • Baccini P (ed)(1989) The landfill — reactor and final storage. Lecture Notes in Earth Sciences 20. Springer, Berlin Heidelberg New York, 439 pp

    Google Scholar 

  • Belevi H, Stämpfli DM, Baccini P (1992) Chemical behaviour of municipal solid waste incinerator bottom ash in monofills. Waste Management Research 10:153–167

    CAS  Google Scholar 

  • Benjamin MM, Hayes KL, Leckie JO (1982) Removal of toxic metals from power-generated waste streams by adsorption and co-precipitation. J Water Pollut Control Fed 54:1472–1481

    CAS  Google Scholar 

  • Berner RA (1981) A new geochemical classification of sedimentary environments. J Sediment Petrol 51:359–365

    CAS  Google Scholar 

  • Berner RA, Rainwell R (1984) C/S method for distinguishing freshwater from marine sedimentary rocks. Geology 12:365–368

    Article  CAS  Google Scholar 

  • Bernhard M, Brinckman FE, Sadler PJ (Editors)(1986) The importance of chemical “speciation” in environmental processes. Dahlem Konferenzen, Life Sciences Research Report 33. Springer, Berlin Heidelberg New York, 763 pp

    Google Scholar 

  • Binkley D et al. (1989) Acidic deposition and forest soils. Springer, Berlin Heidelberg New York, 146 p

    Book  Google Scholar 

  • Bokuniewicz HJ (1982) Submarine borrow pits as containments for dredged sediments. In: Kester PR, Ketchum BH, Duedall IW, Parks PK (eds) Dredged material disposal in the ocean. John Wiley & Sons, New York, pp 215–227

    Google Scholar 

  • Breemen N van (1975) Acidification and deacidification of coastal plain soils as a result of periodic flooding. Soil Sci Soc Amer Proc 39:1153–1157

    Article  Google Scholar 

  • Breemen, N van (1987) Effects of redox processes on soil acidity. Neth J Agric Sci 35:271–279

    Google Scholar 

  • Breemen N van (1988a) Effects of seasonal redox processes involving iron on the chemistry of periodically reduced soils. In: JW Stucki, BA Goodman, U. Schwertmann (eds) Iron in soils and clay minerals. D Reidel Publishing Company, Dordrecht, The Netherlands, pp 197–809.

    Google Scholar 

  • Breemen N van (1988b) Long-term chemical, mineralogical, and morphological effects of iron-redox processes in periodically flooded soils. In: Stucki JW, Goodman BA, Schwertmann U (eds) Iron in soils and clay minerals. D Reidel Publ Co, Dordrecht, The Netherlands, pp 825–841

    Google Scholar 

  • Breemen N van, Mulder J, Driscoll CJ (1983) Acidification and alkalinization of soils. Plant Soil 75:283–308

    Article  Google Scholar 

  • Breemen N van, Driscoll CT, Mulder J (1984) Acidic deposition and internal proton sources in acidification of soils and water. Nature 307:599–604

    Article  Google Scholar 

  • Brinkman R (1970) Ferrolysis, a hydromorphic soil forming process. Geoderma 3:199–206

    Article  CAS  Google Scholar 

  • Brinkman R (1979) Ferrolysis, a soil-forming process in hydromorphic conditions. Agricultural Research Reports 887. PUDOC, Wageningen.

    Google Scholar 

  • Bruynesteyn A, Hackl RP (1984) Evaluation of acid production potential of mining waste materials. Miner Environ 4:5–8

    Article  Google Scholar 

  • Calmano W (1988) Stabilization of dredged mud. In: Salomons W, Förstner U (eds) Environmental management of solid waste: dredged materials and mine tailings, pp 80–98. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Calmano W, Förstner U, Kersten M, Krause D (1986) Behaviour of dredged mud after stabilization with different additives. In: Assink JW, Van Den Brink WJ (eds) Contaminated soil. Martinus Nijhoff Publ, Dordrecht, pp 737–746

    Chapter  Google Scholar 

  • Calmano W, Ahlf W, Förstner U (1988) Study of metal sorption/desorption processes on competing sediment components with a multi-chamber device. Environ Geol Water Sci 11:77–84

    Article  CAS  Google Scholar 

  • Calmano W, Hong J, Förstner U (1992) Einfluß von pH-Wert und Redoxpotential auf die Bindung und Mobilisierung von Schwermetallen in kontaminierten Sedimenten. Vom Wasser 78:245–257

    CAS  Google Scholar 

  • Calmano W, Hong J, Förstner U (1993) Binding and mobilization of heavy metals in contaminated sediments affected by pH and redox potential. In: Christensen E et al. (eds) Proc 1st Intern Spec Conf on Contaminated Aquatic Sediments: Historical Records, Environmental Impact, and Remediation. Water Sci Technol 28:223–235

    CAS  Google Scholar 

  • Calmano W, Förstner U, Hong J (1994) Mobilization and scavenging of heavy metals following resuspension of anoxic sediments from the Elbe River. In: Alpers CN, Blowes DW (eds) Environmental geochemistry of sulfide oxidation. American Chemical Society, Washington DC, ACS Symp Ser 550:298–321

    Google Scholar 

  • Carignan R, Rapin F, Tessier A (1985) Sediment pore water sampling for metal analysis: a comparison of techniques. Geochim. Cosmochim. Acta 49:2493–2497

    Article  CAS  Google Scholar 

  • Chapman PM (1986) Sediment quality criteria from the sediment quality triad: an example. Environ Toxicol Chem 5:957–964

    Article  CAS  Google Scholar 

  • Church TM (1986) Biogeochemical factors influencing the residence time of microconstituents in a large tidal estuary, Delaware Bay. Marine Chemistry 18:393–406

    Article  CAS  Google Scholar 

  • Craig PJ, Moreton PA (1984) The role of sulphide in the formation of dimethyl mercury in river and estuary sediments. Mar Pollut Bull 15:406–408

    Article  CAS  Google Scholar 

  • Darby DA, Adams DD, Nivens WT (1986) Early sediment changes and element mobilization in a man-made estuarine marsh. In: Sly PG (ed) Sediment and water interactions. Springer, Berlin Heidelberg New York, pp 343–351

    Chapter  Google Scholar 

  • Davison W (1988) Interactions of iron, carbon and sulphur in marine and lacustrine sediments. In: Fleet AJ, Kelts K, Talbot MR (eds) Lacustrine Petroleum Source Rocks. Spec Publ 40, Geological Society of America, Boulder, CO, pp 131–137

    Google Scholar 

  • Davison W, Lishman JP, Hilton J (1985) Formation of pyrite in freshwater sediments. Implications for C/S ratios. Geochim Cosmochim Acta 49:1615–1620

    Article  CAS  Google Scholar 

  • DiToro DM et al. (1990) Toxicity of cadmium in sediments: the role of acid volatile sulfide. Environ Toxicol Chem 9:1487–1502

    Article  CAS  Google Scholar 

  • DiToro DM et al. (1992) Acid volatile sulfide predicts the acute toxicity of cadmium and nickel in sediments. Environ Sci Technol 26:96–101

    Article  CAS  Google Scholar 

  • Drever JI (1982) The geochemistry of natural waters. Prentice-Hall, Englewood Cliffs New York

    Google Scholar 

  • Duinker JC (1980) Suspended matter in estuaries: adsorption and desorption processes. In: Olausson E, Cato I (eds) (1980) Chemistry and biogeochemistry of estuaries. John Wiley & Sons Chichester, New York, pp 121–151

    Google Scholar 

  • Duinker JC (1986) Formation and transformation of element species in estuaries. In: Bernhard M, Brinckman FE, Sadler PJ (eds) The importance of chemical “speciation” in environmental problems. Dahlem-Konferenzen Life Sciences Research Report 33, pp 365–384. Springer, Berlin Heidelberg New York

    Chapter  Google Scholar 

  • Duinker JC, Nolting RF (1978) Mixing, removal and mobilization of trace metals in the Rhine estuary. Neth J Sea Res 12:205–223

    Article  CAS  Google Scholar 

  • Duinker JC, Nolting RF, Michel D (1982) Effects of salinity, pH, and redox conditions on the behaviour of Cd, Zn, Ni and Mn in the Scheldt estuary. Thalassia Jugoslavica 18:191–202

    Google Scholar 

  • Eaqub M, Blume HP (1982) Genesis of a so-called ferrolysed soil of Bangladesh. Z Pflanzen- ernähr Bodenkde. 145:470–482

    Article  CAS  Google Scholar 

  • Edmond JM, Spivack A, Grant BC, Hu M-H, Chen Z, Sung C, Zeng X (1985) Chemical dynamics of the Changjiang Estuary. Cont Shelf Res 4:17–36

    Article  Google Scholar 

  • Ehrenfeld J, Bass J (1983) Handbook for evaluating remedial action technology plans. Municipal Environ Res Lab Cincinnati. EPA-600/2-83-076. Aug 1983

    Google Scholar 

  • Elbaz-Poulichet F, Martin JM, Huang WW, Zhu JX (1987) Dissolved Cd behaviour in some selected French and Chinese estuaries, consequences on Cd supply to the ocean. Marine Chemistry 22:125–136

    Article  CAS  Google Scholar 

  • Emerson S, Jahnke R, Heggie D (1984) Sediment-water exchange in shallow water estuarine sediments. J Mar Res 42:709–730

    Article  CAS  Google Scholar 

  • Ferguson KD, Erickson PM (1988) Pre-mine prediction of acid mine drainage. In: Salomons W, Förstner U (eds) Environmental management of solid waste — dredged material and mine tailings. Springer, Berlin Heidelberg New York, pp 24–43

    Google Scholar 

  • Förstner U (1981) Trace metals in fresh waters (with particular reference to mine effluents). In: Wolf KH (Ed) Handbook of strata-bound and stratiform ore deposits, vol 9. Elsevier, Amsterdam, pp 271–303

    Google Scholar 

  • Förstner U (1985) Chemical forms and reactivities of metals in sediments. In: Leschber R, Davis RD, and L’Hermite P (eds) Chemical methods for assessing bio-available metals in sludges and soils. Elsevier Applied Science, London, pp 1–30

    Google Scholar 

  • Förstner, U (1989) Contaminated sediments. Lecture Notes in Earth Sciences No 21. Springer, Berlin Heidelberg New York, 157 pp

    Google Scholar 

  • Förstner U (1993) Metal speciation — an overview. Intern J Environ Anal Chem 51:5–27

    Article  Google Scholar 

  • Förstner, U, Kersten, M (1988) Assessment of metal mobility in dredged material and mine waste by pore water chemistry and solid speciation. In: Salomons W, Förstner U (eds) Chemistry and biology of solid waste — dredged material and mine tailings. Springer, Berlin Heidelberg New York, pp 214—237

    Google Scholar 

  • Förstner U, Kersten M, Wienberg R (1989) Geochemical processes in landfills. In: Baccini P (ed) The landfill — reactor and final storage. Lecture Notes in Earth Sciences 20. Springer, Berlin Heidelberg New York, pp 39–81

    Google Scholar 

  • Förstner U, Schoer J, Knauth H-D (1990) Metal pollution in the tidal Elbe River. Sci Total Environ 97/98:347–368

    Article  Google Scholar 

  • Förstner U et al. (1990) Sediment criteria development — contributions from environmental geochemistry to water quality management. In: Heling et al. D (eds) Sediments and environmental geochemistry. Springer, Berlin Heidelberg New York, pp 311–338

    Chapter  Google Scholar 

  • Froelich PN et al. (1979) Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis. Geochim Cosmochim Acta 43:1075–1090

    Article  CAS  Google Scholar 

  • Gambrell RP, Reddy CN, Khalid RA (1983) Characterization of trace and toxic materials in sediments of a lake being restored. J Water Pollut Control Fed 55:1271–1279

    Google Scholar 

  • Gendron A, Silverberg N, Sundby B, Lebel J (1986) Early diagenesis of cadmium and cobalt in sediments of the Laurentian Trough. Geochim Cosmochim Acta 50:741–747

    Article  CAS  Google Scholar 

  • Giesy J.P., Hoke R.A. (1990) Freshwater sediment quality criteria: Toxicity bioassessment. In: Baudo R, Giesy J, Muntau H (eds) Sediments: chemistry and toxicity of in-place pollutants. Lewis Publ. Chelsea/Michigan, pp. 265–348

    Google Scholar 

  • Goumans JJJM, Van der Sloot HA, Aalbers ThG (eds)(1991) Waste materials in construction. Studies in environmental science 48. Elsevier, Amsterdam, 672 pp

    Google Scholar 

  • Hawkes HE, Webb JS (1962) Geochemistry in mineral exploration. Harper & Row, New York, 415 pp

    Google Scholar 

  • Herms U, Brümmer G (1978) Löslichkeit von Schwermetallen in Siedlungsabfällen und Böden in Abhängigkeit von pH-Wert, Redoxbedingungen und Stoffbestand. Mitt Dt Bodenk Ges 27:23–43

    Google Scholar 

  • Hines ME, Lyons BWM, Armstrong PB, Orem WH, Spencer MJ, Gaudette HE (1984) Seasonal metal remobilization in the sediments of Great Bay, New Hampshire. Mar Chem 15:173–187

    Article  CAS  Google Scholar 

  • Holmes CW, Slade EA, McLerran CJ (1974) Migration and redistribution of zinc and cadmium in marine estuarine systems. Environ Sci Technol 8:255–259

    Article  CAS  Google Scholar 

  • Hong J, Förstner U, Calmano W (1994) Effects of redox processes on the acid-producing potential and metal mobility in sediments. In: Hamelink J, Landrum PF, Bergman HL, Benson WH (eds) Bioavailability — physical, chemical, and biological interactions. Lewis Publ, Boca Raton, pp 119–141

    Google Scholar 

  • Hunt CD, Smith DL (1983) Remobilization of metals from polluted marine sediments. Can J Fish Aquat Sci 40:132–142

    Article  Google Scholar 

  • Irmer U, Weiler K, Wolter K (1986) Untersuchungen zur Schwermetall- und Schwebstoffdynamik im Elbeästuar — Mögliche Folgerungen für die Überwachungspraxis. Vom Wasser 67:111–123

    CAS  Google Scholar 

  • Irmer U, Knauth H-D, Weiler K (1988) Einfluß des Schwebstoffregimes auf die Schwermetall- Verschmutzung der gezeitenbeeinflußten Elbe bei Hamburg. Z Wassere Abwasser Forsch 21:236–240

    CAS  Google Scholar 

  • Kersten M (1988) Geochemistry of priority pollutants in anoxic sludges: cadmium, arsenic, methyl mercury, and chlorinated organics. In: Salomons W, Förstner U (eds) Chemistry and biology of solid waste — dredged material and mine tailings. Springer Berlin Heidelberg New York, pp 170–213

    Google Scholar 

  • Kersten M (1989) Mechanismus und Bilanz der Schwermetallfreisetzung aus einem Süßwasser- watt der Elbe. Dissertation Technische Universität Hamburg-Harburg.

    Google Scholar 

  • Kersten M, Förstner U (1986) Chemical fractionation of heavy metals in anoxic estuarine and coastal sediments. Water Sci Technol 18:121–130

    CAS  Google Scholar 

  • Kersten M, Förstner U (1987) Effect of sample pretreatment on the reliability of solid speciation data of heavy metals — implications for the study of early diagenetic processes. Mar Chem 22:299–312

    Article  CAS  Google Scholar 

  • Kersten M, Förstner U (1991) Geochemical characterization of the potential trace metal mobility in cohesive sediment. Geo-Marine Letts 11:184–187

    Article  Google Scholar 

  • Kersten M et al. (1985) Freisetzung von Metallen bei der Oxidation von Schlämmen. Vom Wasser 65:21–35.

    CAS  Google Scholar 

  • Kester DR, Ketchum BH, Duedall IW, Park PK (eds)(1983) Wastes in the ocean. Vol 2: Dredged-material disposal in the ocean. Wiley, New York, 299 pp

    Google Scholar 

  • Kittrick JA, Fanning DS, Hossner LR (eds)(1982) Acid sulfate weathering, SSSA special publ 10, Soil Sci Soc Amer Madison, WI, pp 234

    Google Scholar 

  • Knauth H-D, Schroeder F, Irmer U (1986) Investigations on the heavy metal variability in the River Elbe estuary upstream and downstream of Hamburg Harbour. In: Ernst WHO (ed) Proc 2nd Intern Conf Environ Contam, Amsterdam. CEP Consultants Edinburgh, pp 186–188

    Google Scholar 

  • Knauth H-D,Schwedhelm E, Sturm R, Weiler K, Salomons W (1989) The importance of physical processes on contaminant behaviour in estuaries. GKSS Report, Research Centre Geesthacht/Germany

    Google Scholar 

  • Krebs J, Belevi H, Baccini P (1988) Long-term behavior of bottom ash landfills. Proc 5th Intern Solid Wastes Exhibition and Conf, ISWA 1988, Copenhagen

    Google Scholar 

  • Lee GF, Plumb RH (1974) Literature review on research study for the development of dredged material disposal criteria. US Army Corps of Engineers, Dredged Material Research Program, report D-74-1. Vicksburg MS 1974, 145 pp

    Google Scholar 

  • Lichtensteiger T, Brunner PH, Langmeier M (1988) Klärschlamm in Deponien. EAWAG Project No 30–681. EC-COST

    Google Scholar 

  • Luoma SN, Davis JA (1983) Requirements for modeling trace metal pardoning in oxidized estuarine sediments. Mar Chem 12:159–181

    Article  CAS  Google Scholar 

  • Maaß B, Miehlich G (1988) Die Wirkung des Redoxpotentials auf die Zusammensetzung der Porenlösung in Hafenschlickspülfeldern. Mitt Dtsch Bodenkunde Ges 56:289–294

    Google Scholar 

  • Maaß B, Miehlich G, Gröngröft A (1985) Untersuchungen zur Grundwassergefährdung durch Hafenschlick-Spülfelder. II. Inhaltsstoffe in Spülfeldsedimenten und Porenwässern. Mitt Dtsch Bodenkundl Ges 43/1:253–258

    Google Scholar 

  • Malone PG, Jones LW, Larson RJ (1982) Guide to the disposal of chemically stabilized and solidified waste. Report SW-872, Office of Water and Waste Management. Washington DC: US Environmental Protection Agency

    Google Scholar 

  • Meyer JS, Davidson W, Sundby B, Oris JT, Laurén DJ, Förstner U, Hong J, Crosby DG (1994) The effects of variable redox potentials, pH, and light on bioavailability in dynamic water-sediment environments. In: Hamelink J, Landrum PF, Bergman HL, Benson WH (eds) Bioavailability — physical, chemical, and biological interactions. Lewis Publ, Boca Raton, pp 155–170

    Google Scholar 

  • Moore JN, Luoma SN (1990) Hazardous wastes from large-scale metal extraction. Environ Sci Technol 24:1278–1285

    Article  CAS  Google Scholar 

  • Morse JW, Mackenzie FT (1990) Geochemistry of sedimentary carbonates. Elsevier Publ Co, New York

    Google Scholar 

  • Morton RW (1980) “Capping” procedures as an alternative technique to isolate contaminated dredged material in the marine environment. In: Dredge spoil disposal and PCB Contamination: Hearings before the Committee on Merchant Marine and fisheries. House of Representatives, Ninety-Sixth Congress, 2nd Session, on exploring the various aspects of dumping of dredged spoil material in the ocean and the PCB contamination issue, Mar 14, May 21, 1980. USGPO Ser No 96–43, Washington DC, pp 623–652

    Google Scholar 

  • Müller G (1979) Schwermetalle in den Sedimenten des Rheins — Veränderungen seit 1971. Umschau Wiss Tech 79:778–783

    Google Scholar 

  • Nipkow F (1920) Vorläufige Mitteilungen über Untersuchungen des Schlammabsatzes im Zürichsee. Z Hydrol 1:101–123

    Google Scholar 

  • Obermann P, Cremer S (1992) Mobilisierung von Schwermetallen in Porenwässern von belasteten Böden und Deponien: Entwicklung eines aussagekräftigen Elutions- verfahrens. Landesamt für Wasser und Abfall Nordrhein-Westfalen, Düsseldorf/-Germany, vol 6, 127 pp

    Google Scholar 

  • Patrick WH, Williams BG, Moraghan JT (1973) A simple system for controlling redox potential and pH in soil suspensions. Soil Sci Soc Amer Proc 37:331–332

    Article  CAS  Google Scholar 

  • Peiffer S (1989) Biogeochemische Regulation der Spurenmetallöslichkeit während der anaeroben Zersetzung fester kommuler Abfälle. Dissertation Universität Bayreuth, 197 pp

    Google Scholar 

  • Plant JA, Raiswell R (1983) Principles of environmental geochemistry. In: Thornton I (ed) Applied environmental geochemistry. Academic Press, London, pp 1–39

    Google Scholar 

  • Prause B, Rehm E, Schulz-Baldes M (1985) The mobilisation of Pb and Cd from contaminated dredge spoil after dumping in the marine environment. Environ Technol Letts 6:261–266

    Article  CAS  Google Scholar 

  • Prenzel L (1985) Verlauf und Ursache der B odenversauerung. Z Dt Geol Ges 136:293–302

    Google Scholar 

  • Reynoldson RB (1987) Interactions between sediment contaminants and benthic organisms. In: Thomas RL et al. (eds) Ecological effects of in situ sediment contaminants. Hydrobiologia 149:53–66

    Article  CAS  Google Scholar 

  • Sahm H, Brunner M, Schobert SM (1986) Anaerobic degradation of halogenated aromatic compounds. Microbial Ecol 12:147–53

    Article  CAS  Google Scholar 

  • Salomons W (1980) Adsorption processes and hydrodynamic conditions in estuaries. Environ. Technol Letts 1:356–365

    Article  CAS  Google Scholar 

  • Salomons W (1985) Sediment and water quality. Environ Technol Letts 6:315–326

    Article  CAS  Google Scholar 

  • Salomons W (1993) Non-linear responses of toxic chemicals in the environment: a challenge for sustainable development. In: ter Meulen GRB et al. (eds) Chemical time bombs, Proceedings of the European State-of-the-art Conference on Delayed Effects of Chemicals in Soils and Sediments, Veldhoven/The Netherlands, 2–5 Sept 1992, pp 31–43

    Google Scholar 

  • Salomons W, Eysink W (1981) Pathways of mud and particulate trace metal from rivers to the southern North Sea. In: Nio SD, Schuettenhelm RTE, Weering TCE (eds) Holocene marine sedimentation in the North Sea Basin. Spec Publ Intern Assoc Sedimentologists 5:429–450.

    Google Scholar 

  • Salomons W, Forstoer U (1984) Metals in the hydrocycle. Springer, Berlin Heidelberg New York

    Book  Google Scholar 

  • Salomons W, Förstner U (eds)(1988a) Chemistry and biology of solid waste: dredged materials and mine tailings. Springer, Berlin Heidelberg New York, 305 pp

    Google Scholar 

  • Salomons W, Förstner U (eds)(1988b) Environmental management of solid waste: dredged materials and mine tailings. Springer, Berlin Heidelberg New York, 396 pp

    Google Scholar 

  • Salomons W, De Rooij NM, Kerdijk H, Bril J (1987) Sediments as a source of contaminants. In: Thomas RL et al. (eds) Ecological effects of in situ sediment contaminants. Hydrobiologia 149:13–30

    Article  CAS  Google Scholar 

  • Santschi PH (1982) Application of enclosures to the study of oceanic chemistry. In: Grice GD, Reeve (eds) Marine mesocosms. Biological and chemical research in experimental ecosystems. Springer, Berlin Heidelberg New York, pp 63–80

    Google Scholar 

  • Schoer J, Förstner U. (1987) Abschätzung der Langzeitbelastung von Grundwasser durch die Ablagerung metallhaltiger Feststoffe. Vom Wasser 69:23–32

    CAS  Google Scholar 

  • Sholkovitz ER (1976) Flocculation of dissolved organic and inorganic matter during the mixing of riverwater and seawater. Geochim Cosmochim Acta 40:831–845

    Article  CAS  Google Scholar 

  • Sholkovitz ER (1978) The flocculation of dissolved Fe, Mn, Al, Cu, Ni, Co and Cd during estuarine mixing. Earth Planet Sci Lett 41:77–86

    Article  CAS  Google Scholar 

  • Sholkovitz ER, Copland D (1981) The coagulation, solubility and adsorption properties of Fe, Mn, Cu, Ni, Cd, Co and humic acids in a river water. Geochim Cosmochim Acta 45:181–189

    Article  CAS  Google Scholar 

  • Sobek AA, Schuller WA, Freeman JR, Smith RM (1978) Field and laboratory methods applicable to overburden and mine spoils. Report EPA-600/2-78-054. US Environmental Protection Agency, Washington DC

    Google Scholar 

  • Stief K (1987) Zukünftige Anforderungen an die Deponietechnik und Konsequenzen für die Sickerwasserbehandlung. In: Deponiesickerwasserbehandlung. UBA Materialien 1/87. Erich Schmidt Verlag, Berlin, pp 27–36

    Google Scholar 

  • Stigliani WM (1991) Chemical time bombs: definition, concepts, and examples. Executive report 16 (CTB basic document). II ASA Laxemburg, Austria, 23 pp

    Google Scholar 

  • Stigliani WM (1992) Chemical time bombs, predicting the unpredictable. In: Chemical time bombs. European State-of-the-Art Conference on Delayed Effects of Chemicals in Soils and Sediments. Veldhoven, The Netherlands, Sept 2–5, pp 12

    Google Scholar 

  • Stumm W, Morgan JJ (1981) Aquatic chemistry. John Wiley & Sons, New York

    Google Scholar 

  • Swift RS (1977) Soil organic matter studies. IAEA Vienna, pp 275–281

    Google Scholar 

  • Tabatabei MA (1987) Physico-chemical fate of sulfate in soils. J Amer Phys Chem Assoc 37:34–38

    Google Scholar 

  • Tent L (1987) Contaminated sediments in the Elbe estuary: Ecological and economic problems for the Port of Hamburg. In: Thomas RL et al. (eds) Ecological effects of in situ sediment contaminants. Hydrobiologia 149:189–199

    Article  CAS  Google Scholar 

  • Tessier A, Campbell PGC, Bisson M (1979) Sequential extraction procedure for the speciation of particulate trace metals. Anal Chem 51:844–851

    Article  CAS  Google Scholar 

  • Ure AM, Quevauviller Ph, Muntau H, Griepink B (1993) Speciation of heavy metals in soils and sediments, an account of the improvement and harmonization of extraction techniques undertaken under the auspices of the BCR of the Commission of the European Communities. Intern J Environ Anal Chem 51:135–151

    Article  CAS  Google Scholar 

  • Van Gemert WJT, Quakernaat J, Van Veen HJ (1988) Methods for the treatment of contaminated dredged sediments. In: Salomons W, Förstner U (eds) Environmental management of solid waste — dredged material and mine tailings. Springer, Berlin Heidelberg New York, pp 44—64

    Google Scholar 

  • Wallmann K, Kersten M, Gruber J Förstner U (1993) Artifacts in the determination of trace metal binding forms in anoxic sediments by sequential extraction. Intern J Environ Anal Chem 51:187–200

    Article  CAS  Google Scholar 

  • Wangersky PJ (1986) Biological control of trace metal residence time and speciation: a review and synthesis. Marine Chemistry 18:269–297

    Article  CAS  Google Scholar 

  • Wiedemann HU (1982) Verfahren zur Verfestigung von Sonderabfällen und Stabilisierung von verunreinigten Böden. Ber Umweltbundesamt 1/82. Erich Schmidt Verlag, Berlin

    Google Scholar 

  • Wiles CC, Barth E, de Percin P (1988) Status of solidification/stabilization in the United States and factors affecting its use. In: Wolf K, Van den Brink WJ, Colon FJ (eds) Contaminated Soil ’88. vol 1, Kluwer Academic Publ, Dordrecht, The Netherlands pp 947–956

    Chapter  Google Scholar 

  • Williamson KJ, Bella DA (1980) Estuarine sediments: successional model. J Environ Engin Div ASCE 106:695–710

    CAS  Google Scholar 

  • Windom H, Wallace G, Smith R, Dudek N, Maeda M, Dulmage R, Storti F (1983) Behaviour of copper in southeastern United States estuaries. Mar Chem 12:183–193

    Article  CAS  Google Scholar 

  • Wollast R (1988) The Scheld Estuary. In: Salomons W, Bayne BL, Duursma EK, Förstner U (eds) Pollution of the North Sea — an assessment. Springer, Berlin Heidelberg New York, pp 184—193

    Google Scholar 

  • Ziillig H (1956) Sedimente als Ausdruck des Zustandes eines Gewässers. Schweiz Z Hydrol 18:7—143

    Google Scholar 

  • Zwolsman JJG, Van Eck GTM (1993) Behaviour of trace metals in the Scheldt Estuary, S.W. Netherlands. Neth J Aquatic Ecol 27:287–300

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Förstner, U. (1995). Non-linear Release of Metals from Aquatic Sediments. In: Salomons, W., Stigliani, W.M. (eds) Biogeodynamics of Pollutants in Soils and Sediments. Environmental Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79418-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79418-6_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79420-9

  • Online ISBN: 978-3-642-79418-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics