Advertisement

Calreticulin: A Granule-Protein by Default or Design?

  • R. C. Bleackley
  • E. A. Atkinson
  • K. Burns
  • M. Michalak
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 198)

Abstract

Calreticulin is a major calcium binding protein normally found in the lumen of the endoplasmic reticulum (ER). When T lymphocytes were activated we observed an increase in the levels of calreticulin mRNA and protein (Burns et al. 1992). Initially we thought this induction might relate to the changes in intracellular Ca2+ levels that have been associated with signal transduction, ultimately leading to specific gene transcription and cell activation. However, subsequent experiments revealed that calreticulin itself can also directly influence patterns of steroid hormone-dependent gene expression by binding to the receptor protein (Burns et al. 1994a). This left us with somewhat of a conundrum: in order to influence gene expression calreticulin would have to find its way from the ER to the nucleus, possibly via the cytoplasm. We were very surprised to discover that, when we immunolocalized calreticulin in activated cytotoxic T cells (CTLs) the major positive organelles were none other than our old friends the cytoplasmic granules. Concomitantly a report appeared on the NH2-terminal sequence analysis of a 60 kDa granule-associated protein that copurifies with perforin. The peptide was identical to calreticulin (Dupuis et al. 1993).

Keywords

Glucocorticoid Receptor Congenital Heart Block Blood Clotting Factor Target Cell Membrane Acrosomal Vesicle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahluwalia N, Bergeron JJM, Wada I, Degen E, Williams DB (1992) The p88 molecular chaperone is identical to the endoplasmic reticulum membrane protein, calnexin. J Biol Chem 267: 10914–10918PubMedGoogle Scholar
  2. Baksh S, Michalak M (1991) Expression of calreticulin in Escherichia coli and identification of its Ca2+ binding domains. J Biol Chem 66: 21458–21465Google Scholar
  3. Baksh S, Burns K, Busaan J, Michalak M (1992) Expression and purification of recombinant and native calreticulin. Prot Exp Pur 3: 322–331CrossRefGoogle Scholar
  4. Benedict C, Kuwabara K, Todd G, Ryan J, Michalak M, Eaton D, Stern D (1993) Calreticulin is a novel antithrombotic agent: blockade of electrically-induced coronary thrombosis in a canine model. Clin Res 41: 275AGoogle Scholar
  5. Berg J (1990) Zinc fingers and other metal binding domains. J Biol Chem 265: 6513–6516PubMedGoogle Scholar
  6. Bergeron JGM, Brenner MB, Thomas DY, Williams DB (1994) Calnexin: a membrane-bound chaperone of the endoplasmic reticulum. TIBS 19: 124–128PubMedGoogle Scholar
  7. Berridge MJ (1990) Calcium oscillations. J Biol Chem 265: 9583–9586PubMedGoogle Scholar
  8. Burns K, Michalak M (1993) Interactions of calreticulin with proteins of the endoplasmic and sarcoplasmic reticulum membranes. FEBS Lett 318: 181–185PubMedCrossRefGoogle Scholar
  9. Burns K, Helgason CD, Bleackley RC, Michalak M (1992) Calreticulin in T-lymphocytes. Identification of calreticulin in T-lymphocytes and demonstration that activation of T-cells correlates with increased levels of calreticulin mRNA and protein. J Biol Chem 267: 19039–19042Google Scholar
  10. Burns K, Duggan B, Atkinson EA, Famulski KS, Nemer M, Bleackley RC, Michalak M (1994a) Modulation of expression by calreticulin binding to the glucocorticoid receptor. Nature 367: 476–480PubMedCrossRefGoogle Scholar
  11. Burns K, Atkinson EA, Bleackley RC, Michalak M (1994b) Calreticulin: from Ca2+ binding to control of gene expression. Trends Cell Biol 4: 152–154PubMedCrossRefGoogle Scholar
  12. Clementi E, Scheer H, Zacchetti D, Fasolato C, Pozzan T, Meldolesi J (1992) Receptor-activated Ca2+ 156 influx. J Biol Chem 267: 2164–2172PubMedGoogle Scholar
  13. Collins JH, Xi Z, Alderson-Lang BH, Treves S, Volpe P (1989) Sequence homology of a canine brain calcium-binding protein with calregulin and the human Ro/SS-A antigen. Biochem Biophys Res Commun 164: 575–579PubMedCrossRefGoogle Scholar
  14. Conrad ME, Umbreit JN, Moore EG, Harper KP (1991) Molbiferrin, a homologue of Ro/SS-A autoantigen and calreticulin. Blood 78: 89aGoogle Scholar
  15. Conrad ME, Umbreit JN, Peterson RDA, Moore EG, Harper KP (1993) Function of integrin in duodenal mucosal uptake of iron. Blood 81: 517–521PubMedGoogle Scholar
  16. Demaurex N, Lew DP, Krause K-H (1992) Cyclopiazonic acid depletes intracellular Ca2+ stores and activates an influx pathway for divalent cations in HL-60 cells. J Biol Chem 267: 2318–2324PubMedGoogle Scholar
  17. de Virgilio C, Bürckert N, Neuhaus JM, Boiler T, Wiemken A(1993) Yeast sequencing reports. CNE1, a Saccharomyces cerevisiae homologue of the genes encoding mammalian calnexin and calreticulin. Yeast 9: 1850–1881Google Scholar
  18. Dedhar S, Rennie PS, Shago M, Hagesteijn C-YL, Yang H, Filmus J, Hawley RG, Bruchovsky N, Cheng H, Matusik RJ, Giguere V (1994) Inhibition of nuclear hormone receptor activity by calreticulin. Nature 367: 480–483PubMedCrossRefGoogle Scholar
  19. Dupuis M, Schaerer E, Krause KH, Tschopp J (1993) The calcium-binding protein calreticulin is a major constituent of lytic granules in cytolytic T lymphocytes. J Exp Med 177: 1–7PubMedCrossRefGoogle Scholar
  20. Fliegel L, Burns K, MacLennan DH, Reithmeier RAF, Michalak M (1989a) Molecular cloning of the high affinity calcium-binding protein (calreticulin) of skeletal muscle sarcoplasmic reticulum. J Biol Chem 264: 21522–21528PubMedGoogle Scholar
  21. Fliegel L, Burns K, Wlasichuk K, Michalak M (1989b) Peripheral membrane proteins of sarcoplasmic and endoplasmic reticulum. Comparison of carboxyl-terminal amino acid sequences. Biochem Cell Biol 67: 696–702Google Scholar
  22. Galvin K, Krishna S, Ponchel F, Frohlich M, Cummings DE, Carlson R, Wands JR, Isselbacher KJ, Pillai S, Ozturk M (1992) The major histocompatibility complex class I antigen-binding protein p88 is the product of the calnexin gene. Proc Natl Acad Sci U S A 89: 8452–8456PubMedCrossRefGoogle Scholar
  23. Gersten DM, Bijwaard KE, Law LW, Hearing VJ (1991) Homology of the B50 murine melanoma antigen to the Ro/SS-A antigen of human systemic lupus erythematosus and to calcium-binding proteins, biochim Biophys Acta 1096: 20–25Google Scholar
  24. Hawn TR, Tom TD, Strand M (1993) Molecular cloning and expression of SmlrVI, a Schistosoma mansoni antigen with similarity to calnexin, calreticulin, and OvRal 1. J Biol Chem 268: 7692–7698PubMedGoogle Scholar
  25. Hochtenbach F, David V, Watkins S, Brenner M (1992) Endoplasmic reticulum resident protein of 90 kilodaltons associates with the T- and B-cell antigen receptors and major histocompatibility complex antigens during their assembly. Proc Natl Acad Sci U S A 89: 4734–4738CrossRefGoogle Scholar
  26. Huang L, Franklin AE, Hoffman NE (1993) Primary strucutre and characterization of an Arabidopsis thalina calnexin-like protein. J Biol Chem 268: 6560–6566PubMedGoogle Scholar
  27. Kennedy TE, Kuhl D, Barzilai A, Sweatt JD, Kandel ER (1992) Long-term sensitization training in Aplysia leads to an increase in calreticulin, a major presynaptic calcium-binding protein. Neuron 9: 1013–1024PubMedCrossRefGoogle Scholar
  28. Kraut RP, Bose D, Cragoe EJ Jr, Greenberg AH (1990) The influence of calcium, sodium, and the Na+/Ca2+ antiport on susceptibility to cytolysin/perforin-mediated cytolysis. J Immunol 144: 3498–3505PubMedGoogle Scholar
  29. Kretsinger RH, Moncrief ND, Goodman M, Czelusniak J (1988) Homology of calcium modulated proteins: their evolutionary and functional relationships. In: Morad M, Naylor WG, Kazda S, Schramm M (eds) The calcium channel, structure, function and implication. Springer, Berlin Heidelberg New York, pp 16–34Google Scholar
  30. Kuwabara K, Benedict C, Todd G, Ryan J, Michalak M, Eaton D, Stern D (1993) Calreticulin is novel antithrombotic agent: Blockade of electrically-induced coronary thrombosis in a canine model. Thromb Haemost 69: 1362Google Scholar
  31. Laudet V, Hänni C, Coll J, Catzeflis F, Stehelin D (1991) Evolution of the nuclear receptor gene superfamily. EMBO J 11: 1003–1013Google Scholar
  32. Lieu T-S, Newkirk MM, Capra JD, Sontheimer RD (1988) Molecular characterization of human Ro antigen: amino terminal sequence of the protein moiety of human Ro antigen and immunological activity of a corresponding synthetic peptide. J Clin Invest 82: 96–101PubMedCrossRefGoogle Scholar
  33. Lieu TS, McCauliffe DP, Newkirk MM, Arnett FC, Lee LA, Deng JS, Capra JD, Sontheimer RD (1989) A major autoepitope is present on the amino terminus of the human Ro polypeptide. J Autoimmun 2: 367–374PubMedCrossRefGoogle Scholar
  34. Liu N, Fine RE, Johnson, RJ (1993) Comparison of cDNAs from bovine brain coding for two isoforms of calreticulin. Biochim Biophys Acta 1202: 7076CrossRefGoogle Scholar
  35. Liu Z-G, Smith SW, McLaughlin KA, Schwartz LM, Osborne BA (1994) Apoptotic signals delivered through the TCR of a T cell hybrid require immediate-early gene nur 77. Nature 367: 281–284PubMedCrossRefGoogle Scholar
  36. Lu J, Willis AC, Sim RB (1993) A calreticulin-like protein co-purifies with a “60kD” component of Ro/ SSA, but is not recognized by antibodies in Sjogren’s syndrome sera. Clin Exp Immunol 94: 429–434PubMedCrossRefGoogle Scholar
  37. Luis BF, Xu WX, Otwinowski Z, Freedman LP, Yamamoto KR, Sigler PB (1991) Crystallographic analysis of the interaction of the glucocorticoid receptor with DNA. Nature 352: 497–505CrossRefGoogle Scholar
  38. Lux FA, McCauliffe DP, Buttner DW, Lucius R, Capra JD, Sontheimer RD, Lieu T-S (1992) Serological cross-reactivity between a human Ro autoantigen (calreticulin) and the lambda Ral-1 antigen of Onchocerca volvulus. J Clin Invest 89: 1945–1951PubMedCrossRefGoogle Scholar
  39. Mason MJ, Mahaut-Smith MP, Grinstein S (1991) The role of intracellular Ca2+ in the regulation of the plasma membrane Ca2+ permeability of unstimulated rat lymphocytes. J Biol Chem 266: 10872–10879PubMedGoogle Scholar
  40. Mazzarella RA, Gold P, Cunningham M, Green M (1992) Determination of the sequence of an expressible cDNA clone encoding ERp60/calregulin by the use of a novel nest set method. Gene 120: 217–225PubMedCrossRefGoogle Scholar
  41. McCauliffe DP, Lux FA, Lieu TS, Sanz I, Hanke J, Newkirk MM, Bachinski LL, Itoh Y, Siciliano MJ, Reichlin M, Sontheimer RD, Capra JD (1990a) Molecular cloning, expression and chromosome 19 localization of human Ro autoantigen. J Clin Invest 85: 1379–1391PubMedCrossRefGoogle Scholar
  42. McCauliffe DP, Zappi E, Lieu TS, Michalak M, Sontheimer RD, Capra JD (1990b) A human Ro/SS-A autoantigen is the homologue of calreticulin and is highly homologous with Onchocercal RAL-1 antigen and an Aplysia “memory molecule”. J Clin Invest 86: 332–335PubMedCrossRefGoogle Scholar
  43. Meilof JF, Van der Lelij A, Rokeach LA, Hoch SO, Smeenk RJT (1993) Autoimmunity and Filariasis. J Immunol 151: 5800–5809PubMedGoogle Scholar
  44. Michalak M, Baksh S, Opas M (1991) Identification and immunolocalization of calreticulin in pancreatic cells: No evidence for calciosomes. Exp Cell Res 197: 91–99Google Scholar
  45. Michalak M, Milner RE, Bums K, Opas M (1992) Calreticulin. Biochem J 285: 681–692Google Scholar
  46. Murthy KK, Banville D, Srikant CB, Carrier F, Holmes C, Bell A, Patel YC (1990) Structural homology between the rat calreticulin gene product and the Onchocerca volvulus antigen Ral-1. Nucleic Acids Res 18: 4933PubMedCrossRefGoogle Scholar
  47. Nakamura M, Moriya M, Baba T, Michikawa Y, Yamanobe T, Arai K, Okinaga S, Kobayashi T (1993) An endoplasmic reticulum protein, calreticulin, is transported into the acrosome of rat sperm. Exp Cell Res 205: 101–110PubMedCrossRefGoogle Scholar
  48. Nigam SK, Goldberg AL, Ho S, Rohde MF, Bush KT, Sherman MY (1994) A set of endoplasmic reticulum proteins possessing properties of molecular chaperons includes Ca2+-binding proteins and members of the thioredoxin superfamily. J Biol Chem 269: 1744–1749PubMedGoogle Scholar
  49. Opas M, Dziak E, Fliegel L, Michalak M (1991) Regulation of expression and intracellular distribution of calreticulin, a major calcium binding protein of nonmuscle cells. J Cell Physiol 149: 160–171PubMedCrossRefGoogle Scholar
  50. Ostwald TJ, MacLennan DH (1974) Isolation of a high affinity calcium binding protein from sarcoplasmic reticulum. J Biol Chem 249: 974–979PubMedGoogle Scholar
  51. Ostwald TJ. MacLennan DH, Dorrington KJ (1974) Effects of cation binding on the conformation of calsequestrin and the high affinity calcium-binding protein of sarcoplasmic reticulum, J Biol Chem 249: 5867–5871PubMedGoogle Scholar
  52. Ou WJ, Thomas DY, Bell A, Bergeron JJH (1992) Casein kinase II phosphorylation of signal sequence receptor a and the associated membrane chaperone calnexin. J Biol Chem 267: 23789–23796PubMedGoogle Scholar
  53. Ou WJ, Camron PH, Thomas DY, Bergeron JJH (1993) Association of folding intermediates of glycoproteins with calnexin during protein maturation. Nature 364: 771–776PubMedCrossRefGoogle Scholar
  54. Pelham HRB (1989) Control of protein exit from the endoplasmic reticulum. Annu Rev Cell Biol 5: 1–23PubMedCrossRefGoogle Scholar
  55. Putney JW Jr (1990) Capacitative calcium entry revisited. Cell Calcium 11: 611–624PubMedCrossRefGoogle Scholar
  56. Rojiani MV, Finlay BB, Gray V, Dedhar S (1991) In vitro interaction of a polypeptide homologous to human Ro/SS-A autoantigen (calreticulin) with a highly conserved amino acid sequence in the cytoplasmic domain of integrin a subunit. Biochemistry 30: 9859–9865PubMedCrossRefGoogle Scholar
  57. Rokeach LA, Haselby JA, Meilof JF, Smeek RJT, Unnasch TR, Greene BM, Hoch SO (1991) Characterization of the autoantigen calreticulin. J Immunol 147: 3031–3039PubMedGoogle Scholar
  58. Schwartzman RA, Cidlowski JA (1993) Apoptosis: the biochemistry and molecular biology of programmed cell death. Endocr Rev 14: 133–151PubMedGoogle Scholar
  59. Smith MJ (1992) A C. elegans gene encodes a protein homologous to mammalian calreticulin. DNA Seq 2: 235–240PubMedGoogle Scholar
  60. Smith MJ, Koch GLE (1989) Multiple zones in the sequence of calreticulin (CRP55, calregulin, HACBP), a major calcium binding ER/SR protein. EMBO J 8: 3581–3586Google Scholar
  61. Sueyoshi T, McMullen BA, Marnell LL, Clos TWD, Kisiel W (1991) A new procedure for separation of protein Z, prothrombin fragment 1.2 and calreticulin from human plasma. Thromb Res 63: 569–575PubMedCrossRefGoogle Scholar
  62. Tan EM (1989) Antinuclear antibodies: diagnostic markers for autoimmune diseases and probes for cell biology. Adv Immunol 44: 93–101PubMedCrossRefGoogle Scholar
  63. Taylor MV, Metcalfe JCF Hesketh RB, Smith GA, Moore JP (1984) Mitogens increase phosphorylation of phosphoinositides in thymocytes. Nature 312: 462–465PubMedCrossRefGoogle Scholar
  64. Tharin S, Dziak E, Michalak M, Opas M (1992) Widespread tissue distribution of rabbit calreticulin, a non-muscle functional analogue of calsequestrin. Cell Tissue Res 269: 29–37PubMedCrossRefGoogle Scholar
  65. Treves S, Zorzato F, Pozzan T (1992) Identification of calreticulin isoforms in the central nervous system. Biochem J 287: 579–581PubMedGoogle Scholar
  66. Truss M, Beato M (1993) Steroid hormone receptors: interaction with deoxyribonucleic acid and transcriptional factors. Endocr Rev 14: 459–479PubMedGoogle Scholar
  67. Unnasch TR, Gallin MY, Soboslay PT, Erttmann KD, Greene BM (1988) Isolation and characterization of expression cDNA clones encoding antigens of Onchocerca volvulus infectious larvae. J Clin Invest 82: 262–269PubMedCrossRefGoogle Scholar
  68. Wada I, Rindress D, Cameron PH, Ou W-J, Doherty JJ, Louvard D, Bell AW, Dignard D, Thomas DY, Bergeron JJM (1991) SSR a and associated calnexin are major calcium binding proteins of the endoplasmic reticulum membrane. J Biol Chem 266: 19599–19610PubMedGoogle Scholar
  69. Waisman DM, Salimath BP, Anderson MJ (1985) Isolation and characterization of CAB-63, a novel calcium-binding protein. J Biol Chem 260: 1652–1660PubMedGoogle Scholar
  70. Waterston R, Martin C, Craxton M, Huynh C, Coulson A, Hillier L, Durbin R, Green P, Shownkeen R, Halloran N, Metzstein M, Hawkins T, Wilson R, Berks M, Du Z, Thomas K, Thierry-Mieg J, Sulston J (1992) A survey of expressed genes in Caenorhabditis elegans. Nature Genet 1: 114–123PubMedCrossRefGoogle Scholar
  71. Yoshimasa Y, Paul JI, Whittaker J, Steiner DF (1990) Effects of amino acid replacements within the tetrabasic cleavage site on the processing of the human insulin receptor precursor expressed in Chinese hamster ovary cells. J Biol Chem 265: 17230–17237PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • R. C. Bleackley
    • 1
  • E. A. Atkinson
    • 1
  • K. Burns
    • 1
  • M. Michalak
    • 1
  1. 1.Department of BiochemistryUniversity of AlbertaEdmontonCanada

Personalised recommendations