Skip to main content

Degranulating Cytotoxic Lymphocytes Inflict Multiple Damage Pathways on Target Cells

  • Chapter
Pathways for Cytolysis

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 198))

Abstract

In this review, we will describe our recent studies on lymphocyte cytotoxicity using a molecular approach to the understanding of cytotoxic lymphocyte function. However, before describing this work, it is important to place these studies in a broader perspective, as providing a biochemical basis to the general physiological picture of lymphocyte cytotoxic mechanisms which had emerged previously. After the development of the 51Cr release assay, which allowed convenient quantitation of cell death in vitro, several excellent laboratories studying alloreactive cytotoxic T lymphocytes (CTLs) established a number of important properties of what might be called the physiology of CTL-mediated cytotoxicity (Green and Henney 1981; Golstein and Smith 1977; Martz 1977). Three distinct phases of the cytotoxic process were distinguished: (1) adhesion; (2) lethal hit; and (3) target cell disintegration, or killer cell-independent lysis. The first two of these phases occurred within minutes at 37° C), and required the divalent cations Mg+2, Ca+2, respectively. They could be blocked by various inhibitors of energy production and cytoskeletal function. The target disintegration step, which occurred after the CTL had delivered the “kiss of death” to the target, occurred over the course of hours and was difficult to block by drugs. This multihour “death agony” of the target cell is relevant to considerations of the pathways described below.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Acha-Orbea H, Scarpellino L, Hertig S, Dupuis M, Tschopp J (1990) Inhibition of lymphocyte mediated cytotoxicity by perforin antisense oligonucleotides. EMBO J 9: 3815–3819

    PubMed  CAS  Google Scholar 

  • Arends MJ, Morris RG, Wyllie AH (1990) Apoptosis: the role of the endonuclease. Am J Pathol 136: 593–608

    PubMed  CAS  Google Scholar 

  • Bashford CL, Menestrina G, Henkart PA, Pasternak CA (1988) Cell damage by cytolysin: spontaneous recovery and reversible inhibition by divalent cations. J Immunol 141: 3965–3974

    PubMed  CAS  Google Scholar 

  • Benfey PN, Yin FH, Leder P (1987) Cloning of the mast cell protease, RMCP II. Evidence for cell-specific expression and a multi-gene family. J Biol Chem 262: 5377–5384

    Google Scholar 

  • Berke G, Rosen D, Ronen D (1993) Mechanism of lymphocyte-mediated cytolysis: functional cytolytic T cells lacking perforin and granzymes. Immunology 78: 105–112

    PubMed  CAS  Google Scholar 

  • Blumenthal R, Millard PJ, Henkart MP, Reynolds CW, Henkart PA (1984) Liposomes as targets forgranule cytolysin from cytotoxic LGL tumors. Proc Natl Acad Sci USA 81: 5551–5555

    Article  PubMed  CAS  Google Scholar 

  • Bubbers JE, Henney CS (1975) Studies on the synthetic capacity and antigenic expression of glutaralehyde-fixed target cells. J Immunol 114: 1126–1131

    PubMed  CAS  Google Scholar 

  • Collins MKL, Rivas AL (1993) The control of apoptosis in mammalian cells. Trends Biochem Sci 18: 307–309

    Article  PubMed  CAS  Google Scholar 

  • Dennert G, Podack ER (1983) Cytolysis by H-2 specific T killer cells. Assembly of tubular complexes on target membranes. J Exp Med 157: 1483–1495

    Google Scholar 

  • Dourmashkin RR, Deteix P, Simone CB, Henkart PA (1980) Electron microscopic demonstration of lesions on target cell membranes associated with antibody-dependent cytotoxicity. Clin Exp Immunol 43: 554–560

    Google Scholar 

  • Fewtrell C, Metzger H (1981) Stimulus-secretion coupling in rat basophilic leukemia cells. KROC Found Ser14: 295–314

    Google Scholar 

  • Golstein P, Smith ET (1977) Mechanism of T-cell-mediated cytolysis: the lethal hit stage. Contemp Top Immunobiol 7: 273–300

    PubMed  CAS  Google Scholar 

  • Green WR, Henney CS (1981) The mechanism of T cell-mediated cytotolysis. CRC Crit Rev Immunol 1: 259–286

    CAS  Google Scholar 

  • Grossi CE, Cadoni A, Zicca A, Leprini A, Ferrarini M (1982) Large granular lymphocytes in human peripheral blood: ultrastructural and cytochemical characterization of the granules. Blood 59: 277–283

    PubMed  CAS  Google Scholar 

  • Guidotti LG, Ando K, Hobbs MV et al. (1994) Cytotoxic T lymphocytes inhibit hepatitis B virus gene expression by a noncytolytic mechanism in transgenic mice. Proc Natl Acad Sci USA 91: 3764–3768

    Article  PubMed  CAS  Google Scholar 

  • Hayes MP, Berrebi GA, Henkart PA (1989) Induction of target cell DNA release by the cytotoxic T lymphocyte granule protease granzyme A. J Exp Med 170: 933–946

    Article  PubMed  CAS  Google Scholar 

  • Helgason CD, Prendergast JA, Berke G, Bleackley RC (1992) Peritoneal exudate lymphocyte and mixed lymphocyte culturee hybridomas are cytolytic in the absence of cytotoxic cell proteinases and perforin. Eur J Immunol 22: 3187–3190

    Article  PubMed  CAS  Google Scholar 

  • Henkart MP, Henkart PA (1982) Lymphocyte mediated cytolysis as a secretory phenomenon. Adv Exp Med Biol 146: 227–242

    PubMed  CAS  Google Scholar 

  • Henkart P, Yue CC (1988) The role of cytoplasmic granules in lymphocyte cytotoxicity. Prog Allergy 40: 44–81

    Google Scholar 

  • Henkart PA, Millard PJ, Reynolds CW, Henkart MP (1984) Cytolytic activity of purified cytoplasmic granules from cytotoxic rat LGL tumors. J Exp Med 160: 75–93

    Article  PubMed  CAS  Google Scholar 

  • Henkart PA, Hayes MP, Shiver JW (1992) The granule exocytosis model for lymphocyte cytotoxicity and its relevance to target cell DNA breakdown. In: Sitkoushy MV, Henkart PA (eds) Cytotoxic cells: recognition, effector function, generation and methods. Brikhauser, Boston, pp 153–165

    Google Scholar 

  • Heusei JW, Wesselschmidt RL, Shresta S, Russell JH, Ley TJ (1994) Cytotoxic lymphocytes require granzyme B for the rapid induction of DNA fragmentation and apoptosis in allogeneic target cells. Cell 76: 977–987

    Article  Google Scholar 

  • Hudig D, Allison NJ, Pickett TM, Winkler U, Kam C-M, Powers JC (1991) The function of lymphocyte proteases: inhibition and restoration of granule-mediated lysis with isocoumarin serine protease inhibitors. J Immunol 147: 1360–1368

    PubMed  CAS  Google Scholar 

  • Jacobson MD, Burne JF, Raff MC (1994) Programmed cell death and Bcl-2 protection in the absence of a nucleus. EMBO J 13: 1899–1910

    PubMed  CAS  Google Scholar 

  • Kagi D, Ledermann B, Burki K et al. (1994) Cytotoxicity mediated by T cells and natural killer cells is greatly impaired in perforin-deficient mice. Nature 369: 31–37

    Article  PubMed  CAS  Google Scholar 

  • Kelly RB (1985) Pathways of protein secretion in eukaryotes. Science 230: 25 - 32

    Article  PubMed  CAS  Google Scholar 

  • Kim SH, Carney DF, Papadimitriou JC, Shin ML (1989) Effect of osmotic protection on nucleated cell killing by C5b-9: cell death is not affected by the prevention of cell swelling. Mol Immunol 26: 323–331

    Article  PubMed  Google Scholar 

  • Mackewicz CE, Ortega H, Levy JA (1994) Effect of cytokines on HIV replication in CD4+ lymphocytes: lack of identity with the CD8+ cell antiviral factor. Cell Immunol 153: 329–343

    Article  PubMed  CAS  Google Scholar 

  • Martz E (1977) Mechanism of specific tumor cell lysis by alloimmune T lymphocytes: resolution and characterization of discrete steps in the cellular interaction. Contemp Top Immunobiol 7: 301–361

    PubMed  CAS  Google Scholar 

  • McConkey DJ, Jondal M, Orrenius S (1992) Cellular signalling in thymocyte apoptosis. Semin Immunol 4: 371–377

    PubMed  CAS  Google Scholar 

  • Millard PJ, Henkart MP, Reynolds CW, Henkart PA (1984) Purification and properties of cytoplasmic granules from cytotoxic rat LGL tumors. J Immunol 132: 3197–3204

    PubMed  CAS  Google Scholar 

  • Miura M, Zhu H, Rotello R, Hartwieg EA, Yuan J (1993) Induction of apoptosis in fibroblasts by IL-1B- converting enzyme, a mammalian homolog of the C. elegans cell death gene ced-3. Cell 75: 653–660

    Article  PubMed  CAS  Google Scholar 

  • Mogil RJ, Shi Y, Bissonnette RP, Bromley P, Yamaguchi I, Green DR (1994) Role of DNA fragmentation in T cell activation-induced apoptosiss in vitro and in vivo. J Immunol 152: 1674–1683

    PubMed  CAS  Google Scholar 

  • Morgan BP (1989) Complement membrane attack on nucleated cells: resistance, recovery, and nonlethal effects. Biochem J 264: 1–14

    PubMed  CAS  Google Scholar 

  • Nagler-Anderson C, Lichtenheld M, Eisen HN, Podack ER (1989) Perforin mRNA in primary peritoneal exudate cytotoxic TT lymphocytes. J Immunol 143: 3440–3443

    PubMed  CAS  Google Scholar 

  • Nakajima H, Henkart PA (1994) Cytotoxic lymphocyte granzymes trigger a target cell internal disintegration pathway leading to cytolysis and DNA breakdown. J Immunol 152: 1057–1063

    PubMed  CAS  Google Scholar 

  • Okada CY, Rechsteiner M (1982) Introduction of macromolecules in to cultured mammalian cells by the osmotic lysis of pinocytic vesicles. Cell 29: 33–41

    Article  PubMed  CAS  Google Scholar 

  • Pasternack MS, Verret CR, Liu MA, Eisen HN (1986) Serine esterase in cytolytic T lymphocytes. Nature 322 (6081): 740–743

    Article  PubMed  CAS  Google Scholar 

  • Podack ER, Königsberg PJ (1984) Cytolytic T cell granules. Isolation, biochemical and functional characterization. J Exp Med 160: 695–710

    Google Scholar 

  • Podack ER, Hengartner H, Lichtenheld MG (1991) A central role of perforin in cytolysis? Annu Rev Immunol 9: 129–157

    Article  PubMed  CAS  Google Scholar 

  • Russell JH (1983) Internal disintegration model of cytotoxic lymphocyte-induced target damage. Immunol Rev 72: 97–118

    Article  PubMed  CAS  Google Scholar 

  • Sarin A, Adams DH, Henkart PA (1993) Protease inhibitors selectively block T-cell receptor-triggered programmed cell death in a murine T cell hybridoma and activated peripheral T cells. J Exp Med 178: 1693–1700

    Article  PubMed  CAS  Google Scholar 

  • Schmidt RE, MacDermott RP, Bartley G et al. (1985) Specific release of proteoglycans from human natural killer cells during target lysis. Nature 318 (6043): 289–291

    Article  PubMed  CAS  Google Scholar 

  • Sellins KS, Cohen JJ (1991) Cytotoxic T lymphocytes induce different types of DNA damage in target cells of different origins. J Immunol 147: 795–803

    PubMed  CAS  Google Scholar 

  • Shiver JW, Henkart PA (1991) A Noncytotoxic mast cell tumor line exhibits potent IgE-dependent cytotoxicity after transfection with the cytolysin/perforin gene. Cell 62: 1174–1181

    Google Scholar 

  • Shiver JW, Su L, Henkart PA (1992) Cytotoxicity with target DNA breakdown by rat basophilic leukemia cells expressing both cytolysin and granzyme A. Cell 71: 315–322

    Article  PubMed  CAS  Google Scholar 

  • Siliciano RF, Henney CS (1978) Studies on the mechanism of lymphocyte-mediated cytolysis. X. Enucleated cells as targets for cytotoxic attack. J Immunol 121: 186–191

    Google Scholar 

  • Simone CB, Henkart P (1980) Permeability changes induced in erythrocyte ghost targets by antibody-dependent cytotoxic effector cells: evidence for membrane pores. J Immunol 124: 954–963

    PubMed  CAS  Google Scholar 

  • Smyth MJ, Ortaldo JR, Shinkai Y et al. (1990) Interleukin 2 induction of pore-forming protein gene expression in human peripheral blood CD8+ T cells. J Exp Med 171: 1269–1281

    Article  PubMed  CAS  Google Scholar 

  • Taplits MS, Henkart PA, Hodes RJ (1988) T helper cell cytoplasmic granules: exocytosis in response to activation via the T cell receptor. J Immunol 141: 1–9

    PubMed  CAS  Google Scholar 

  • Thiernesse N, David A, Bernard J, Jeanesson P, Zagury D (1977) Activitie phosphatasique acide de la cellule T cytolytique au cours du processus de cytolyse. CR Acad Sci (Paris) [D]285: 713–715

    Google Scholar 

  • Timonen T, Ortaldo JR, Herberman RB (1981) Characteristics of human large granular lymphocytes and relationship to natural killer and K cells. J Exp Med 153: 569–582

    Article  PubMed  CAS  Google Scholar 

  • Tschopp J, Nabholz M (1990) Perforin-mediated target cell lysis by cytolytic T lymphocytes. Annu Rev Immunol 8: 279–302

    Article  PubMed  CAS  Google Scholar 

  • Wyllie AH, Kerr JFR, Currie AR (1980) Cell death: the significance of apoptosis. Int Rev Cytol 68: 251–306

    Article  PubMed  CAS  Google Scholar 

  • Yagita H, Nakata M, Kawasaki A, Shinkai Y, Okumura K (1992) Role of perforin in lymphocyte-mediated cytolysis. Adv Immunol 51: 215–242

    Article  PubMed  CAS  Google Scholar 

  • Yannelli JR, Sullivan JA, Mandell GL, Engelhard VH (1986) Reorientation and fusion of cytotoxic T lymphocyte granules after interaction with target cells as determined by high resolution cinemicrography. J Immunol 136: 377–382

    PubMed  CAS  Google Scholar 

  • Young JD, Cohn ZA (1986) Cell-mediated killing: a common mechanism? Cell 46: 641–642

    Article  PubMed  CAS  Google Scholar 

  • Young JD, Cohn ZA, Podack ER (1986) The ninth component of complement and the pore-forming protein (perforin 1) from cytotoxic T cells: structural, immunological, and functional similarities. Science 233 (4760): 184–190

    Article  PubMed  CAS  Google Scholar 

  • Yuan J, Shaham S, Ledoux S, Ellis HM, Horvitz HR (1993) The C. elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-1B-converting enzyme. Cell 75: 641–652

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Henkart, P.A., Williams, M.S., Nakajima, H. (1995). Degranulating Cytotoxic Lymphocytes Inflict Multiple Damage Pathways on Target Cells. In: Griffiths, G.M., Tschopp, J. (eds) Pathways for Cytolysis. Current Topics in Microbiology and Immunology, vol 198. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79414-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79414-8_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79416-2

  • Online ISBN: 978-3-642-79414-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics