Skip to main content

Perforin and Granzymes: Crucial Effector Molecules in Cytolytic T Lymphocyte and Natural Killer Cell-Mediated Cytotoxicity

  • Chapter

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 198))

Abstract

The killing mediated by cytotoxic T lymphocytes (CTLs) and natural killer (NK) cells represents an important mechanism in the immune defense against tumors, virus-infected cells, parasites and other foreign invaders. The deleterious effects observed in the absence of a properly working cellular immune response have been characterized extensively in immunodeficient patients (for a review see Matsumoto et al. 1992) and naturally occurring animal models such as SCID (severe combined immunodeficiency) or nude mice. In general, immunodeficient individuals are predisposed to develop severe opportunistic infections which ultimately can lead to their death. Recently, gene targeting technology has been used repeatedly to generate mice with defined mutations in genes implicated in T and NK cell function (for a review see Yeung et al. 1993), in an attempt to dissect the individual pathways involved in the lymphocyte-mediated immune response.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Acha Orbea H, Scarpellino L, Hertig S, Dupuis M, Tschopp J (1990) Inhibition of lymphocyte mediated cytotoxicity by perforin antisense oligonucleotides. EMBO J 9: 3815–3819

    PubMed  CAS  Google Scholar 

  • Allbritton NL, Nagler AC, Elliott TJ, Verret CR (1988) Target cell lysis by cytotoxic T lymphocytes that lack detectable hemolytic perforin activity. J Immunol 141: 3243–3248

    PubMed  CAS  Google Scholar 

  • Amiguet P, Brunner J, Tschopp J (1985) The membrane attack complex of complement: lipid insertion of tubular and nontubular polymerized C9. Biochemistry 24: 7328–7334

    Article  PubMed  CAS  Google Scholar 

  • Anderson P, Nagler AC, 0 BC, Levine H, Watkins S, Slayter HS, Blue ML, Schlossman SF (1990) A monoclonal antibody reactive with a 15-kDa cytoplasmic granule-associated protein defines a subpopulation of CD8+ T lymphocytes. J Immunol 144: 574–582

    Google Scholar 

  • Berke G, Rosen D (1988) Highly lytic in vivo primed cytolytic T lymphocytes devoid of lytic granules and BLT-esterase activity acquire these constituents in the presence of T cell growth factors upon blast transformation in vitro, J Immunol 141: 1429–1436

    PubMed  CAS  Google Scholar 

  • Berke G, Rosen D, Ronen D (1993) Mechanism of lymphocyte-mediated cytolysis: functional cytolytic T cells lacking perforin and granzymes. Immunology 78: 105–112

    PubMed  CAS  Google Scholar 

  • Blumenthal R, Millard PJ, Henkart MP, Reynolds CW, Henkart PA (1984) Liposomes as targets for granule cytolysin from cytotoxic large granular lymphocyte tumors. Proc Natl Acad Sci USA 81: 5551–5555

    Article  PubMed  CAS  Google Scholar 

  • Bosma GC, Custer RP, Bosma MJ (1983) A severe combined immunodeficiency mutation in the mouse. Nature 301: 527

    Article  PubMed  CAS  Google Scholar 

  • Brown GR, McGuire MJ, Thiele DL (1993) Dipeptidyl peptidase I is enriched in granules of in vitro- and in vivo-activated cytotoxic T lymphocytes. J Immunol 150: 4733–4742

    PubMed  CAS  Google Scholar 

  • Bugeon L, Cuturi MC, Paineau J, Anegon I, Soulillou JP (1993) Similar levels of granzyme A and perforin mRNA expression in rejected and tolerated heart allografts in donorspecific tolerance in rats. Transplantation 56: 405–408

    Article  PubMed  CAS  Google Scholar 

  • Burns K, Duggan B, Atkinson EA, Famulski KS, Nemer M, Bleackley RC, Michalak M (1994) Modulation of gene expression by calreticulin binding to the glucocorticoid receptor Nature 367: 476–480

    Article  PubMed  CAS  Google Scholar 

  • Clement MV, Soulie A, Legros MS, Guillet J, Gluckman E, Sigaux N, Sasportes M (1991) Perforin and granzyme B: predictive markers for acute GVHD or cardiac rejection after bone marrow or heart transplantation. Nouv Rev Fr Hematol 33: 465–470

    PubMed  CAS  Google Scholar 

  • Cowing C, Gilmore GL (1992) Allogeneic chimerism in SCID mice after neonatal transfer of bone marrow, J Immunol 148: 1072–1079

    PubMed  CAS  Google Scholar 

  • Dedhar S, Rennie PS, Shago M et al. (1994) Inhibition of nuclear hormone receptor activity by calreticulin. Nature 367: 480–483

    Article  PubMed  CAS  Google Scholar 

  • Desai NM, Bassiri H, Kim J, Koller BH, Smithies O, BarketCF, Naji A, Markmann JF (1993) Islet allograft, islet xenograft, and skin survival in CD8+ T lymphocyte-deficient mice. Transplantation 55: 718–722

    Google Scholar 

  • Doetschman TC, Elstetter H, Kate M, Schmidt W, Kemler R (1985) The in vitro development of blastocyst-derived embryonic stem cell lines: formation of visceral yolk sac, blood islands, and myocardium, J Embryol Exp Morphol 87: 27–45

    PubMed  CAS  Google Scholar 

  • Dourmashkin RR, Deteix P, Simone CB, Henkart P (1980) Electron microscopic demonstration of lesions on target cell membranes associated with antibody-dependent cellular cytotoxicity. Clin Exp Immunol 43: 554–560

    Google Scholar 

  • Duke RC, Persechini PM, Chang S, Liu CC, Cohen J, Young JD (1989) Purified perforin induces target cell lysis but not DNA fragmentation, J Exp Med 170: 1451–1456

    Article  PubMed  CAS  Google Scholar 

  • Dupuis M, Peitsch MC, Hamann U, Stanley KK, Tschopp J (1993a) Mutations in the putative lipid- interaction domain of complement C9 result in defective secretion of the functional protein. Mol Immunol 30: 195–100

    Article  Google Scholar 

  • Dupuis M, Schaerer E, Krause KH, Tschopp J (1993b) The calcium-binding protein calreticulin is a major constituent of lytic granules of cytolytic T lymphocytes. J Exp Med 177: 1–7

    Article  PubMed  CAS  Google Scholar 

  • Ewoldt GR, Winkler U, Powers JC, Hudig D (1992) Sulfonyl fluoride serine protease inhibitors inactivate RNK-16 lymphocyte granule proteases and reduce lysis by granule extracts and perforin. Mol Immunol 29: 713–721

    Article  PubMed  CAS  Google Scholar 

  • Fink TM, Zimmer M, Weitz S, Tschopp J, Jenne DE, Lichter P (1992) Human perforin (PRF1) maps to 10q22, a region that is syntenic with mouse chromosome 10. Genomics 13: 1300–1302

    Article  PubMed  CAS  Google Scholar 

  • Fung-Leung WP, Schilham MW, Rahemtulla A, Kündig TM, Vollenweider M, Potter, J, Van Ewijk W, Mak TW (1991) Immune response against lymphocytic choriomeningitis virus infection in mice without CD8 expression. J Exp Med 174: 443–449

    Article  Google Scholar 

  • Gagliardini V, Fernandez P-A, Lee RKK, Drexler HCA, Rotello RJ, Fishman MC, Yuan J (1994) Prevention of vertebrate neuronal death by the crmA gene. Science 263: 826–828

    Article  PubMed  CAS  Google Scholar 

  • Garcia SJ, MacDonald HR, Jenne DE, Tschopp J, Nabholz M (1990a) Cell specificity of granzyme gene expression. J Immunol 145: 3111–3118

    Google Scholar 

  • Garcia SJ, MacDonald HR, Jenne DE, Tschopp J, Nabholz M (1990b) Cell specificity of granzyme gene expression. J Immunol 145: 3111–3118

    Google Scholar 

  • Gossler A, Doetschman TC, Korn R,Sterfling E, Kemler R (1986) Transgenesis by means of blastocyst- derived embryonic stem cell lines. Proc Natl Acad Sci USA 83: 9065–9069

    CAS  Google Scholar 

  • Griffiths GM, Namikawa R, Müller C, Liu CC, Young JD, Billingham M, Weissman I (1991) Granzyme A and perforin as markers for rejection in cardiac transplantation. Eur J Immunol 21: 687–693

    Article  PubMed  CAS  Google Scholar 

  • Gurwitz D, Simon MM, Fruth U, Cunningham DD (1989) Protease nexin-1 complexes and inhibits T cell serine proteinase-1. Biochem Biophys Res Commun 161: 300–304

    Article  PubMed  CAS  Google Scholar 

  • Hayes MP, Berrebi GA, Henkart PA (1989) Induction of target cell DNA-release by the cytotoxic T lymphocyte granule protease granzyme A. J Exp Med 170: 933–946

    Article  PubMed  CAS  Google Scholar 

  • Heald R, McLoughlin M, McKeon F (1993) Human Weel maintain mitotic timing by protecting the nucleus from cytoplasmically activated cdc2 kinase. Cell 74: 463–474

    Article  PubMed  CAS  Google Scholar 

  • Held W, Meyermann R, Qin Y, Mueller C (1993) Perforin and tumor necrosis factor alpha in the pathogenesis of experimental allergic encephalomyelitis: comparison of autoantigen induced and transferred disease in Lewis rats. J Autoimmun 6: 311–322

    Article  PubMed  CAS  Google Scholar 

  • Henkart MP, Henkart PA (1982) Lymphocyte mediated cytolysis as a secretory phenomenon. Adv Exp Med Biol 146: 227–242

    PubMed  CAS  Google Scholar 

  • Heusel JW, Wesselschmidt RL, Shresta S, Russell JH, Ley TJ (1994) Cytotoxic lymphocytes require grarizyme B for the rapid induction of DNA fragmentation and apoptosis in allogeneic target cells. Cell 76: 977–987

    Article  PubMed  CAS  Google Scholar 

  • Itoh N, Yonehara S, Ishii A, Yonehara M, Mizushima S, Sameshima M, Hase A, Seto Y, Nagata S (1991) The polypeptide encoded by the cDNA for human cell surface antigen Fas can mediate apoptosis. Cell 66: 233–243

    Article  PubMed  CAS  Google Scholar 

  • Jenne DE, Tschopp J (1988) Granzymes: a family of serine proteases in granules of cytolytic T lymphocytes. In: Podack ER (ed) Cytotoxic effector mechanisms. Springer, Berlin Heidelberg New York, pp 33–47 (current topics in microbiology and immunology, vol 140 )

    Google Scholar 

  • Jenne D, Rey C, Haefliger JA, Qiao BY, Groscurth P, Tschopp J (1988) Identification and sequencing of cDNA clones encoding the granule-associated serine proteases granzymes, D, E, and F of cytolytic T lymphocytes. Proc Natl Acad Sci USA 85: 4814–4818

    Article  PubMed  CAS  Google Scholar 

  • Jenne DE, Masson D, Zimmer M, Haefliger JA, Li WH, Tschopp J (1989) Isolation and complete structure of the lymphocyte serine protease granzyme G, a novel member of the granzyme multigene family in murine cytolytic T lymphocytes. Evolutionary origin of lymphocyte proteases. Biochemistry 28: 7953–7961

    Article  PubMed  CAS  Google Scholar 

  • Kagi D, Ledermann B, Burki K, Seller P, Odermatt B, Olson KJ, Podack ER, Zinkernagel RM et al. (1994) Cytotoxicity mediated by T cells and natural killer cells is greatly impaired in perforin-deficient mice. Nature 369: 31–37

    Article  PubMed  CAS  Google Scholar 

  • Kerr J, Wyllie AH, Currie AR (1972) Apoptosis a basic biological phenomenon with wideranging implications in tissue kinetics. Br J Cancer 68: 239–257

    Article  Google Scholar 

  • Koller BH, Marrack P, Kappler JW, Smithies O (1990) Normal development of mice deficient in beta 2- microglobulin, MHC Class I proteins, and CD8+ T cells. Science 248: 1227–1230

    Article  PubMed  CAS  Google Scholar 

  • Krahenbuhl O, Tschopp J (1991) Debate: the mechanism of lymphocyte-mediated killing. Perforin- induced pore formation. Immunol Today 12: 399–402

    Article  PubMed  CAS  Google Scholar 

  • Lichtenheld MG, Podack ER (1989) Structure of the human perforin gene. A simple gene organization with interesting potential regulatory sequences. J Immunol 143: 4267–4274

    PubMed  CAS  Google Scholar 

  • Lowin B, Beermann F, Schmidt A, Tschopp J (1994) A null mutation in the perforin gene abolishes cytolytic T lymphocyte- and NK-mediated cytotoxicity. Proc Natl Acad Sci USA 91: 11571–11575

    Article  PubMed  CAS  Google Scholar 

  • Lowin B, Hahne M, Mattmann C, Tschopp J (1994b) Cytolytic T-cell cytotoxicity is mediated through perforin and Fas lytic pathways. Nature 370: 650–652

    Article  PubMed  CAS  Google Scholar 

  • MacDermott RP, Schmidt RE, Caulfield JP, Hein A, Bartley GT, Ritz J, Schlossman SF, Austen KF, Stevens RL (1985) Proteoglycans in cell-mediated cytotoxicity. J Exp Med 162: 1771–1787

    Article  PubMed  CAS  Google Scholar 

  • MacLennon ICM, Gotch FM, Golstein P (1980) Limited specific T-cell mediated cytolysis in the absence of extracellular calcium. Immunology 39: 109–116

    Google Scholar 

  • Masson D, Tschopp J (1985) Isolation of a lytic, pore-forming protein (perforin) from cytolytic T- lymphocytes. J Biol Chem 260: 9069–9072

    PubMed  CAS  Google Scholar 

  • Masson D, Tschopp J (1988) Inhibition of lymphocyte protease granzyme A by antithrombin III. Mol Immunol 25: 1283–1289

    Article  PubMed  CAS  Google Scholar 

  • Masson D, Nabholz M, Estrade C, Tschopp J (1986) Granules of cytolytic T-lymphocytes contain two serine esterases EMBO J 5: 1595–1600

    PubMed  CAS  Google Scholar 

  • Matsumoto S, Sakiyama Y, Ariga T, Gallagher R, Taguchi Y (1992) Progress in primary immunodeficiency. Immunol Today 13: 4–5

    Article  PubMed  CAS  Google Scholar 

  • Miura M, Zhu H, Rotello R, Hartwieg EA, Yuan J (1993a) Induction of apoptosis in fibroblasts by IL-1 beta-converting enzyme, a mammalian homolog of the C. elegans cell death gene ced-3. Cell 75: 653–660

    Article  PubMed  CAS  Google Scholar 

  • Miura M, Zhu H, Rotello R, Hartwieg EA, Yuan J (1993b) Induction of apoptosis in fibroblasts by IL-1 beta- converting enzyme, a mammalian homolog of the C. elegans cell death gene ced-3.Cell 75: 653–660

    CAS  Google Scholar 

  • Molineaux SM, Casano FJ, Rolando AM, Peterson EP, Limjuco G, Chin J, Griffin PR, Calaycay JR, Ding GJ, Yamin TT et al. (1993) Interleukin 1 beta (IL-1 beta) processing in murine macrophages requires a structurally conserved homologue of human IL-1 beta conventing enzyme Proc Natl Acad Sci USA 90: 1809–1813

    CAS  Google Scholar 

  • Muller C, Kagi D, Aebischer T, Odermatt B, Held W, Podack ER, Zinkernagel RM and Hengartner H (1989) Detection of perforin and granzyme A mRNA in infiltrating cells during infection of mice with lymphocytic choriomeningitis virus Eur J Immunol 19: 1253–1259

    Article  PubMed  CAS  Google Scholar 

  • Nagler-Anderson C, Lichtenheld MG, Eisen HN, Podack ER (1989) Perforin mRNA in primary peritoneal exudate cytotoxic T lymphocytes, J Immunol 143: 3440–3445

    PubMed  CAS  Google Scholar 

  • Nakamura K, Arahata K, Ishiura S, Osame M, Sugita H (1993) Degradative activity of granzyme A on skeletal muscle proteins in vitro: a possible molecular mechanism for muscle fiber damage in polymyositis, Neuromuscul Disord 3: 303–310

    Article  PubMed  CAS  Google Scholar 

  • Nakamura T, Ebihara I, Osada S, Okumura K, Tomino Y, Koide H (1992) Perforin gene expression in T lymphocytes correlates with disease activity in immunoglobulin A nephropathy. Clin Sci 82: 461–468

    PubMed  CAS  Google Scholar 

  • Odake S, Kam CM, Narasimhan L, Poe M, Blake JT, Krahenbuhl 0, Tschopp J, Powers JC (1991) Human and murine cytotoxic T lymphocyte serine proteases: subsite mapping with peptide thioester substrates and inhibition of enzyme activity and cytolysis by isocoumarins. Biochemistry 30: 2217–2227

    Article  PubMed  CAS  Google Scholar 

  • Odake S, Kam CM, Oleksyszyn J, Hernandez MA, Poe M, Tschopp J, Virca GD, Powers JC (1994) Substrate and inhibitor studies with human recombinant granzyme A, murine granzyme B and human Q31 chymase. Biochemistry (in press)

    Google Scholar 

  • Ortaldo J (1993) Cell-mediated cytotoxicity. Summary of the 5th international workshop. Neve Man, Israel. Eur Cytokine Netw 4: 383–384

    PubMed  CAS  Google Scholar 

  • Ostergaard HL, Kane KP, Mescher MF, Clark WR (1987) Cytotoxic T lymphocyte mediated lysis without release of serine esterase. Nature 330: 71–72

    Article  PubMed  CAS  Google Scholar 

  • Pasternack MS, Bleier KJ, Mclnerney TN (1991) Granzyme A binding to target cell proteins. Granzyme A binds to and cleaves nucleolin in vitro. J Biol Chem 266: 14703–14708

    PubMed  CAS  Google Scholar 

  • Peitsch MC, Amiguet P, Guy R, Brunner J, Maizel J J, Tschopp J (1990) Localization and molecular modelling of the membrane-inserted domain of the ninth component of human complement and perforin. Mol Immunol 27: 589–602

    Article  PubMed  CAS  Google Scholar 

  • Penninger JM, Neu N, Timms E, Wallace VA, Koh D-R, Kishihara K, Pummerer C, Mak TW (1993) Induction of experimental autoimmune myocarditis in mice lacking CD3 of CD8 molecules. J Exp Med 178: 1831–1842

    Article  Google Scholar 

  • Peters PJ, Geuze HJ, van der Donk HA, Slot JW, Griffith JM, Stam NJ, Clevers HC, Borst J (1989) Molecules relevant for T cell-target cell interaction are present in cytolytic granules of human T lymphocytes. Eur J Immunol 19: 1469–1475

    Article  PubMed  CAS  Google Scholar 

  • Peters R, Sauer H, Tschopp J, Fritzsch G (1990) Transients of perforin pore formation observed by fluorescence microscopic single channel recording. EMBO J 9: 2447–2451

    PubMed  CAS  Google Scholar 

  • Podack ER, Hengartner H (1989) Structure of perforin and its role in cytolysis. Year Immunol 6: 245–261

    PubMed  Google Scholar 

  • Podack ER, Young JE, Cohn ZA (1985) Isolation and biochemical and functional characterization of perforin 1 from cytolytic T-cell granules. Proc Natl Acad Sci USA 82: 8629–8633

    Article  PubMed  CAS  Google Scholar 

  • Poe M, Blake JT, Boulton DA, Gammon M, Sigal NH, Wu JK, Zweerink HJ (1991) Human cytotoxic lymphocyte granzyme B. Its purification from granules and the characterization of substrate and inhibitor specificity. J Biol Chem 266: 98–103

    PubMed  CAS  Google Scholar 

  • Rahemtulla A, Fung-Leung WP, Schilham MW, Kündig TM, Sambhara SR, Narendran A, Arabian A, Wakeham A, Paige CJ, Zinkernagel RM etal. (1991) Normal development and functional CD8+ cells but markedly decreased helper cell activity in mice lacking CD4. Nature 353: 180–184

    Article  PubMed  CAS  Google Scholar 

  • Rouvier E, Luciani MF, Golstein P (1993) Fas involvement in Ca2+-independent T cell-mediated cytotoxicity. J Exp Med 177: 195–200

    Article  PubMed  CAS  Google Scholar 

  • Sayers TJ, Wiltrout TA, Sowder R, Munger WL, Smyth MJ, Henderson LE (1992) Purification of a factor from the granules of a rat natural killer cell line (RNK) that reduces tumor cell growth and changes tumor morphology. Molecular identity with a granule serine protease (RNKP-1). J Immunol 148: 292–300

    PubMed  CAS  Google Scholar 

  • Schaerer E, Karapetian O, Adrian M, Tschopp J (1995) Cytotoxic T cell specific proteins aim at the target cell nucleus (in preparation)

    Google Scholar 

  • Seko Y, Shinkai Y, Kawasaki A, Yagita H, Okumura K, Yazaki Y (1993) Evidence of perforin-mediated cardiac myocyte injury in acute murine myocarditis caused by Coxsackie virus B3. J Pathol 170: 53–58

    Article  PubMed  CAS  Google Scholar 

  • Shi L, Kam CM, Powers JC, Aebersold R, Greenberg AH (1992) Purification of three cytotoxic lymphocyte granoule serine proteases that induce apoptosis through distinct substrate and target cell interactions. J Exp Med 176: 1521–1529

    Article  PubMed  CAS  Google Scholar 

  • Shi L, Nishioka WK, Th’ng J, Bradbury EM, Litchfield DW, Greenberg AH (1994) Premature p34 cdc2 activation required for apoptosis. Science 263: 1143–1145

    Article  PubMed  CAS  Google Scholar 

  • Shiver JW, Henkart PA (1991) A noncytotoxic mast cell tumor line exhibits potent IgE-dependent cytotoxicity after transfection with the cytolysin/perforin gene. Cell 64: 1175–1181

    Article  PubMed  CAS  Google Scholar 

  • Shiver JW, Su L, Henkart PA (1992) Cytotoxicity with target DNA breakdown by rat basophilic leukemia cells expressing both cytolysin and granzyme A. Cell 71: 315–322

    Article  CAS  Google Scholar 

  • Simon MM, Fruth U, Simon HG, Kramer MD (1986) A specific serine proteinase is inducible in Lyt-2+, L3T4- and Lyt-2-, L3T4+ T cells in vitro but is mainly associated with Lyt-2+, L3T4- effector cells in vivo. Eur J Immunol 16: 1559–1568

    Article  PubMed  CAS  Google Scholar 

  • Simon MM, Prester M, Kramer MD, Fruth U (1989) An inhibitor specific for the mouse T-cell associated serine proteinase 1 (TSP-1) inhibits the cytolytic potential of cytoplasmic granules but not of intact cytolytic T cells. J Cell Biochem 40: 1–13

    Article  PubMed  CAS  Google Scholar 

  • Stanley KK, Kocher HP, Luzio JP, Jackson P, Tschopp J (1985) The sequence and topology of human complement component C9. EMBO J 4: 375–382

    PubMed  CAS  Google Scholar 

  • Stevens RL, Otsu K,Weis JH, Tantravahi RV, Austen KF, Henkart PA, Galli MC(Reynolds CW (1987) Co- sedimentation of chondroitin sulfate A glycosaminoglycans and proteoglycans with the cytolytic secretory granules of rat large granular lymphocyte (LGL) tumor cells, and identification of a mRNA in normal and transformed LGL that encodes proteoglycans. J Immunol 139: 863–868

    CAS  Google Scholar 

  • Suda T, Nagata S (1994) Purification and characterization of the Fas-ligand that induces apoptosis. J Exp Med 179: 873–879

    Article  PubMed  CAS  Google Scholar 

  • Suda T, Takahashi T, Golstein P, Nagata S (1993) Molecular cloning and expression of the Fas ligand, a novel member of the tumor necrosis factor family. Cell 75: 1169–1178

    Article  PubMed  CAS  Google Scholar 

  • Suidan HS, Bouvier J, Schaerer E, Stone SR, Monard D, Tschopp J (1994) Granzyme A released upon stimulation of cytotoxic T lymphocytes activates the thrombin receptor on neuroanal cells and astrocytes. Proc Natl Acad Sci USA 91: 8112–8116

    Article  PubMed  CAS  Google Scholar 

  • Talento A, Nguyen M, Law S, Wu JK, Poe M, Blake JT, Patel M, Wu TJ, Manyak CL, Silberklang M et al. (1992) Transfection of mouse cytotoxic T lymphocyte with an antisense granzyme A vector reduces lytic activity. J Immunol 149: 4009–4015

    PubMed  CAS  Google Scholar 

  • Tian Q, Streuli M, Saito H, Schlossman SF, Anderson P (1991) A polyadenylate binding protein localized to the granules of cytolytic lymphocytes induces DNA fragmentation in target cells. Cell 67: 629–639

    Article  PubMed  CAS  Google Scholar 

  • Trapani JA, Kwon BS, Kozak CA, Chintamaneni C, Young JD, Dupont B (1990) Genomic organization of the mouse pore-forming protein (perforin) gene and localization to chromosome 10. Similarities to and differences from C9. J Exp Med 171: 545–557

    Article  PubMed  CAS  Google Scholar 

  • Trauth BC, Klas C, Peters AM, Matzku S, Moller P, Falk W, Debatin KM, Krammer PH (1989) Monoclonal antibody-mediated tumor regression by induciton of apoptosis. Science 245: 301–305

    Article  PubMed  CAS  Google Scholar 

  • Trenn G, Takayama H, Sitkovsky MV (1987) Exocytosis of cytolytic granules may not be required for target cell lysis by cytotoxic T-lymphocytes Nature 330: 72–74

    Article  PubMed  CAS  Google Scholar 

  • Trinchieri G (1989) Biology of natural killer cells. Adv Immunol 47: 187–375

    Article  PubMed  CAS  Google Scholar 

  • Tschopp J, Nabholz M (1990) Perforin-mediated targt cell lysis by cytolytic T lymphocytes. Annu Rev Immunol 8: 279–302

    Article  PubMed  CAS  Google Scholar 

  • Vanguri P, Lee E, Henkart P, Shin ML (1993) Hydrolysis of myelin basic protein in myelin membranes by granzymes of large granular lymphocytes. J Immunol 150: 2431–2439

    PubMed  CAS  Google Scholar 

  • Woodbury RG, Neurath H (1980) Structure, specificity and localization of the serine preoteases of connective tissue. Febs Lett 114: 189–196

    Article  PubMed  CAS  Google Scholar 

  • Yeung RSM, Penninger J, Mak TW (1993) Genetically modified animals and immunodeficiency, Curr Opin Immunol 5: 585–594

    Article  PubMed  CAS  Google Scholar 

  • Young JE (1989) Killing of target cells by lymphocytes: a mechanistic view. Physiol Rev 69: 250–314

    PubMed  CAS  Google Scholar 

  • Young JE, Cohn ZA (1987) Cellular and humoral mechanisms of cytotoxicity: structural and functional analogies. Adv Immunol 41: 269–332

    Article  PubMed  CAS  Google Scholar 

  • Young JE, Nathan CF, Podack ER, Palladino MA, Cohn ZA (1986) Functional channel formation associated with cytotoxic T-cell granules. Proc Natl Acad Sci USA 83: 150–154

    Article  PubMed  CAS  Google Scholar 

  • Young JE, Clark WR, Liu CC, Cohn ZA (1987) A calcium- and perforin-independent pathway of killing mediated by murine cytolytic lymphocytes. J Exp Med 166: 1894–1899

    Article  PubMed  CAS  Google Scholar 

  • Young LH, Peterson LB, Wicker LS, Persechini PM, Young JD (1989) In vivo expression of perforin by CD8+ lymphocytes in autoimmune disease. Studies on spontaneous and adoptively transferred diabetes in nonobese diabetic mice. J Immunol 143: 3994–3999

    PubMed  CAS  Google Scholar 

  • Yu YYL, Kumar V, Bennett M (1992) Murine natural killer cells and marrow graft rejection. Annu Rev Immunol 10: 189

    Article  PubMed  CAS  Google Scholar 

  • Yuan J, Horvitz HR (1992) The Caenorhabditis elegans cell death gene ced-4 encodes a novel protein and is expressed during the period of extensive programmed cell death. Development 116: 309–320

    PubMed  CAS  Google Scholar 

  • Yuan J, Shaham S, Ledoux S, Ellix HM, Horvitz HR (1993) The C. elegans death gene ced-3 encodes a protein similar to mammalian interleukin-1 beta-converting enzyme. Cell 75: 641–652

    Article  PubMed  CAS  Google Scholar 

  • Zamvil SS, Steinman L (1990) The T lymphocyte in experimental allergic encephalomyelitis, Annu Rev Immunol 8: 579–621

    Article  PubMed  CAS  Google Scholar 

  • Zanovello P, Bronte V, Rosato A, Pizzo P, Di Virgilio F (1990) Responses of mouse lymphocytes to extracellular ATP. II. Extracellular ATP causes cell type-dependent lysis and DNA fragmentation. J Immunol 145: 1545–1550

    PubMed  CAS  Google Scholar 

  • Zheng LM, Liu CC, Ojcius DM, Young JD (1991) Expression of lymphocyte perforin in the mouse uterus during pregnancy. J Cell Sci 99: 317–323

    PubMed  CAS  Google Scholar 

  • Zijlstra M, Bix M, Simister NE, Loring JM, Raulet DH, Jaenisch R (1990) beta 2-microglobulin deficient mice lack CD4-8+ cytolytic T cells. Nature 344: 742–746

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lowin, B., Peitsch, M.C., Tschopp, J. (1995). Perforin and Granzymes: Crucial Effector Molecules in Cytolytic T Lymphocyte and Natural Killer Cell-Mediated Cytotoxicity. In: Griffiths, G.M., Tschopp, J. (eds) Pathways for Cytolysis. Current Topics in Microbiology and Immunology, vol 198. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79414-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79414-8_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79416-2

  • Online ISBN: 978-3-642-79414-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics