We will now proceed to discuss some recent applications of the present description of quantum correlation effects of disordered condensed matter using the theoretical development in the previous Chapter, i.e. in terms of coherent dissipative structures. The present view-point has led to the study of resonances in quantum chemistry, e.g. in atomic, molecular and solid state theory but recent emphasis on collective non-linear effects has produced many new surprising and unexpected applications to physical chemistry and the physics of disordered condensed matter. Predictions and theoretical interpretations have been made, see below, and to recapitulate the situation we will start by stressing the following fundamental points:
  1. 1.
    by refering to a density matrix, which subscribe to the general decomposition, see the previous chapter on the second order reduced density matrix and the extreme case, as (neglecting the “tail”)
    $$ {\Gamma^{(2)}}=\Gamma_L^{(2)}+\Gamma_S^{(2)}+(\Gamma_T^{(2)}) $$
    where the first part is the “large component” associated with coherence and the possible development of ODLRO and the second “small part“ relates to the correlation sector,
  2. 2.

    by extending the quantum mechanical formulation through the theory of complex scaling (CSM), so that irreversibility is naturally embedded in the dynamics from the beginning, and simultaneously, through the reduction above, to far from equilibrium situations,

  3. 3.

    by considering the thermal quantum correlations obtained from the thermalization of the reduced density matrix Γ(2),

  4. 4.

    by showing that these thermal quantum correlations can not refer to a wave function, like those at T = 0 K,

  5. 5.

    and by not considering any specific physical mechanism, except the general perturbational influence given by universal, environmental quantum correlations as exhibited through the extreme case previously described.



Quantum Correlation Landau Level Quantum Hall Effect Jordan Block Stimulate Emission 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brändas EJ, Chatzidimitriou-Dreismann CA (1991) Int J Quant Chem 40: 649CrossRefGoogle Scholar
  2. 2.
    Brändas EJ, Chatzidimitriou-Dreismann CA, Brändas E, Elander N (1989) Eds., Lecture Notes in Physics 325, p. 486–533Google Scholar
  3. 3.
    Chatzidimitriou-Dreismann CA (1991) Adv Chem Phys 80: 201CrossRefGoogle Scholar
  4. 4.
    Chatzidimitriou-Dreismann CA, Brändas EJ (1991) Ber Bunsenges Phys Chem 95: 263Google Scholar
  5. 5.
    Weingärtner H, Chatzidimitriou-Dreismann CA (1990) Nature 346: 548CrossRefGoogle Scholar
  6. 6.
    Chatzidimitriou-Dreismann CA, Brändas EJ (1989) Ber Bunsenges Phys Chem 93: 1065Google Scholar
  7. 7.
    Brändas EJ, Chatzidimitriou-Dreismann CA (1991) Ber Bunsenges Phys Chem 95: 462Google Scholar
  8. 8.
    Karlsson E, Brändas EJ, Chatzidimitriou-Dreismann CA (1991) Physica Scripta 44: 77CrossRefGoogle Scholar
  9. 9.
    Chatzidimitriou-Dreismann CA, Brändas EJ, Karlsson E (1990) Phys Rev Rapid Communications B 42: 2704Google Scholar
  10. 10.
    Brändas EJ (1993) Ber Bunsenges Phys Chem 97: 55Google Scholar
  11. 11.
    Chatzidimitrious-Dreismann CA, Brändas EJ (1992) Physica C 201: 340CrossRefGoogle Scholar
  12. 12.
    Brändas EJ (1993) Ed. Proceedings of the Nobel Satellite Symposium on Resonances and Microscopic Irreversibility, Uppsala, December 1991, Int J Quant Chem 46: Nr. 3Google Scholar
  13. 13.
    Brändas EJ (1993) Proceedings from the BEAM-COOL Workshop, Montreaux, October 4–8Google Scholar
  14. 14.
    Eigen M, De Maeyer L (1958) Proc R Soc (London) 247: 505CrossRefGoogle Scholar
  15. 15.
    Meiboom S (1961) J Chem Phys 34: 375CrossRefGoogle Scholar
  16. 16.
    Hertz HG (1987) Chemica Scripta 27: 479Google Scholar
  17. 17.
    Hertz HG, Brown BM, Müller KJ, Maurer R (1987) J Chem Ed 64: 777CrossRefGoogle Scholar
  18. 18.
    Schuster P, Zundel G, Sandorfy C (1976) The hydrogen bond, vols I-III North Holland, AmsterdamGoogle Scholar
  19. 19.
    Robinson RA, Stokes RH (1970) Electrolytic solutions, Butterworths, LondonGoogle Scholar
  20. 20.
    Pfeifer R, Hertz HG (1990) Ber Bunsenges Phys Chem 94: 1349Google Scholar
  21. 21.
    Chatzidimitriou-Dreismann CA, Brändas EJ (1990) Int J Quant Chem 37: 155CrossRefGoogle Scholar
  22. 22.
    Halle B, Karlström G (1983) J Chem Soc Faraday Trans 2, 79: 1031Google Scholar
  23. 23.
    Brändas EJ, Chatzidimitriou-Dreismann CA (1989) Int J Quant Chem Symp 23: 147Google Scholar
  24. 24.
    Chatzidimitriou-Dreismann CA (1989) Int J Quant Chem Symp 23: 153Google Scholar
  25. 25.
    Bednorz JG, Müller KA (1986) Z Phys B 64: 189CrossRefGoogle Scholar
  26. 26.
    Chu CW (1987) Proc Natl Acad Sci USA, 84: 4681CrossRefGoogle Scholar
  27. 27.
    Burns G (1992) High-temperature superconductivity. An Introduction, Academic Press, Inc., New YorkGoogle Scholar
  28. 28.
    Anderson PW, Schrieffer R (1991) Physics Today JuneGoogle Scholar
  29. 29.
    Bedell KS, Coffey D, Meltzer DE, Pines D, Schrieffer JR (1990) (Eds.), High Temperature Superconductivity: Proceedings, Addison-Wesley, Redwood City, CalifGoogle Scholar
  30. 30.
    Wollman DA, Van Harlingen DJ, Lee WC, Ginsberg DM, Leggett AI (1993) Phys Rev Letters 71: 2134CrossRefGoogle Scholar
  31. 31.
    Jansen L, Block R (1993) Physica A 198: 551CrossRefGoogle Scholar
  32. 32.
    Jansen L, Chandran L, Block R (1993) Chem Phys 176: 1CrossRefGoogle Scholar
  33. 33.
    Uemura YJ et al. (1989) Phys Rev Lett 62: 2317CrossRefGoogle Scholar
  34. 34.
    Lynn JW (ed) (1990) High temperature superconductivity. Springer, Berlin Heidelberg New YorkGoogle Scholar
  35. 35.
    Zhang H, Sato H (1993) Phys Rev Lett 70: 1697CrossRefGoogle Scholar
  36. 36.
    Dahl PF (1992) Superconductivity. Its historical roots and development from mercury to the ceramic oxides, American Institute of Physics, New YorkGoogle Scholar
  37. 37.
    von Klitzing K, Dorda G, Pepper M (1980) Phys Rev Lett 45: 494CrossRefGoogle Scholar
  38. 38.
    Prange RE, Girvin SM (1990) The quantum hall effect second edition, Springer, Berlin Heidelberg New YorkCrossRefGoogle Scholar
  39. 39.
    Tsui DC, Störmer HL, Gossard AC (1982) Phys Rev Lett 48: 1559CrossRefGoogle Scholar
  40. 40.
    Wigner E (1934) Phys Rev 46: 1002CrossRefGoogle Scholar
  41. 41.
    Laughlin RB (1983) Phys Rev Lett 50: 1395CrossRefGoogle Scholar
  42. 42.
    Leinaas JM, Myrheim J (1977) Nouvo Cimento 37 B 1Google Scholar
  43. 43.
    Wilczek F (1982) Phys Rev Lett 49: 1CrossRefGoogle Scholar
  44. 44.
    Suen YW, Engel LW, Santos MB, Shayegan M, Tsui DC (1992) Phys Rev Lett 68, 1379CrossRefGoogle Scholar
  45. 45.
    Eisenstein JP, Boebinger GS, Pfeiffer LN, West KW, Song He (1992) Phys Rev Lett 68: 1383CrossRefGoogle Scholar
  46. 46.
    Coxeter HSM (1973) Regular Polytopes, Dover Publications, Inc., third editionGoogle Scholar
  47. 47.
    Kuhn TS (1962) The structure of scientific revolutions, The university of Chigago Press; second edition, enlarged (1970)Google Scholar
  48. 48.
    Haken H, Mikhailov A (1993) Interdisciplinary approaches to nonlinear complex systems, Springer Series in Synergetics, Vol. 62Google Scholar
  49. 49.
    Bohm D (1951) Quantum Theory, Prentice-Hall, Inc., New YorkGoogle Scholar
  50. 50.
    Twiss RQ (1958) Aust J Phys 11: 564CrossRefGoogle Scholar
  51. 51.
    Schneider J (1959) Phys Rev Lett 2: 504CrossRefGoogle Scholar
  52. 52.
    Sprangle P, Drobot AT (1977) IEEE Trans Microwave Theory Tech 25: 528CrossRefGoogle Scholar
  53. 53.
    Hirshfeld JL, Wachtel JM (1964) Phys Rev Lett 12: 533CrossRefGoogle Scholar
  54. 54.
    Ikegami H (1990) Phys Rev Lett 64, 1737 (1990); ibid 2593Google Scholar
  55. 55.
    Bell J (1990), Against measurement, Physics World, Volume 3, No 8, 33, AugustGoogle Scholar
  56. 56.
    Redhead M (1987) Incompleteness, Nonlocality, and Realism, Clarendon Press, OxfordGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • E. Brändas

There are no affiliations available

Personalised recommendations