Skip to main content

Palaeo-Ecophysiological Studies on Cretaceous and Tertiary Fossil Floras

  • Conference paper
Cenozoic Plants and Climates of the Arctic

Part of the book series: NATO ASI Series ((ASII,volume 27))

Abstract

Stomatal responses (density and size) of cuticles isolated from sequences of fossil leaves may be used to reconstruct palaeo-CO2 changes and the ecophysiological attributes of the plants themselves through geological time. The Cretaceous/Tertiary (110–10 Ma) has particularly large CO2 excursions as predicted by long-term carbon cycle models and reconstructions based on the isotopic signatures of fossil porphyrins. Therefore this interval is particularly suitable for the study of stomatal density responses, which have been shown experimentally to be sensitive to CO2 changes of a similar magnitude. The advantage of this technique is that it may permit the quantification of the large (up to ten times present-day concentrations) increases in global CO2 concentrations expected to occur as a result of the K-T impact. It also provides the first verification of model predictions directly from observations. Possible distortion of the CO2-signal may result through the lack of extant species but these potential difficulties are no greater than those of the long-term carbon cycles models or those associated with the fossil porphyrin techniques. This chapter argues that stomatal studies from Cretaceous and Tertiary material would provide an important proxy indicator to complement present methods of estimating ancient CO2 levels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Beerling DJ. and Chaloner W.G. (1993) Stomatal responses of Egyptian Olea europaea L. leaves to CO2 change since 1327 BC. Ann. Bot. 71: 431–435.

    Article  CAS  Google Scholar 

  • Beerling D.J. and Chaloner W.G. (1994) Atmospheric CO2 changes since the last glacial maximum: evidence from the stomatal density record of fossil leaves. Rev. Palaeo. Pal.

    Google Scholar 

  • Beerling D.J., Chaloner W.G., Huntley B., Pearson J.A. and Tooley M.J. (1993b) Stomatal density responds to the glacial cycle of environmental change. Proc. R. Soc. Lond. B251: 133–138.

    Article  Google Scholar 

  • Beerling D.J., Mattey, D.P. and Chaloner W.G. (1993a) Shifts in the 5l3C of Salix herbacea leaves in response to spatial and temporal gradients of atmospheric CO2 concentration. Proc. R. Soc. Lond. B253: 53–60.

    Article  Google Scholar 

  • Beerling D.J., Putland V. and Woodward F.I. (In press) Stomatal density responses to global change. Adv. Bioclim.

    Google Scholar 

  • Beerling D.J. and Woodward F.I. (1993) Ecophysiological responses of plants to global environmental change since the last glacial maximum. New Phytol. 125: 641–648.

    Article  Google Scholar 

  • Berner R.A. (1992) Palaeo-CO2 and climate. Nature 358: 114.

    Article  Google Scholar 

  • Berner R.A. (1993) Paleozoic atmospheric CO2: importance of solar radiation and plant evolution. Science 261: 68–70.

    Article  PubMed  CAS  Google Scholar 

  • van der Burgh J., Visscher H., Dilcher D.L. and Kürschner W.M. (1993) Paleoatmospheric signatures in Neogene fossil leaves. Science 260: 1788–1790.

    Article  Google Scholar 

  • Cerling T.E., Wang Y. and Quade J. (1993) Expansion of C4 ecosystems as an indicator of global ecological change in the Late Miocene. Nature 361: 344–345.

    Article  Google Scholar 

  • Chaloner W.G. and Creber G.T. (1990) Do fossil plants give a climatic signal? J. Geol. Soc Lond. 147: 343–350.

    Article  Google Scholar 

  • Farquhar G.D., Ehleringer J.R. and Hubick K.T. (1989) Carbon isotope discrimination and photosynthesis. Ann. Rev. PI. Physiol. PI. Molec. Biol. 40: 503–537.

    Article  CAS  Google Scholar 

  • Freeman K.H. and Hayes J.M. (1992) Fractionation of carbon isotopes by phytoplankton and estimates of ancient CO2 levels. Global Biogeochem. Cycles 6: 185–198.

    Article  PubMed  CAS  Google Scholar 

  • Givnish T.J. (1988) Adaptations to sun and shade: a whole plant perspective. Aust. J. Plant Pysiol. 15: 63–92.

    Article  Google Scholar 

  • Houghton J.T., Jenkins G.J. and Ephraums J.J. (1990) Climatic Change: The IPCC Sei. Assess. Cambridge University Press, Cambridge: 365 pp.

    Google Scholar 

  • Jarvis P.G. and McNaughton K.G. (1986) Stomatal control of transpiration: scaling up from leaf to region. Adv. Ecol. Res. 15: 1–49.

    Article  Google Scholar 

  • Jouzel J., Barkov N.I., Barnola J.M., Bender M., Chappellaz J., Genthon C., Kotlyakov V.M., Lipenkov V., Lorius C., Petit J.R., Raynaud D., Raisbeck G., Ritz C., Sowers T., Stievenard M., Yiou F. and Yiou P. (1993) Extending the Vostok ice-core record of palaeoclimate to the penultimate glacial period. Nature 364: 407–412.

    Article  Google Scholar 

  • Kelly D.W., Hicklenton P.R. and Reekie E.G. (1991) Photosynthetic response of geranium to elevated CO2 as affected by leaf age and time of CO2 exposure. Can. J. Bot. 69: 2482–2488.

    Article  Google Scholar 

  • Lasaga A.C., Berner R.A. and Garrels R.M. (1985) An improved geochemical model of atmospheric CO2 fluctuation over the past 100 million years. In: E.T. Sundquist and W.S. Broecker (eds.) The Carbon Cycle and Atmospheric CO 2: Natural Variations Archean to Present. Geophys. Mongr. 32. American Geophysical Union, Washington: 397–411.

    Google Scholar 

  • Madsen E. (1973) Effect of CO2-concentration on morphological, histological and cytological changes in tomato plants. ActaAgric. Scand. 23: 241–246.

    Article  CAS  Google Scholar 

  • Martin P. (1993) Vegetation responses and feedbacks to climate: a review of models and processes. Clymate Dynamics 8: 201–210.

    Google Scholar 

  • Neftel A., Oeschger H., Staffelbach T. and Stauffer B. (1988) CO2 record in the Byrd ice core 50,000–5,000 years BP. Nature 331: 609–611.

    Article  Google Scholar 

  • Nelson M., Burgess T.L., Ailing A., Alvarez-Romo N., Dempster W.F., Walford R.L. and Allen J.P. (In press) Using an ecological system to study the Earth’s biosphere: initial results from Biosphere 2. Biosci.

    Google Scholar 

  • O’Keefe J.D. and Ahrens T.J. (1989) Impact production of CO2 by the Cretaceous/Tertiary extinction bolide and the resultant heating of the Earth. Nature 338: 247–249.

    Article  Google Scholar 

  • Penuelas J. and Matamala R. (1990) Changes in N and S leaf content, stomatal density and specific leaf area of 14 plant species during the last three centuries of CO2 increase. J. exp.Bot. 41: 1119–1124.

    Article  CAS  Google Scholar 

  • Radoglou K.M. and Jarvis P.G. (1990) Effects of CO2 enrichment on four poplar clones. II. Leaf surface properties. Ann. Bot. 65: 627–632.

    CAS  Google Scholar 

  • Rahim M.A. and Fordham R. (1991) Effect of shade on leaf and cell size and number of epidermal cells in garlic (Allium sativum). Ann. Bot. 67: 167–171.

    Google Scholar 

  • Raven J. A. (1993) The evolution of vascular plants in relation to quantitative functioning of dead water-conducting cells and stomata. Biolog. Rev. 68: 337–363.

    Article  Google Scholar 

  • Raven J.A. and Sprent J.I. (1989) Phototrophy, diazotrophy and palaeoatmospheres: biological catalysis and the H, C, N and O cycles. J. Geol. Soc. Lond 146: 161–170.

    Article  Google Scholar 

  • Rea D.K., Leinen M. and Janecek R. (1985) Geologic approach to the long-term history of atmospheric circulation. Science 223: 1180–1183.

    Google Scholar 

  • Robin E., Froget L., Jéhanno C. and Rocchia R. (1993) Evidence for a K/T impact event in the Pacific Ocean. Nature 363: 615–617.

    Article  CAS  Google Scholar 

  • Salisbury E.J. (1927) I On the causes and ecological significance of stomatal frequency, with special reference to the woodland flora. Phil. Trans. R. Soc. B431: 1–65.

    Google Scholar 

  • Shackleton N.J. (1986) Paleogene stable isotope events. Paleogeogr. Paleoclimatol. Palaeoecol. 57: 91–102.

    Google Scholar 

  • Shukla J. and Mintz Y. (1982) Influence of land-surface évapotranspiration on the Earth’s climate. Science 215: 1498–1500.

    Article  PubMed  CAS  Google Scholar 

  • Shurma G.K. and Dunn D.B. (1969) Environmental modifications of leaf surface traits in Datura stramonium. Can. J. Bot. 47: 1211–1216.

    Article  Google Scholar 

  • Spicer R.A. and Chapman J.L. (1990) Climate change and the evolution of high-latitude terrestrial vegetation and floras. Trends Ecol. Evol. 9: 279–284.

    Article  Google Scholar 

  • Spicer R.A. and Parrish J.T. (1990). Late Cretaceous-early Tertiary palaeoclimates of northern latitudes: a quantitative view. J. Geol. Soc. Lond. 147: 329–341.

    Article  Google Scholar 

  • Steffen W.L., Walker B.H., Ingram J.S. and Koch G.W. (1992) Global change and Terretrial Ecosystems. The Operational Plan. IGBP Global Change Rep. 21: Stockholm.

    Google Scholar 

  • White J.W.C., Ciais P., Figge R.A., Kenny R. and Markgraf V. (1994) A high record of atmospheric CO2 content from carbon isotopes of peat. Nature 367: 153–156.

    Article  CAS  Google Scholar 

  • Wolfe J.A. (1991) Palaeobotanical evidence for a June ‘impact winter’ at the Cretaceous/Tertiary boundaiy. Nature 352: 420–423.

    Article  Google Scholar 

  • Wolfe J. A. and Upchurch G.R. (1986) Vegetation, climatic and floral changes at the Cretaceous-Tertiary boundary. Nature 324: 148–152.

    Article  Google Scholar 

  • Woodward F.I. (1987) Stomatal numbers are sensitive to increases in CO2 from pre-industrial levels. Nature 327: 617–618.

    Article  Google Scholar 

  • Woodward F.I. and Bazzaz F.A. (1988) The responses of stomatal density to CO2 partial pressure. J. exp. Bot. 39: 1771–1781.

    Article  Google Scholar 

  • Woodward F.I., Thompson G.B. and McKee I.F. (1991) The effects elevated concentrations of carbon dioxide on individual plants, populations, communites and ecosystems. Ann. Bot. 61: 23–38.

    Google Scholar 

  • Yapp C. and Poths H. (1992) Ancient atmospheric CO2 pressures inferred from natural goethites. Nature 355: 342–344.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Beerling, D.J. (1994). Palaeo-Ecophysiological Studies on Cretaceous and Tertiary Fossil Floras. In: Boulter, M.C., Fisher, H.C. (eds) Cenozoic Plants and Climates of the Arctic. NATO ASI Series, vol 27. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79378-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79378-3_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79380-6

  • Online ISBN: 978-3-642-79378-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics