Advertisement

Pilze und Umweltbiotechnologie

  • M. Wainwright
Part of the Biotechnologie book series (BIOTECH)

Zusammenfassung

Umweltfragen gewinnen heute immer mehr an Bedeutung, und mittlerweile wird an Technologien geforscht, die im Vergleich zu den heute gängigen Technologien die Umweltbelastung senken sollen. In diesem Zusammenhang rücken wiederum die Mikroorganismen in den Mittelpunkt des Interesses, und zwar sollen mit ihrer Hilfe umweltbelastende Stoffe entgiftet werden (‚biologische Sanierung‘). Die meisten der bislang veröffentlichten Arbeiten beschäftigen sich mit Bakterien und deren Fähigkeiten, bestimmte Stoffe abbauen zu können. Weiterhin steht die Anwendung dieser Abbaureaktionen bei entsprechenden Umweltproblemen im Vordergrund. Mittlerweile wird bei diesen Problemkreisen die Verwendung von Hyphenpilzen und Hefen immer interessanter.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Anselmo A. M., Cabral J.M.S., Novais J.M. (1989) The adsorption of Fusarium floc-ciferum spores on cellite particles and their use in the degradation of phenol. Appl. Microb. Biotech. 31, 200–203CrossRefGoogle Scholar
  2. Aust S.D. (1990) Degradation of environmental pollutants by Phanerochaete chrysosporium. Microbial Ecol. 20, 197–209CrossRefGoogle Scholar
  3. Aust S.D., Bumpus J.A. (1990) Method for the degradation of environmentally persistent organic compounds using white rot fungi. US Patent 4891320Google Scholar
  4. Ban-Koffi L., Han Y.W. (1990) Alcohol production from pineapple waste. World J. Microbiol. Biotech. 6, 281–284CrossRefGoogle Scholar
  5. Bergbauer M., Eggert C., Kraeplin G. (1991) Degradation of chlorinated lignin compounds in a bleach plant effluent by the white rot fungus Trameles versicolor. Appl. Microb. Biotech. 35, 105–109CrossRefGoogle Scholar
  6. Bumpus J.A. (1989) Biodegradation of polycyclic aromatic hydrocarbons by Phanerochaete chrysosporium. Appl. Env. Microbiol. 55, 154–158Google Scholar
  7. Dietrich D.M., Lamar R.T. (1990) Selective medium for isolating Phanerochaete chrysosporium from soil. Appl. Env. Microbiol. 56, 3088–3092Google Scholar
  8. Edwards V.H., Finn R.K. (1969) Fermentation media — chemical effluents. Proc. Biochem. 29–39Google Scholar
  9. Gadd G.M. (1990) Biosorption. Chem. Industry 421–426Google Scholar
  10. Gadd G.M., White C. (1989) Removal of thorium from simulated acid process streams by fungal biomass. Biotech. Bioeng. 33, 592–597CrossRefGoogle Scholar
  11. George E.J., Neufeld R.D. (1989) Degradation of fluorene in soil by fungus Phanerochaete chrysosporium. Biotech. Bioeng. 33, 1306–1310CrossRefGoogle Scholar
  12. Harris R.E., Bunch A.W., Knowles C.J. (1987) Microbial cyanide and nitrile metabolism. Sci. Prog. Oxford 71, 293–304Google Scholar
  13. Hiremath A.B., Nimbarji P.M., Jayaraj Y.M. (1985) Domestic sewage treatment by fungi and biomass production. Envir. Ecol. 3, 568–571Google Scholar
  14. Kuhn A.L., Pretorius W.A. (1989) Fungal purification of an industral effluent containing volatile fatty acids by means of a cross-flow microscreen technique. Water Sci. Technol. 21, 221–229Google Scholar
  15. Lamar R.T., Glaser J.A., Kirk T.K. (1990) Fate of pentachlorophenol (PCP) in sterile soils inoculated with the white rot Basidiomycete Phanerochaete chrysosporium: mineralization, volatilization and depletion of PCP Soil. Biol. Biochem. 22, 433–440CrossRefGoogle Scholar
  16. Leuf E., Prey T., Kubicek C.P. (1991) Biosorption of zinc by fungal mycelial wastes. Appl. Microb. Biotech. 34, 688–692CrossRefGoogle Scholar
  17. Lewandowski G.A., Armenante P.M., Pak D. (1990) Reactor design for hazardous waste treatment using a white rot fungus. Water Res. 24, 75–82CrossRefGoogle Scholar
  18. Marton J., Stern A.M., Marton T. (1969) Decolorization of Kraft black liquor with Polyporus versicolor, a white rot fungus. Tappi J. 52, 1975–1981Google Scholar
  19. McLoughlin A.J. (1972) Fermentation of pollutants. Proc. Biochem. 27–29Google Scholar
  20. Morgan P., Lewis S.T., Watkinson R.J. (1991) Comparison of abilities of white-rot fungi to mineralize selected xenobiotic compounds. Appl. Microbiol Biotech. 34, 693–696CrossRefGoogle Scholar
  21. Munnecke D.M. (1978) Detoxification of pesticides using soluble or immobilized enzymes. Proc. Biochem. 14–17Google Scholar
  22. Quinn J.P., Marchant R. (1980) The treatment of malt whisky distillery waste using the fungus Geotrichum candidum. Water Res. 14, 545–551CrossRefGoogle Scholar
  23. Shannon M.J.R., Bartha R. (1988) Immobilization of leachable toxic soil pollutants by using oxidative enzymes. Appl. Env. Microbiol. 54, 1719–1723Google Scholar
  24. Siegel S.M., Galun M., Siegel B.Z. (1990) Filamentous fungi as metal biosorbents: a review. Water Air Soil Poll. 53, 335–344CrossRefGoogle Scholar
  25. Sirianuntapiboon S., Somchai P., Sihanonth P., Atthasampunna P., Ohmomo S. (1988) Microbial decolorization of molasses waste water by My celia sterilia D90. Acricult. Biol. Chem. 52, 393–398CrossRefGoogle Scholar
  26. Sivaswarmy S.N. (1988) Control of pollution of tannery effluents by fungi. Pollut. Res. 7, 17–22Google Scholar
  27. Wainwright M., Grayston S.J., De Jong P. (1986) Adsorption of insoluble compounds by mycelium of the fungus Mucor flavus. Enzyme Microbiol. Biotechnol. 8, 597–600Google Scholar
  28. Wainwright M., Singleton L., Edyvean R.G.J (1990) Magnetite adsorption as a means of making fungal biomass susceptible to a magnetic field. Biorecovery 2, 37–54Google Scholar
  29. White C., Gadd G.M. (1990) Biosorption of radionuclides by fungal biomass. J. Chem. Technol. Biotechnol. 49, 331–343CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • M. Wainwright
    • 1
  1. 1.Department of Molecular Biology and BiotechnologyUniversity of SheffieldSheffieldUK

Personalised recommendations