Skip to main content

Biotransformation/Bioconversion

  • Chapter
Aroma Biotechnology

Abstract

Many volatile target compounds are not amenable to a microbial de novo synthesis in anything like acceptable yields. Both constitutive or inducable microbial enzymes, however, turn over biotic intermediates and even xenobiotics in single step (biotransformations) or multistep reactions (bioconversions) to products more valuable from a flavor point of view. Biocatalysts can enlarge, degrade, or modify the substrate, thereby supplementing or replacing chemosynthesis. Particularly attractive is the breakdown of complex natural products to volatiles. Recent oil tanker accidents near the Shetlands and in Prince William Sound, Alaska, have unintentionally demonstrated to a broader public the impressive biodegradative capabilities of the indigenous microflora (Venosa et al., 1992).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abraham WR, Ernst L, Stumpf B, Arfmann HA, Microbial hydroxylations of bicyclic and tricyclic sesquiterpenes, J Ess Oil Res, 1989, 1, 19

    CAS  Google Scholar 

  • Abraham WR, Kieslich K, Stumpf B, Ernst L, Microbial oxidation of tricyclic sesquiter- penoids containing a dimethylcyclopropane ring, Phytochemistry, 1992, 31, 3749

    Article  CAS  Google Scholar 

  • Abraham WR, Stumpf B, Biotransformation of humulene by fungi and enantioselectivity of the strains used, Z Naturforsch, 1987,42c, 79

    Google Scholar 

  • Arfmann HA, Abraham WR, Kieslich K, Microbial co-hydroxylation of trans-nerolidol and structurally related sesquiterpenoids, Biocatalysis, 1988, 2, 59

    Article  CAS  Google Scholar 

  • Arfmann HA, Abraham WR, Microbial reduction of aromatic carboxylic acids, Z Natur- forsch, 1993,48c, 52

    Google Scholar 

  • Boopathy R, Bokang H, Daniels L, Biotransformation of furfural and 5-hydroxymethyl furfural by enteric bacteria, J Ind Microbiol, 1993, 11, 147

    Article  CAS  Google Scholar 

  • Busmann D, PhD Thesis Universität Hannover 1994

    Google Scholar 

  • Cardillo R, Nasini G, Depava OV, Secondary mould metabolites 36. Isolation of illudin- m, illudinine and shisool from the mushroom Clitocybe phosphorea - Biotransformation of perillyl alcohol and aldehyde, Phytochemistry, 1992, 31, 2013

    Google Scholar 

  • Dhavalikar RS. Bhattacharyya P.K. Microbiological transformations of terpenes: Part Vm - Fermentation of limonene by a soil pseudomonad, Indian J Biochem, 1966, 3, 144

    CAS  Google Scholar 

  • Diaz DME, Villa P, Guerra M, Rodriguez E. Redondo D, Martinez A, Conversion of furfural into furfuryl alcohol by Saccharomyces cervisiae, Acta Biotechnol, 1992, 12, 351

    Article  Google Scholar 

  • Doi M, Matsui M, Kanayama T, Shuto Y, Kinoshita Y, Asymmetric reduction of aceto- phenone by Aspergillus Species and their possible contribution to katsuobushi flavor, Biosci Biotechnol Biochem, 1992, 56, 958

    Article  CAS  Google Scholar 

  • Hanson JR, Nasir H, Biotransformation of the sesquiterpenoid, cedrol, by Cephalosporium aphidicola, Phytochemistry, 1993, Vol 33, 4, 835

    Article  CAS  Google Scholar 

  • Horiuchi K, Morimoto KI, Ohta T, Suemitsu R, Biotransformation of benzyl alcohol by Pseudomonas cepacia, Biosci Biotech Biochem, 1993, 57, 1346

    Article  CAS  Google Scholar 

  • Ishida T, Asakawa Y, Takemoto T, Aratani T, Terpenoids Biotransformation in mammals nt Biotransformation of a-pinene, ß-pinene, pinane, 3-carene, carane, myrcene, and p-cymene in rabbits, J Pharmac Sci, 1981, 70, 406

    Article  CAS  Google Scholar 

  • Kieslich K, Abraham WR, Stumpf B, Washausen P, Microbial transformation of terpenoids, In: Topics in Flavour Research, Berger RG, Nitz S, Schreier P (eds) Eichhorn Hangenham 1985, 405

    Google Scholar 

  • Koritala S, Bagby MO, Microbial conversion of linoleic and linolenic acids to unsaturated hydroxy fatty acids, JAOCS, 1992, 69, 575

    Article  CAS  Google Scholar 

  • Krasnobajew V, Helmlinger D, Fermentation of fragrances: biotransformation of ß-ionone by Lasiodiplodia theobromae, Helv Chim Acta, 1982, 65, 1590

    Article  CAS  Google Scholar 

  • Lamare V, Furstoss R, Bioconversion of sesquiterpenes, Tetrahedron, 1990, 46, 4109

    Article  CAS  Google Scholar 

  • Lanser AC, Conversion of oleic acid to 10-ketostearic acid by aStaphylococcus species, JAOCS, 1993, 70, 543

    Article  CAS  Google Scholar 

  • Lanser AC, Plattner RD, Bagby MO, Production of 15-, 16-and 17-hydroxy-9- octadecanoic acids by bioconversion of oleic acid with Bacillus pumilus, JAOCS, 1992, 69, 363

    Article  CAS  Google Scholar 

  • Maatooq G, Elsharkawy S, Afifi MS, Rosazza JPN, Microbial transformation of cedrol, J Nat Prod 1993, 56, 1039

    Article  CAS  Google Scholar 

  • Madyastha KM, Gururaja TL, Transformations of acyclic isoprenoids by Aspergillus niger - selective oxidation of omega-methyl and remote double bonds, Appl Microbiol Biotechnol, 1993, 38,738

    Article  CAS  Google Scholar 

  • Manzoni M, Molinari F, Tirelli A, Aragozzini F, Phenylacetaldehyde by acetic acid bacteria oxidation of 2-phenylethanol, Biotechnol Let, 1993, 15, 341

    Article  CAS  Google Scholar 

  • Mauersberger S, Drechsler H, Oehme G, Müller HG, Substrate specificity and stereoselectivity of fatty alcohol oxidase from the yeast Candida maltosa, Appl Microbiol Biotechnol, 1992, 37, 66

    Article  CAS  Google Scholar 

  • Mikami Y, Fukunaga Y, Arita M, Kisaki T, Microbial transformation of ß-ionone and ß- methylionone, Appl Environm Microbiol, 1981, 41, 610

    CAS  Google Scholar 

  • Noma Y, Yamasaki S, Asakawa Y, Biotransformation of limonene and related componds byAspergillus cellulosae, Phytochemistry, 1992, 31, 2725

    Google Scholar 

  • Ohta A, Shimada M, Aromatic hydroxylation of methyl cinnamate to methyl 4-hydroxycinnamate catalyzed by the cell-free extracts of a brown-rot fungusLentinus lepi- deus, Mokuzai Gakkaishi, 1991, 37, 748

    CAS  Google Scholar 

  • Patel RN, McNamee CG, Baneijee A, Howell JM, Robison RS, Szarka LJ, Stereoselective reduction of beta-keto esters by Geotrichum candidum, Enzyme Microbial Technol, 1992, 14, 731

    Article  CAS  Google Scholar 

  • Phillips Petroleum, US 5071762,1991

    Google Scholar 

  • Repp HD, Stottmeister U, Dörre M, Weber L, Haufe G, Microbial oxidation of a-pinene, Biocatalysis 1990, 4, 75

    Article  Google Scholar 

  • Rosazza JPN, Goswami A, Liu WG, Sariaslani FS, Steffens JJ, Steffek RP, Beale JM, Chapman JR, Reeg S, Microbial transformations of terpenes: studies with 1,4-cineole, J Ind Microbiol 1988, 29, 181

    CAS  Google Scholar 

  • Sandey H, Willetts A, Biotransformation of cycloalkanones - controlled oxidative and reductive bioconversions by an Acinetobacter species, Biotechnol Let, 1992, 14, 1119

    Article  CAS  Google Scholar 

  • Stumpf B, Kieslich K, Appl Microbiol Biotechnol 1991, 34, 598

    Article  CAS  Google Scholar 

  • Stumpf B, Wray V, Kieslich K, Oxidation of carenes to chaminie acids byMycobacterium smegmatis DSM 43061, Appl Microbiol Biotechnol, 1990, 33, 251

    Article  CAS  Google Scholar 

  • Suhara Y, Itoh S, Ogawa M, Yokose K, Sawada T, Sano T, Ninomiya R, Maruyama HB, Regio-selective 10-hydroxylation of patchoulol, a sesquiterpene, by Pithomyces Species, Appl Environm Microbiol, 1981, 42, 2, 187

    CAS  Google Scholar 

  • Takigawa H, Kubota H, Sonohara H, Okuda M, Tanaka S, Fujikura Y, Ito S, Novel allylic oxidation of alpha-cedrene to sec-cedrenol by a Rhodococcus strain, Appl Environm Microbiol, 1993, 59, 1336

    CAS  Google Scholar 

  • van der Schaft P, van Geel I, de Jong G, ter Burg N, Microbial production of natural furfu- rylthiol, In: Trends in Flavour Research, Maarse H, van der Heij DG (eds) Elsevier Amsterdam 1994,437

    Google Scholar 

  • Venosa AD, Haines JR, Nisamaneepong W, Govind R, Pradhan S, Siddique B, Efficacy of commercial products in enhancing oil biodégradation in closed laboratory reactors, J Ind Microbiol, 1992, 10, 13

    Article  CAS  Google Scholar 

  • Villa GP, Bartroli R, Lopez R, Guerra M, Enrique M, Penas M, Rodriquez E, Redondo D, Iglesias I, Diaz M, Microbial transformation of furfural to furfuryl alcohol by Saccha- romyces cerevisiae, Acta Biotechnol, 1992, 12, 509

    Article  CAS  Google Scholar 

  • Vischer E, Wettstein A, Mikrobiologische Reaktionen, Experientia, 1953, 9, 371

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Berger, R.G. (1995). Biotransformation/Bioconversion. In: Aroma Biotechnology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79373-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79373-8_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79375-2

  • Online ISBN: 978-3-642-79373-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics