Apoplastic and Symplastic Proton Concentrations and Their Significance for Metabolism

  • H. Pfanz
Part of the Springer Study Edition book series (volume 100)


Proton concentration is a major factor in restricting life within definite boundaries. In general, life occurs in a neutral or slightly acidic environment, but fungi, bacteria, animals, and higher plants have nevertheless managed to conquer terrestrial and aqueous niches at extreme pH values. The pH extremes for cellular growth are around pH 1 and pH 11 (Souza et al. 1974; Langworthy 1978). Life therefore exists within the enormous H+ concentration range of 1010. During evolution, higher plants have adapted to the different soil conditions with which their root systems have been confronted. Acidophilic, neutrophilic, and acidophobic plant types have evolved. The pH of the soil water determines the availability of nutrients or heavy metals and thus also determines soil toxicity (Larcher 1980). Some important cultural plants tolerate only a very narrow soil pH range (e.g., Medicago sativa), whereas others are very tolerant (e.g., Secale cereale). The pH sensitivity of these plants seems to be either due to direct H+ effects on the roots, to mycorrhizal or rhizobial symbionts (Schubert 1987), or to indirect effects like the release of toxic heavy metals or aluminium from the ion-exchanging compounds in the soil solution (Ulrich 1981; Rehfuess 1981).


Proton Concentration Chloroplast Stroma Spongy Mesophyll Buxus Sempervirens Apoplastic Peroxidase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Addanki S, Cahill FD, Sotos JF (1968) Determination of intramitochondrial pH and intramitochondrial-extramitochondrial pH gradient of isolated heart mitochondria by the use of 5.5-dimethyl-2.4-oxazolidinedione. J Biol Chem 243: 2337–2348PubMedGoogle Scholar
  2. Aducchi P, Federico R, Carpinelli G, Podo F (1982) The temperature dependence of intracellular pH in higher plant cells. Planta 156: 579–582CrossRefGoogle Scholar
  3. Baker DA (1978) Proton co-transport of organic solutes by plant cells. New Phytol 81: 485–497CrossRefGoogle Scholar
  4. Boron WF, Roos A (1976) Comparison of microelectrode, DMO, and methylamine methods for measuring intracellular pH. Am J Physiol 231: 799–809PubMedGoogle Scholar
  5. Bown AW (1985) CO2 and intracellular pH. Plant Cell Environ 8: 459–465CrossRefGoogle Scholar
  6. Buchanan BB, Schürmann P, Wolosiuk RA (1976) Appearance of sedoheptulose-1.7-diphosphatase activity on conversion of chloroplast fructose-1.6-diphosphatase from dimer to monomer form. Biochem Biophys Res Commun 69: 970–978PubMedCrossRefGoogle Scholar
  7. Caldwell PD (1956) Intracellular pH. Int Rev Cytol 5: 229–277CrossRefGoogle Scholar
  8. Canny MJ (1988) Bundle sheath tissue of legume leaves as the site of recovery of solutes from the transpiration stream. Physiol Plant 73: 457–464CrossRefGoogle Scholar
  9. Cleland RE (1981) Wall extensibility: hormones and wall extension. In: Tanner W, Loewus FA (eds) Plant carbohydrates II. Encycl Plant Physiol NS, vol 13B. Springer, Berlin Heidelberg New York, pp 255–273Google Scholar
  10. Clevenger CB (1919) Hydrogen-ion concentration of plant juices: II Factors affecting the hydrogen-ion concentration of plant juices. Soil Sci 8: 277–242Google Scholar
  11. Colvin JR (1981) Ultrastructure of the plant cell wall: Biophysical viewpoint. In: Tanner W, Loewus FA (eds) Plant carbohydrates II. Encyc Plant Physiol NS 13B. Springer, Berlin Heidelberg New York, pp 9–23Google Scholar
  12. Cowan IR, Raven JA, Hartung W, Farquhar GD (1982) A possible role for abscisic acid in coupling stomatal conductance and photosynthetic carbon metabolism in leaves. Aust J Plant Physiol 9: 489–498CrossRefGoogle Scholar
  13. Davies DD (1973) Control of and by pH. Symp Soc Exp Biol 27: 513–529PubMedGoogle Scholar
  14. Davies DD (1986) The fine control of cytosolic pH. Physiol Plant 67: 702–706CrossRefGoogle Scholar
  15. Edwards MC, Smith GN, Bowling DJF (1988) Guard cells extrude protons prior to stomatal opening — a study using fluorescence microscopy and pH microelectrodes. J Exp Bot 39: 1541–1547CrossRefGoogle Scholar
  16. Elstner EF, Heupel A (1976) Formation of hydrogen peroxide by isolated cell walls from horse-radish (Armoracia lapathifolia Gilib.). Planta 130: 175–180CrossRefGoogle Scholar
  17. Enser U, Heber U (1980) Metabolic regulation by pH gradients. Inhibition of photosynthesis by indirect proton transfer across the chloroplast envelope. Biochim Biophys Acta 592: 577–591PubMedCrossRefGoogle Scholar
  18. Espie GS, Colman B (1981) The intracellular pH of isolated, photosynthetically active Asparagus mesophyll cells. Planta 153: 210–216CrossRefGoogle Scholar
  19. Esquerre-Tugaye MT, Lamport DTA (1979) Cell surfaces in plant microorganism interactions. I. A structural investigation of cell wall hydroxyproline rich glycoproteins which accumulate in fungus-infected plants. Plant Physiol 64: 314–319PubMedCrossRefGoogle Scholar
  20. Falkner G, Horner F, Werdan K, Heldt HW (1976) pH changes in the cytoplasm of the blue-green alga Anacystis nidulans caused by light-dependent proton flux into the thylakoid space. Plant Physiol 58: 717–718PubMedCrossRefGoogle Scholar
  21. Felle B, Berti A (1986) The fabrication of H+-selective liquid membrane microelectrodes for use in plant cells. J Exp Bot 37: 1416–1428CrossRefGoogle Scholar
  22. Gimmler H, Bental M, Degani H, Avron M, Pick U (1990) The H+ export capacity of Dunaliella acidophila and the permeability of the plasma membrane for H+ and weak acids. In: Baltscheffsky M (ed) Current research in photosynthesis, vol IV. Kluwer, Dordrecht, pp 773–776Google Scholar
  23. Goldberg R (1977) On possible connections between auxin-induced growth and cell wall glucanase activities. Physiol Plant 50: 261–264CrossRefGoogle Scholar
  24. Grignon C, Sentenac H (1991) pH and ionic conditions in the apoplast. Annu Rev Plant Physiol Plant Mol Biol 42: 103–128CrossRefGoogle Scholar
  25. Gross GG, Janse C, Elstner EF (1977) Involvement of malate, monophenols, and the superoxide radical in hydrogen peroxide formation by isolated cell walls from horseradish (Armoracia lapathifolia Gilib.). Planta 136: 271–276CrossRefGoogle Scholar
  26. Guern J, Mathieu Y, Pean M, Pasquier C, Beloeil J-C, Lallemand J-Y (1986) Cytoplasmic pH regulation in Acer pseudoplatanus cell. I. 31P-NMR description of acid-load effects. Plant Physiol 82: 840–845PubMedCrossRefGoogle Scholar
  27. Hager A, Moser J (1985) Acetic acid esters and permeable weak acids induce active proton extrusion and extension growth of coleoptile segments by lowering cytoplasmic pH. Planta 163: 391–400CrossRefGoogle Scholar
  28. Härtung W (1983) Die intrazelluläre Verteilung von Phytohormonen in Pflanzenzellen. Hohenheimer Arb 129: 64–80Google Scholar
  29. Hartung W, Slovik S (1991) Physicochemical properties of plant growth regulators and plant tissue determine their distribution and redistribution: stomatal regulation by abscisic acid in leaves. New Phytol 119: 361–382CrossRefGoogle Scholar
  30. Hartung W, Radin JW, Hendrix DL (1988) Abscisic acid movement into the apoplastic solution of water-stressed cotton leaves. Role of apoplastic pH. Plant Physiol 86: 908–913PubMedCrossRefGoogle Scholar
  31. Heber U, Heldt H-W (1981) The chloroplast envelope: structure and function, and role in leaf metabolism. Annu Rev Plant Physiol 32: 139–168CrossRefGoogle Scholar
  32. Heldt H-W, Werdan K, Milovancev M, Geller G (1973) Alkalization of the chloroplast stroma caused by light-dependent proton flux into the thylakoid space. Biochim Biophys Acta 314: 224–241PubMedCrossRefGoogle Scholar
  33. Hoffmann B, Plänker R, Mengel K (1992) Measurement of pH in the apoplast of sunflower leaves by means of fluorescence. Physiol Plant 84: 146–153CrossRefGoogle Scholar
  34. Ilan J (1973) On auxin pH drop and on the improbability of its involvement in the primary mechanism of auxin-induced growth promotion. Physiol Plant 28: 146–148CrossRefGoogle Scholar
  35. Jermyn MA, Yeow YM (1975) A class of lectins present in the tissues of seed plants. Aust J Plant Physiol 2: 501–531CrossRefGoogle Scholar
  36. Kaiser WM, Hartung W (1981) Uptake and release of abscisic acid by isolated photoautotrophic mesophyll cells, depending upon pH gradients. Plant Physiol 68: 202–206PubMedCrossRefGoogle Scholar
  37. Keegstra K, Albersheim P (1970) The involvement of glycosidases in the cell wall metabolism of suspension-cultured Acer pseudoplatanus cells. Plant Physiol 45: 675–678PubMedCrossRefGoogle Scholar
  38. Kremer H, Pfanz H, Härtung W (1987) Die Wirkung saurer Luftschadstoffe auf Verteilung und Transport pflanzlicher Wachstumsregulatoren in Laub- und Nadelblättern. Konsequenzen für streß- und entwicklungsphysiologische Prozesse. Allg Forstztg 27/28/29: 741–744Google Scholar
  39. Kronberger WC (1988) Kinetics of non-ionic diffusion of hydrogen fluoride in plants. II Model estimations on uptake, distribution, and translocation of F in higher plants. Phyton (Austria) 28: 27–49Google Scholar
  40. Kurkdjian A, Guern J (1989a) Intracellular pH: Measurement and importance in cell activity. Annu Rev Plant Physiol Plant Mol Biol 40: 271–303CrossRefGoogle Scholar
  41. Kurkdjian A, Guern J (1989b) Intracellular pH in higher plants. I. Improvements in the use of the 5.5-dimethyloxazolidine 2(14C),4-dione distribution technique. Plant Sci Lett 11: 337–344Google Scholar
  42. Lamport DTA (1980) Structure and function of plant glycoproteins. In: Stumpf PK, Conn EE (eds) The biochemistry of plants, vol 3. Academic Press, New York, pp 501–541Google Scholar
  43. Langworthy TA (1978) Microbial life in extreme pH values. In: Kushar DJ (ed) Aerobial life in extreme environments. Academic Press, New York, pp 279–315Google Scholar
  44. Larcher W (1980) Physiological plant ecology, 2nd edn. Springer, Berlin Heidelberg New YorkGoogle Scholar
  45. Leegood RC, Kobayashi Y, Neimanis S, Walker DA, Heber U (1982) Cooperative activation of fructose-1.6-bisphosphatase by reductant, pH, and substrate. Biochim Biophys Acta 682: 168–178CrossRefGoogle Scholar
  46. Lürsen K (1978) The surface pH of Avena coleoptiles and its correlation with growth. Plant Sci Lett 13: 309–313CrossRefGoogle Scholar
  47. Mäder M, Meyer Y, Bopp M (1975) Lokalisation der Peroxidase-Isoenzyme in Protoplasten und Zellwänden von Nicotiana tabacum L. Planta 122: 259–268CrossRefGoogle Scholar
  48. Madore M, Webb JA (1981) Leaf free space analysis and vein loading in Cucurbita pepo. Can J Bot 59: 2550–2587CrossRefGoogle Scholar
  49. Mansfield TA, Freer-Smith PH (1981) Effects of urban air pollution on plant growth. Biol Rev 56: 343–368CrossRefGoogle Scholar
  50. Marschner H, Römheld V, Ossenberg-Neuhaus H (1982) Rapid method for measuring changes in pH and reduction processes along roots of intact plants. Z Pflanzenphysiol 105: 407–416Google Scholar
  51. Martin JB, Bligny R, Rebeille F, Douce R, Leguay J-J, Mathieu Y, Guern J (1982) A 31P nuclear magnetic resonance study of intracellular pH of plant cells cultivated in liquid medium. Plant Physiol 70: 1156–1161PubMedCrossRefGoogle Scholar
  52. Mathieu Y, Guern J, Pean M, Pasquier C, Beloeil J-C, Lallemand J-Y (1986) Cytoplasmic pH regulation in Acer pseudoplatanus cells. II. Possible mechanisms involved in pH regulation during acid-load. Plant Physiol 82: 846–852PubMedCrossRefGoogle Scholar
  53. Matile P (1978) Biochemistry and function of vacuoles. Annu Rev Plant Physiol 29: 193–213CrossRefGoogle Scholar
  54. McClintock M, Higinbotham N, Uribe EG, Cleland RE (1982) Active, irreversible accumulation of extreme levels of H2SO4 in the brown alga Desmarestia. Plant Physiol 70: 771–774PubMedCrossRefGoogle Scholar
  55. Meeuse BJD (1956) Free sulfuric acid in the brown alga, Desmarestia. Biochim Biophys Acta 19: 372–374PubMedCrossRefGoogle Scholar
  56. Morris JG (1974) A biologist's physical chemistry, 2nd edn. Edward Arnold, LondonGoogle Scholar
  57. Newman JA, Kochian LV, Grusak MA, Lucas WJ (1987) Fluxes of H+ and K+ in corn roots. Characterization and stoichiometry using ion-selective microelectrodes. Plant Physiol 84: 1177–1184PubMedCrossRefGoogle Scholar
  58. Oja V, Laisk A, Heber U (1986) Light induced alkalization of the chloroplast stroma in vivo as estimated from the CO2 capacity of intact sunflower leaves. Biochim Biophys Acta 849: 355–365CrossRefGoogle Scholar
  59. Oppmann B, Pfanz H (1992) The influence of sulfur dioxide on lignifying processes in the cell wall of spruce needles. IUFRO Centennial, 15th Int Meet on Air pollution effects, 9–11 Sept 1992, Tharandt, p 51Google Scholar
  60. Pedreno MA, Ros Barcelo A, Sabater F, Munoz R (1989) Control by pH of cell wall peroxidase activity involved in lignification. Plant Cell Physiol 30(2): 237–241Google Scholar
  61. Pfanz H (1987) Aufnahme und Verteilung von Schwefeldioxid in pflanzlichen Zellen und Organellen. Auswirkungen auf den Stoffwechsel. Dissertation, Universität WürzburgGoogle Scholar
  62. Pfanz H (1992) Oxidation of IAA by extracellular enzymes. Plant Physiol 99: S 835Google Scholar
  63. Pfanz H, Beyschlag W (1993) Photosynthetic performance and nutrient status of Norway spruce (Picea abies L. Karst.) at forest sites in the Ore Mountains (Erzgebirge). Trees 7: 115–122CrossRefGoogle Scholar
  64. Pfanz H, Dietz K-J (1987) A fluorescence method for the determination of the apoplastic proton concentration in intact leaf tissues. J Plant Physiol 129: 41–48Google Scholar
  65. Pfanz H, Heber U (1986) Buffer capacities of leaves, leaf cells, and leaf cell organelles in relation to fluxes of potentially acidic air pollutants. Plant Physiol 81: 597–602PubMedCrossRefGoogle Scholar
  66. Pfanz H, Heber U (1989) Determination of extra- and intracellular pH values in relation to the action of acidic gases on cells. In: Linskens HF, Jackson JF (eds) Gases in plant and microbial cells. Mod Meth Plant Anal NS, vol 9. Springer, Berlin Heidelberg New York, pp 322–343Google Scholar
  67. Pfanz H, Oppmann B (1991) The possible role of apoplastic peroxidases in detoxifying the air pollutant sulfur dioxide. In: Lobarzewski J, Greppin H, Penel C, Gaspar T (eds) Biochemical, molecular, and physiological aspects of plant peroxidases. University M Curie-Sklodowska and University of Geneva, Lublin and Geneva, pp 401–417Google Scholar
  68. Pfanz H, Vollrath B (1993) Photosynthese und Nährstoffgehalte von Buchen unterschiedlich stark SO2-belasteter Standorte. In: Rehfuess KE, Ziegler H (eds) Zustand und Gefährdung der Laubwälder. Rundgespräche Kommission Ökologie, vol 5. Dr Pfeil Verlag, München, pp 129–142Google Scholar
  69. Pfanz H, Martinoia E, Lange OL, Heber U (1987) Flux of SO2 into leaf cells and cellular acidification by SO2. Plant Physiol 85: 928–933PubMedCrossRefGoogle Scholar
  70. Pfanz H, Gsell W, Martinoia E, Dietz K-J (1988) The buffer capacity of the leaf apoplast and its significance in regard to pH changes by acidic air pollutants. Plant Physiol 86: S 899CrossRefGoogle Scholar
  71. Pfanz H, Dietz K-J, Weinerth I, Oppmann B (1990) Detoxification of sulfur dioxide by apoplastic peroxidases. In: Rennenberg H, Brunold Ch, De Kok LJ, Stulen I (eds) Sulfur nutrition and assimilation in higher plants; fundamental, environmental and agricultural aspects. SBP Acad Publ, the Hague, NL, pp 229–233Google Scholar
  72. Pfanz H, Würth G, Oppmann B, Schultz G (1992) Sulfite oxidation in, and sulfate uptake from the cell wall of leaves. In vivo studies. Phyton (A) 32: 95–98Google Scholar
  73. Raven JA (1986) Biochemical disposal of excess H+ in growing plants? New Phytol 104: 175–206CrossRefGoogle Scholar
  74. Raven JA (1988) Acquisition of nitrogen by the shoots of land plants: its occurrence and implications for acid-base regulation. New Phytol 109: 1–20CrossRefGoogle Scholar
  75. Rehfuess KE (1981) über die Wirkungen der sauren Niederschläge in Waldökosystemen. Forstwiss Cbl 100: 363–381CrossRefGoogle Scholar
  76. Roberts JKM (1984) Study of plant metabolism in vivo using NMR spectroscopy. Annu Rev Plant Physiol 33: 375–386CrossRefGoogle Scholar
  77. Rohringer R, Ebrahim-Nesbat F, Wolf G (1983) Proteins in intercellular washing fluids from leaves of barley (Hordeum vulgare L.). J Exp Bot 34: 1589–1605CrossRefGoogle Scholar
  78. Roos A, Boron WF (1981) Intracellular pH. Physiol Rev 61(2): 296–434PubMedGoogle Scholar
  79. Schröder P, Grosse W, Woermann D (1986) Localization of thermo-osmotically active partitions in young leaves of Nuphar lutea. J Exp Bot 37(138): 1450–1461CrossRefGoogle Scholar
  80. Schubert E (1987) Der Einfluß des pH-Wertes und der H+-Pufferung des Bodens auf das Wachstum und die N2-Fixierung der Ackerbohne (Vicia faba). Diss, FB 19 Ernährungswiss, Justus Liebig Univ GießenGoogle Scholar
  81. Simon EW, Beevers H (1952) The effect of pH on the biological activities of weak acids and bases. I. The most usual relationship between pH and activity. New Phytol 51: 163–190CrossRefGoogle Scholar
  82. Smith FA, Raven JA (1979) Intracellular pH and its regulation. Annu Rev Plant Physiol 30: 289–311CrossRefGoogle Scholar
  83. Souza KA, Deal PH, Mack HM, Turnbill EE (1974) Growth and reproduction of microorganisms under extremely alkaline conditions. Appl Microbiol 28: 1066–1068PubMedGoogle Scholar
  84. Steigner W, Köhler K, Simonis W, Urbach W (1988) Transient cytoplasmic pH changes in correlation with opening of potassium channels in Eremosphaera. J Exp Bot 198: 23–36CrossRefGoogle Scholar
  85. Strack D, Sharma V, Felle H (1987) Vacuolar pH in radish cotyledonal mesophyll cells. Planta 172: 563–565CrossRefGoogle Scholar
  86. Taiz L (1984) Plant cell extension: regulation of cell wall mechanical properties. Annu Rev Plant Physiol 35: 585–657CrossRefGoogle Scholar
  87. Thomas MD, Hendricks RH, Bryner R, Hill GR (1944) Some chemical reactions of sulphur dioxide after absorption by alfalfa and sugar beets. Plant Physiol 19: 212–226PubMedCrossRefGoogle Scholar
  88. Ulrich B (1981) Eine ökosystemare Hypothese über die Ursachen des Tannensterbens (Abies alba Mill.). Forstwiss Cbl 100: 228–236CrossRefGoogle Scholar
  89. Varshney SRK, Varshney CK (1985) Response of peroxidase to low levels of SO2. Environ Exp Bot 25: 107–114CrossRefGoogle Scholar
  90. Verkleij JAC, Schat H (1989) Mechanisms of metal tolerance in higher plants. In: Shaw AJ (ed) Heavy metal tolerance in plants: evolutionary aspects. CRC Press, Boca Raton, pp 179–193Google Scholar
  91. Waddell WJ, Butler TC (1959) Calculation of intracellular pH from the distribution of DMO. Application to skeleton muscle of the dog. J Clin Invest 38: 720–729PubMedCrossRefGoogle Scholar
  92. Wagner U (1990) Kinetik und Mechanismus der pH-Stabilisierung in grünen Blättern höherer Pflanzen. Diss, Universitität WürzburgGoogle Scholar
  93. Weast RC, Astle MJ, Beyer WJ (1986) Handbook of chemistry and physics. CRC Press, Boca Raton, FloridaGoogle Scholar
  94. Werdan K, Heldt HW, Milovancev M (1975) The role of pH in the regulation of carbon fixation in the chloroplast stroma. Studies on CO2 fixation in the light and dark. Biochim Biophys Acta 396: 276–292PubMedCrossRefGoogle Scholar
  95. Woodrow IE, Murphy DJ, Latzko E (1984) Regulation of stromal sedoheptulose-1.7-bisphosphatase activity by pH and Mg2+ concentration. J Biol Chem 259: 3791–3795PubMedGoogle Scholar
  96. Yin Z-H, Neimanis S, Wagner U, Heber U (1990) Light-dependent pH changes in leaves of C3 Plants. I. Recording pH changes in various cellular compartments by fluorescent probes. Planta 182: 244–252CrossRefGoogle Scholar
  97. Yin Z-H, Schmidt W, Heber U (1991) Influence of the air pollutants (SO2,NO2,O3) on cellular pH changes in leaves. In: PBWU (eds) Expertentagung Waldschadensforschung im östlichen Mitteleuropa und in Bayern. GSF Bericht 24/91, pp 574–578Google Scholar
  98. Ziegler I (1975) The effect of SO2 pollution on plant metabolism. Residue Rev 56: 79–105Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • H. Pfanz

There are no affiliations available

Personalised recommendations