Skip to main content

Apoplastic and Symplastic Proton Concentrations and Their Significance for Metabolism

  • Chapter

Part of the book series: Springer Study Edition ((SSE,volume 100))

Abstract

Proton concentration is a major factor in restricting life within definite boundaries. In general, life occurs in a neutral or slightly acidic environment, but fungi, bacteria, animals, and higher plants have nevertheless managed to conquer terrestrial and aqueous niches at extreme pH values. The pH extremes for cellular growth are around pH 1 and pH 11 (Souza et al. 1974; Langworthy 1978). Life therefore exists within the enormous H+ concentration range of 1010. During evolution, higher plants have adapted to the different soil conditions with which their root systems have been confronted. Acidophilic, neutrophilic, and acidophobic plant types have evolved. The pH of the soil water determines the availability of nutrients or heavy metals and thus also determines soil toxicity (Larcher 1980). Some important cultural plants tolerate only a very narrow soil pH range (e.g., Medicago sativa), whereas others are very tolerant (e.g., Secale cereale). The pH sensitivity of these plants seems to be either due to direct H+ effects on the roots, to mycorrhizal or rhizobial symbionts (Schubert 1987), or to indirect effects like the release of toxic heavy metals or aluminium from the ion-exchanging compounds in the soil solution (Ulrich 1981; Rehfuess 1981).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Addanki S, Cahill FD, Sotos JF (1968) Determination of intramitochondrial pH and intramitochondrial-extramitochondrial pH gradient of isolated heart mitochondria by the use of 5.5-dimethyl-2.4-oxazolidinedione. J Biol Chem 243: 2337–2348

    PubMed  CAS  Google Scholar 

  • Aducchi P, Federico R, Carpinelli G, Podo F (1982) The temperature dependence of intracellular pH in higher plant cells. Planta 156: 579–582

    Article  Google Scholar 

  • Baker DA (1978) Proton co-transport of organic solutes by plant cells. New Phytol 81: 485–497

    Article  CAS  Google Scholar 

  • Boron WF, Roos A (1976) Comparison of microelectrode, DMO, and methylamine methods for measuring intracellular pH. Am J Physiol 231: 799–809

    PubMed  CAS  Google Scholar 

  • Bown AW (1985) CO2 and intracellular pH. Plant Cell Environ 8: 459–465

    Article  CAS  Google Scholar 

  • Buchanan BB, Schürmann P, Wolosiuk RA (1976) Appearance of sedoheptulose-1.7-diphosphatase activity on conversion of chloroplast fructose-1.6-diphosphatase from dimer to monomer form. Biochem Biophys Res Commun 69: 970–978

    Article  PubMed  CAS  Google Scholar 

  • Caldwell PD (1956) Intracellular pH. Int Rev Cytol 5: 229–277

    Article  CAS  Google Scholar 

  • Canny MJ (1988) Bundle sheath tissue of legume leaves as the site of recovery of solutes from the transpiration stream. Physiol Plant 73: 457–464

    Article  CAS  Google Scholar 

  • Cleland RE (1981) Wall extensibility: hormones and wall extension. In: Tanner W, Loewus FA (eds) Plant carbohydrates II. Encycl Plant Physiol NS, vol 13B. Springer, Berlin Heidelberg New York, pp 255–273

    Google Scholar 

  • Clevenger CB (1919) Hydrogen-ion concentration of plant juices: II Factors affecting the hydrogen-ion concentration of plant juices. Soil Sci 8: 277–242

    Google Scholar 

  • Colvin JR (1981) Ultrastructure of the plant cell wall: Biophysical viewpoint. In: Tanner W, Loewus FA (eds) Plant carbohydrates II. Encyc Plant Physiol NS 13B. Springer, Berlin Heidelberg New York, pp 9–23

    Google Scholar 

  • Cowan IR, Raven JA, Hartung W, Farquhar GD (1982) A possible role for abscisic acid in coupling stomatal conductance and photosynthetic carbon metabolism in leaves. Aust J Plant Physiol 9: 489–498

    Article  CAS  Google Scholar 

  • Davies DD (1973) Control of and by pH. Symp Soc Exp Biol 27: 513–529

    PubMed  CAS  Google Scholar 

  • Davies DD (1986) The fine control of cytosolic pH. Physiol Plant 67: 702–706

    Article  CAS  Google Scholar 

  • Edwards MC, Smith GN, Bowling DJF (1988) Guard cells extrude protons prior to stomatal opening — a study using fluorescence microscopy and pH microelectrodes. J Exp Bot 39: 1541–1547

    Article  Google Scholar 

  • Elstner EF, Heupel A (1976) Formation of hydrogen peroxide by isolated cell walls from horse-radish (Armoracia lapathifolia Gilib.). Planta 130: 175–180

    Article  CAS  Google Scholar 

  • Enser U, Heber U (1980) Metabolic regulation by pH gradients. Inhibition of photosynthesis by indirect proton transfer across the chloroplast envelope. Biochim Biophys Acta 592: 577–591

    Article  PubMed  CAS  Google Scholar 

  • Espie GS, Colman B (1981) The intracellular pH of isolated, photosynthetically active Asparagus mesophyll cells. Planta 153: 210–216

    Article  CAS  Google Scholar 

  • Esquerre-Tugaye MT, Lamport DTA (1979) Cell surfaces in plant microorganism interactions. I. A structural investigation of cell wall hydroxyproline rich glycoproteins which accumulate in fungus-infected plants. Plant Physiol 64: 314–319

    Article  PubMed  CAS  Google Scholar 

  • Falkner G, Horner F, Werdan K, Heldt HW (1976) pH changes in the cytoplasm of the blue-green alga Anacystis nidulans caused by light-dependent proton flux into the thylakoid space. Plant Physiol 58: 717–718

    Article  PubMed  CAS  Google Scholar 

  • Felle B, Berti A (1986) The fabrication of H+-selective liquid membrane microelectrodes for use in plant cells. J Exp Bot 37: 1416–1428

    Article  CAS  Google Scholar 

  • Gimmler H, Bental M, Degani H, Avron M, Pick U (1990) The H+ export capacity of Dunaliella acidophila and the permeability of the plasma membrane for H+ and weak acids. In: Baltscheffsky M (ed) Current research in photosynthesis, vol IV. Kluwer, Dordrecht, pp 773–776

    Google Scholar 

  • Goldberg R (1977) On possible connections between auxin-induced growth and cell wall glucanase activities. Physiol Plant 50: 261–264

    Article  Google Scholar 

  • Grignon C, Sentenac H (1991) pH and ionic conditions in the apoplast. Annu Rev Plant Physiol Plant Mol Biol 42: 103–128

    Article  CAS  Google Scholar 

  • Gross GG, Janse C, Elstner EF (1977) Involvement of malate, monophenols, and the superoxide radical in hydrogen peroxide formation by isolated cell walls from horseradish (Armoracia lapathifolia Gilib.). Planta 136: 271–276

    Article  CAS  Google Scholar 

  • Guern J, Mathieu Y, Pean M, Pasquier C, Beloeil J-C, Lallemand J-Y (1986) Cytoplasmic pH regulation in Acer pseudoplatanus cell. I. 31P-NMR description of acid-load effects. Plant Physiol 82: 840–845

    Article  PubMed  CAS  Google Scholar 

  • Hager A, Moser J (1985) Acetic acid esters and permeable weak acids induce active proton extrusion and extension growth of coleoptile segments by lowering cytoplasmic pH. Planta 163: 391–400

    Article  CAS  Google Scholar 

  • Härtung W (1983) Die intrazelluläre Verteilung von Phytohormonen in Pflanzenzellen. Hohenheimer Arb 129: 64–80

    Google Scholar 

  • Hartung W, Slovik S (1991) Physicochemical properties of plant growth regulators and plant tissue determine their distribution and redistribution: stomatal regulation by abscisic acid in leaves. New Phytol 119: 361–382

    Article  CAS  Google Scholar 

  • Hartung W, Radin JW, Hendrix DL (1988) Abscisic acid movement into the apoplastic solution of water-stressed cotton leaves. Role of apoplastic pH. Plant Physiol 86: 908–913

    Article  PubMed  CAS  Google Scholar 

  • Heber U, Heldt H-W (1981) The chloroplast envelope: structure and function, and role in leaf metabolism. Annu Rev Plant Physiol 32: 139–168

    Article  CAS  Google Scholar 

  • Heldt H-W, Werdan K, Milovancev M, Geller G (1973) Alkalization of the chloroplast stroma caused by light-dependent proton flux into the thylakoid space. Biochim Biophys Acta 314: 224–241

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann B, Plänker R, Mengel K (1992) Measurement of pH in the apoplast of sunflower leaves by means of fluorescence. Physiol Plant 84: 146–153

    Article  CAS  Google Scholar 

  • Ilan J (1973) On auxin pH drop and on the improbability of its involvement in the primary mechanism of auxin-induced growth promotion. Physiol Plant 28: 146–148

    Article  CAS  Google Scholar 

  • Jermyn MA, Yeow YM (1975) A class of lectins present in the tissues of seed plants. Aust J Plant Physiol 2: 501–531

    Article  CAS  Google Scholar 

  • Kaiser WM, Hartung W (1981) Uptake and release of abscisic acid by isolated photoautotrophic mesophyll cells, depending upon pH gradients. Plant Physiol 68: 202–206

    Article  PubMed  CAS  Google Scholar 

  • Keegstra K, Albersheim P (1970) The involvement of glycosidases in the cell wall metabolism of suspension-cultured Acer pseudoplatanus cells. Plant Physiol 45: 675–678

    Article  PubMed  CAS  Google Scholar 

  • Kremer H, Pfanz H, Härtung W (1987) Die Wirkung saurer Luftschadstoffe auf Verteilung und Transport pflanzlicher Wachstumsregulatoren in Laub- und Nadelblättern. Konsequenzen für streß- und entwicklungsphysiologische Prozesse. Allg Forstztg 27/28/29: 741–744

    Google Scholar 

  • Kronberger WC (1988) Kinetics of non-ionic diffusion of hydrogen fluoride in plants. II Model estimations on uptake, distribution, and translocation of F in higher plants. Phyton (Austria) 28: 27–49

    CAS  Google Scholar 

  • Kurkdjian A, Guern J (1989a) Intracellular pH: Measurement and importance in cell activity. Annu Rev Plant Physiol Plant Mol Biol 40: 271–303

    Article  CAS  Google Scholar 

  • Kurkdjian A, Guern J (1989b) Intracellular pH in higher plants. I. Improvements in the use of the 5.5-dimethyloxazolidine 2(14C),4-dione distribution technique. Plant Sci Lett 11: 337–344

    Google Scholar 

  • Lamport DTA (1980) Structure and function of plant glycoproteins. In: Stumpf PK, Conn EE (eds) The biochemistry of plants, vol 3. Academic Press, New York, pp 501–541

    Google Scholar 

  • Langworthy TA (1978) Microbial life in extreme pH values. In: Kushar DJ (ed) Aerobial life in extreme environments. Academic Press, New York, pp 279–315

    Google Scholar 

  • Larcher W (1980) Physiological plant ecology, 2nd edn. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Leegood RC, Kobayashi Y, Neimanis S, Walker DA, Heber U (1982) Cooperative activation of fructose-1.6-bisphosphatase by reductant, pH, and substrate. Biochim Biophys Acta 682: 168–178

    Article  CAS  Google Scholar 

  • Lürsen K (1978) The surface pH of Avena coleoptiles and its correlation with growth. Plant Sci Lett 13: 309–313

    Article  Google Scholar 

  • Mäder M, Meyer Y, Bopp M (1975) Lokalisation der Peroxidase-Isoenzyme in Protoplasten und Zellwänden von Nicotiana tabacum L. Planta 122: 259–268

    Article  Google Scholar 

  • Madore M, Webb JA (1981) Leaf free space analysis and vein loading in Cucurbita pepo. Can J Bot 59: 2550–2587

    Article  CAS  Google Scholar 

  • Mansfield TA, Freer-Smith PH (1981) Effects of urban air pollution on plant growth. Biol Rev 56: 343–368

    Article  CAS  Google Scholar 

  • Marschner H, Römheld V, Ossenberg-Neuhaus H (1982) Rapid method for measuring changes in pH and reduction processes along roots of intact plants. Z Pflanzenphysiol 105: 407–416

    Google Scholar 

  • Martin JB, Bligny R, Rebeille F, Douce R, Leguay J-J, Mathieu Y, Guern J (1982) A 31P nuclear magnetic resonance study of intracellular pH of plant cells cultivated in liquid medium. Plant Physiol 70: 1156–1161

    Article  PubMed  CAS  Google Scholar 

  • Mathieu Y, Guern J, Pean M, Pasquier C, Beloeil J-C, Lallemand J-Y (1986) Cytoplasmic pH regulation in Acer pseudoplatanus cells. II. Possible mechanisms involved in pH regulation during acid-load. Plant Physiol 82: 846–852

    Article  PubMed  CAS  Google Scholar 

  • Matile P (1978) Biochemistry and function of vacuoles. Annu Rev Plant Physiol 29: 193–213

    Article  CAS  Google Scholar 

  • McClintock M, Higinbotham N, Uribe EG, Cleland RE (1982) Active, irreversible accumulation of extreme levels of H2SO4 in the brown alga Desmarestia. Plant Physiol 70: 771–774

    Article  PubMed  CAS  Google Scholar 

  • Meeuse BJD (1956) Free sulfuric acid in the brown alga, Desmarestia. Biochim Biophys Acta 19: 372–374

    Article  PubMed  CAS  Google Scholar 

  • Morris JG (1974) A biologist's physical chemistry, 2nd edn. Edward Arnold, London

    Google Scholar 

  • Newman JA, Kochian LV, Grusak MA, Lucas WJ (1987) Fluxes of H+ and K+ in corn roots. Characterization and stoichiometry using ion-selective microelectrodes. Plant Physiol 84: 1177–1184

    Article  PubMed  CAS  Google Scholar 

  • Oja V, Laisk A, Heber U (1986) Light induced alkalization of the chloroplast stroma in vivo as estimated from the CO2 capacity of intact sunflower leaves. Biochim Biophys Acta 849: 355–365

    Article  CAS  Google Scholar 

  • Oppmann B, Pfanz H (1992) The influence of sulfur dioxide on lignifying processes in the cell wall of spruce needles. IUFRO Centennial, 15th Int Meet on Air pollution effects, 9–11 Sept 1992, Tharandt, p 51

    Google Scholar 

  • Pedreno MA, Ros Barcelo A, Sabater F, Munoz R (1989) Control by pH of cell wall peroxidase activity involved in lignification. Plant Cell Physiol 30(2): 237–241

    CAS  Google Scholar 

  • Pfanz H (1987) Aufnahme und Verteilung von Schwefeldioxid in pflanzlichen Zellen und Organellen. Auswirkungen auf den Stoffwechsel. Dissertation, Universität Würzburg

    Google Scholar 

  • Pfanz H (1992) Oxidation of IAA by extracellular enzymes. Plant Physiol 99: S 835

    Google Scholar 

  • Pfanz H, Beyschlag W (1993) Photosynthetic performance and nutrient status of Norway spruce (Picea abies L. Karst.) at forest sites in the Ore Mountains (Erzgebirge). Trees 7: 115–122

    Article  Google Scholar 

  • Pfanz H, Dietz K-J (1987) A fluorescence method for the determination of the apoplastic proton concentration in intact leaf tissues. J Plant Physiol 129: 41–48

    CAS  Google Scholar 

  • Pfanz H, Heber U (1986) Buffer capacities of leaves, leaf cells, and leaf cell organelles in relation to fluxes of potentially acidic air pollutants. Plant Physiol 81: 597–602

    Article  PubMed  CAS  Google Scholar 

  • Pfanz H, Heber U (1989) Determination of extra- and intracellular pH values in relation to the action of acidic gases on cells. In: Linskens HF, Jackson JF (eds) Gases in plant and microbial cells. Mod Meth Plant Anal NS, vol 9. Springer, Berlin Heidelberg New York, pp 322–343

    Google Scholar 

  • Pfanz H, Oppmann B (1991) The possible role of apoplastic peroxidases in detoxifying the air pollutant sulfur dioxide. In: Lobarzewski J, Greppin H, Penel C, Gaspar T (eds) Biochemical, molecular, and physiological aspects of plant peroxidases. University M Curie-Sklodowska and University of Geneva, Lublin and Geneva, pp 401–417

    Google Scholar 

  • Pfanz H, Vollrath B (1993) Photosynthese und Nährstoffgehalte von Buchen unterschiedlich stark SO2-belasteter Standorte. In: Rehfuess KE, Ziegler H (eds) Zustand und Gefährdung der Laubwälder. Rundgespräche Kommission Ökologie, vol 5. Dr Pfeil Verlag, München, pp 129–142

    Google Scholar 

  • Pfanz H, Martinoia E, Lange OL, Heber U (1987) Flux of SO2 into leaf cells and cellular acidification by SO2. Plant Physiol 85: 928–933

    Article  PubMed  CAS  Google Scholar 

  • Pfanz H, Gsell W, Martinoia E, Dietz K-J (1988) The buffer capacity of the leaf apoplast and its significance in regard to pH changes by acidic air pollutants. Plant Physiol 86: S 899

    Article  Google Scholar 

  • Pfanz H, Dietz K-J, Weinerth I, Oppmann B (1990) Detoxification of sulfur dioxide by apoplastic peroxidases. In: Rennenberg H, Brunold Ch, De Kok LJ, Stulen I (eds) Sulfur nutrition and assimilation in higher plants; fundamental, environmental and agricultural aspects. SBP Acad Publ, the Hague, NL, pp 229–233

    Google Scholar 

  • Pfanz H, Würth G, Oppmann B, Schultz G (1992) Sulfite oxidation in, and sulfate uptake from the cell wall of leaves. In vivo studies. Phyton (A) 32: 95–98

    CAS  Google Scholar 

  • Raven JA (1986) Biochemical disposal of excess H+ in growing plants? New Phytol 104: 175–206

    Article  CAS  Google Scholar 

  • Raven JA (1988) Acquisition of nitrogen by the shoots of land plants: its occurrence and implications for acid-base regulation. New Phytol 109: 1–20

    Article  CAS  Google Scholar 

  • Rehfuess KE (1981) über die Wirkungen der sauren Niederschläge in Waldökosystemen. Forstwiss Cbl 100: 363–381

    Article  Google Scholar 

  • Roberts JKM (1984) Study of plant metabolism in vivo using NMR spectroscopy. Annu Rev Plant Physiol 33: 375–386

    Article  Google Scholar 

  • Rohringer R, Ebrahim-Nesbat F, Wolf G (1983) Proteins in intercellular washing fluids from leaves of barley (Hordeum vulgare L.). J Exp Bot 34: 1589–1605

    Article  CAS  Google Scholar 

  • Roos A, Boron WF (1981) Intracellular pH. Physiol Rev 61(2): 296–434

    PubMed  CAS  Google Scholar 

  • Schröder P, Grosse W, Woermann D (1986) Localization of thermo-osmotically active partitions in young leaves of Nuphar lutea. J Exp Bot 37(138): 1450–1461

    Article  Google Scholar 

  • Schubert E (1987) Der Einfluß des pH-Wertes und der H+-Pufferung des Bodens auf das Wachstum und die N2-Fixierung der Ackerbohne (Vicia faba). Diss, FB 19 Ernährungswiss, Justus Liebig Univ Gießen

    Google Scholar 

  • Simon EW, Beevers H (1952) The effect of pH on the biological activities of weak acids and bases. I. The most usual relationship between pH and activity. New Phytol 51: 163–190

    Article  Google Scholar 

  • Smith FA, Raven JA (1979) Intracellular pH and its regulation. Annu Rev Plant Physiol 30: 289–311

    Article  CAS  Google Scholar 

  • Souza KA, Deal PH, Mack HM, Turnbill EE (1974) Growth and reproduction of microorganisms under extremely alkaline conditions. Appl Microbiol 28: 1066–1068

    PubMed  CAS  Google Scholar 

  • Steigner W, Köhler K, Simonis W, Urbach W (1988) Transient cytoplasmic pH changes in correlation with opening of potassium channels in Eremosphaera. J Exp Bot 198: 23–36

    Article  Google Scholar 

  • Strack D, Sharma V, Felle H (1987) Vacuolar pH in radish cotyledonal mesophyll cells. Planta 172: 563–565

    Article  CAS  Google Scholar 

  • Taiz L (1984) Plant cell extension: regulation of cell wall mechanical properties. Annu Rev Plant Physiol 35: 585–657

    Article  CAS  Google Scholar 

  • Thomas MD, Hendricks RH, Bryner R, Hill GR (1944) Some chemical reactions of sulphur dioxide after absorption by alfalfa and sugar beets. Plant Physiol 19: 212–226

    Article  PubMed  CAS  Google Scholar 

  • Ulrich B (1981) Eine ökosystemare Hypothese über die Ursachen des Tannensterbens (Abies alba Mill.). Forstwiss Cbl 100: 228–236

    Article  Google Scholar 

  • Varshney SRK, Varshney CK (1985) Response of peroxidase to low levels of SO2. Environ Exp Bot 25: 107–114

    Article  CAS  Google Scholar 

  • Verkleij JAC, Schat H (1989) Mechanisms of metal tolerance in higher plants. In: Shaw AJ (ed) Heavy metal tolerance in plants: evolutionary aspects. CRC Press, Boca Raton, pp 179–193

    Google Scholar 

  • Waddell WJ, Butler TC (1959) Calculation of intracellular pH from the distribution of DMO. Application to skeleton muscle of the dog. J Clin Invest 38: 720–729

    Article  PubMed  CAS  Google Scholar 

  • Wagner U (1990) Kinetik und Mechanismus der pH-Stabilisierung in grünen Blättern höherer Pflanzen. Diss, Universitität Würzburg

    Google Scholar 

  • Weast RC, Astle MJ, Beyer WJ (1986) Handbook of chemistry and physics. CRC Press, Boca Raton, Florida

    Google Scholar 

  • Werdan K, Heldt HW, Milovancev M (1975) The role of pH in the regulation of carbon fixation in the chloroplast stroma. Studies on CO2 fixation in the light and dark. Biochim Biophys Acta 396: 276–292

    Article  PubMed  CAS  Google Scholar 

  • Woodrow IE, Murphy DJ, Latzko E (1984) Regulation of stromal sedoheptulose-1.7-bisphosphatase activity by pH and Mg2+ concentration. J Biol Chem 259: 3791–3795

    PubMed  CAS  Google Scholar 

  • Yin Z-H, Neimanis S, Wagner U, Heber U (1990) Light-dependent pH changes in leaves of C3 Plants. I. Recording pH changes in various cellular compartments by fluorescent probes. Planta 182: 244–252

    Article  Google Scholar 

  • Yin Z-H, Schmidt W, Heber U (1991) Influence of the air pollutants (SO2,NO2,O3) on cellular pH changes in leaves. In: PBWU (eds) Expertentagung Waldschadensforschung im östlichen Mitteleuropa und in Bayern. GSF Bericht 24/91, pp 574–578

    Google Scholar 

  • Ziegler I (1975) The effect of SO2 pollution on plant metabolism. Residue Rev 56: 79–105

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pfanz, H. (1995). Apoplastic and Symplastic Proton Concentrations and Their Significance for Metabolism. In: Schulze, ED., Caldwell, M.M. (eds) Ecophysiology of Photosynthesis. Springer Study Edition, vol 100. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79354-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79354-7_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-58571-8

  • Online ISBN: 978-3-642-79354-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics