Skip to main content

Higher Plant Respiration and Its Relationships to Photosynthesis

  • Chapter

Part of the book series: Springer Study Edition ((SSE,volume 100))

Abstract

Respiration is the complement of photosynthesis in higher plants.1 The primary function of photosynthesis is to assimilate CO2 and radiant energy in the formation of carbohydrates. A significant portion of those carbohydrates become the main substrates of respiration (James 1953; Krotkov 1960; ap Rees 1980), but often after some period of storage or distance of transport. The function of respiration is to convert photoassimilate into substances usable by growth, maintenance, transport, and nutrient assimilation processes (Beevers 1961). Respiration does this by breaking down sugars into smaller molecules (carbon skeleton intermediates), phosphorylating ADP and other nucleosides, and reducing nucleotides — respiration does not only generate ATP. Some of the carbon skeleton intermediates become the precursors of growth and are diverted away from respiratory metabolism and used in biosynthetic reactions, whereas the ATP and NAD(P)H formed during respiration are used in all heterotrophic energy-requiring processes (Fig. 4.1).

The heat produced by a respiring cell is an inescapable component of cellular metabolism, the cost which Nature has to pay for creating biological order out of physical chaos in the environment of plants and animals. J.L. Monteith (1972)

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen LH Jr, Lemon ER (1976) Carbon dioxide exchange and turbulence in a Costa Rican tropical rain forest. In: Monteith JL (ed) Vegetation and the atmosphere, vol 2. Academic Press, London, pp 265–308

    Google Scholar 

  • Amthor JS (1989) Respiration and crop productivity. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Amthor JS (1991) Respiration in a future, higher-CO2 world. Plant Cell Environ 14: 13–20

    Article  CAS  Google Scholar 

  • Amthor JS (1993a) Respiration and carbon assimilate use. In: Boote KJ (ed) Physiology and determination of crop yield. American Society of Agronomy, Madison (in press)

    Google Scholar 

  • Amthor JS (1993b) Plant respiratory responses to the environment and their effects on the carbon balance. In: Wilkinson RE (ed) Plant-environment interactions. Marcel Dekker, New York (in press)

    Google Scholar 

  • Amthor JS, Koch GW, Bloom AJ (1992) CO2 inhibits respiration in leaves of Rumex crispus L. Plant Physiol 98: 757–760

    Article  PubMed  CAS  Google Scholar 

  • ap Rees T (1980) Assessment of the contributions of metabolic pathways to plant respiration. In: Davies DD (ed) Metabolism and respiration. Biochemistry of plants, vol 2. Academic Press, New York, pp 1–29

    Google Scholar 

  • ap Rees T (1985) The organization of glycolysis and the oxidative pentose phosphate pathway in plants. In: Douce R, Day DA (eds) Higher plant cell respiration. Encyclopedia of plant physiology, NS, vol 18. Springer, Berlin Heidelberg New York, pp 391–417

    Google Scholar 

  • ap Rees T (1988) Hexose phosphate metabolism by nonphotosynthetic tissues of higher plants. In: Preiss J (ed) Carbohydrates. Biochemistry of plants, vol 14. Academic Press, San Diego, pp 1–33

    Google Scholar 

  • Aslam M, Huffaker RC (1984) Dependency of nitrate reduction on soluble carbohydrates in primary leaves of barley under aerobic conditions. Plant Physiol 75: 623–628

    Article  PubMed  CAS  Google Scholar 

  • Avelange M-H, Sarrey F, Rébillé F (1990) Effects of glucose feeding on respiration and photosynthesis in photoautotrophic Dianthus caryophyllus cells. Plant Physiol 94: 1157–1162

    Article  PubMed  CAS  Google Scholar 

  • Azcón-Bieto J, Osmond CB (1983) Relationship between photosynthesis and respiration. The effect of carbohydrate status on the rate of CO2 production by respiration in darkened and illuminated wheat leaves. Plant Physiol 71: 574–581

    Article  PubMed  Google Scholar 

  • Azcón-Bieto J, Lambers H, Day DA (1983) Effect of photosynthesis and carbohydrate status on respiratory rates and the involvement of the alternative pathway in leaf respiration. Plant Physiol 72: 598–603

    Article  PubMed  Google Scholar 

  • Baker JT, Laugel F, Boote KJ, Allen LH Jr (1992) Effects of daytime carbon dioxide concentration on dark respiration in rice. Plant Cell Environ 15: 231–239

    Article  CAS  Google Scholar 

  • Baysdorfer C, van der Woude WJ (1988) Carbohydrate responsive proteins in the roots of Pennisetum americanum. Plant Physiol 87: 566–570

    Article  PubMed  CAS  Google Scholar 

  • Beevers H (1961) Respiratory metabolism in plants. Row, Peterson and Co, Evanston, Illinois

    Google Scholar 

  • Beevers H (1970) Respiration in plants and its regulation. In: Setlik I (ed) Prediction and measurement of photosynthetic productivity. PUDOC, Wageningen, pp 209–214

    Google Scholar 

  • Bingham IJ, Farrar JF (1988) Regulation of respiration in roots of barley. Physiol Plant 73: 278–285

    Article  CAS  Google Scholar 

  • Björkman O (1981) Responses to different quantum flux densities. In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds) Physiological plant ecology I. Responses to the physical environment. Encyclopedia of plant physiology, NS, vol 12A. Springer, Berlin Heidelberg New York, pp 57–107

    Google Scholar 

  • Björkman O, Demming B (1987) Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. Planta 170: 489–504

    Article  Google Scholar 

  • Brooks A, Farquhar GD (1985) Effect of temperature on the CO2/O2 specificity of ribulose-l,5-bisphosphate carboxylase/oxygenase and the rate of respiration in the light. Planta 165: 397–406

    Article  CAS  Google Scholar 

  • Brouquisse R, James F, Raymond P, Pradet A (1991) Study of glucose starvation in excised maize root tips. Plant Physiol 96: 619–626

    Article  PubMed  CAS  Google Scholar 

  • Brouwer R (1983) Functional equilibrium: sense or nonsense? Neth J Agric Sci 31: 335–348

    Google Scholar 

  • Brown GC (1992) Control of respiration and ATP synthesis in mammalian mitochondria and cells. Biochem J 284: 1–13

    PubMed  CAS  Google Scholar 

  • Bryce JH, Azcón-Bieto J, Wiskich JT, Day DA (1990) Adenylate control of respiration in plants: the contribution of rotenone-insensitive electron transport to ADP-limited oxygen consumption by soybeam mitochondria. Physiol Plant 78: 105–111

    Article  CAS  Google Scholar 

  • Bunce JA (1990) Short- and long-term inhibition of respiratory carbon dioxide efflux by elevated carbon dioxide. Ann Bot 65: 637–642

    CAS  Google Scholar 

  • Byrd GT, Sage RF, Brown RH (1992) A comparison of dark respiration between C3 and C4 plants. Plant Physiol 100: 191–198

    Article  PubMed  CAS  Google Scholar 

  • Chapman DJ, Ragan MA (1980) Evolution of biochemical pathways: evidence from comparative biochemistry. Annu Rev Plant Physiol 31: 639–678

    Article  CAS  Google Scholar 

  • Charles-Edwards DA, Ludwig LJ (1975) A model of leaf carbon metabolism. Ann Bot 39: 819–829

    CAS  Google Scholar 

  • Cloud P (1976) Beginning of biospheric evolution and their biogeochemical consequences. Paleobiology 2: 351–387

    CAS  Google Scholar 

  • Copeland L, Turner JF (1987) The regulation of glycolysis and the pentose phosphate pathway. In: Davies DD (ed) Biochemistry of metabolism. Biochemistry of plants, vol 11. Academic Press, San Diego, pp 107–128

    Google Scholar 

  • Dancer J, Hatzfeld W-D, Stitt M (1990) Cytosolic cycles regulate the turnover of sucrose in heterotrophic cell-suspension cultures of Chenopodium rubrum L. Planta 182: 223–231

    Article  CAS  Google Scholar 

  • Day DA, Dry IB, Soole KL, Wiskich JT, Moore AL (1991) Regulation of alternative pathway activity in plant mitochondria. Deviations from Q-pool behavior during oxidation of NADH and quinols. Plant Physiol 95: 948–953

    Article  PubMed  CAS  Google Scholar 

  • Decker JP, Wien JD (1958) Carbon dioxide surges in green leaves. J Sol Energy Sci Eng 2: 39–41

    Article  CAS  Google Scholar 

  • Delbrück M (1986) Mind from matter? An essay on evolutionary epistemology. Blackwell, Palo Alto

    Google Scholar 

  • Douce R (1985) Mitochondria in higher plants: structure, function, and biogenesis. Academic Press, Orlando

    Google Scholar 

  • Douce R, Neuburger M (1989) The uniqueness of plant mitochondria. Annu Rev Plant Physiol Plant Mol Biol 40: 371–414

    Article  CAS  Google Scholar 

  • Douce R, Bligny R, Brown D, Dorne A-J, Genix P, Roby C (1991) Autophagy triggered by sucrose deprivation in sycamore (Acer pseudoplatanus) cells. In: Ernes M J (ed) Compartmentation of plant metabolism in non-photosynthetic tissues. Soc Exp Biol Sem Ser, vol 42. Cambridge University Press, Cambridge, pp 127–145

    Google Scholar 

  • Drake BG, Leadley PW (1991) Canopy photosynthesis of crops and native plant communities exposed to long-term elevated CO2. Plant Cell Environ 14: 853–860

    Article  Google Scholar 

  • Dry IB, Wiskich JT (1982) Role of the external adenosine triphosphate/adenosine diphosphate ratio in the control of plant mitochondrial respiration. Arch Biochem Biophys 217: 72–79

    Article  PubMed  CAS  Google Scholar 

  • Dry IB, Wiskich JT (1985) Characterisation of glycine and malate oxidation by pea leaf mitochondria: evidence of differential access to NAD and respiratory chains. Aust J Plant Physiol 12: 329–339

    Article  CAS  Google Scholar 

  • Dry IB, Bryce JH, Wiskich JT (1987) Regulation of mitochondrial respiration. In: Davies DD (ed) Biochemistry of metabolism. Biochemistry of plants, vol 11. Academic Press, San Diego, pp 213–252

    Google Scholar 

  • Dry IB, Moore AL, Day DA, Wiskich JT (1989) Regulation of alternative pathway activity in plant mitochondria: nonlinear relationship between electron flux and the redox poise of the quinone pool. Arch Biochem Biophys 273: 148–157

    Article  PubMed  CAS  Google Scholar 

  • Du Cloux HC, André M, Daguenet A, Massimino J (1987) Wheat response to CO2 enrichment: growth and CO2 exchanges at two plant densities. J Exp Bot 38: 1421–1431

    Article  Google Scholar 

  • Duff SMG, Moorhead GBG, Lefebvre DD, Plaxton WC (1989) Phosphate starvation inducible “bypasses” of adenylate and phosphate dependent glycolytic enzymes in Brassica nigra suspension cells. Plant Physiol 90: 1275–1278

    Article  PubMed  CAS  Google Scholar 

  • Dutton RG, Jiao J, Tsujita MJ, Grodzinski B (1988) Whole-plant CO2 exchange measurements for nondestructive estimation of growth. Plant Physiol 86: 355–358

    Article  PubMed  CAS  Google Scholar 

  • Ebbighausen H, Jia C, Heldt HW (1985) Oxaloacetate translocator in plant mitochondria. Biochim Biophys Acta 810: 184–199

    Article  CAS  Google Scholar 

  • Farquhar GD, von Caemmerer S, Berry JA (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149: 78–90

    Article  CAS  Google Scholar 

  • Farrar JF (1985) The respiratory source of CO2. Plant Cell Environ 8: 427–438

    Article  CAS  Google Scholar 

  • Farrar JF, Williams JHH (1991) Control of the rate of respiration in roots: compartmentation, demand and the supply of substrate. In: Ernes M J (ed) Compartmentation of plant metabolism in non-photosynthetic tissues. Soc Exp Biol Sem Ser, vol 42. Cambridge University Press, Cambridge, pp 167–188

    Google Scholar 

  • Farrar JF, Williams ML (1991) The effects of increased atmospheric carbon dioxide and temperature on carbon partitioning, source-sink relations and respiration. Plant Cell Environ 14: 819–830

    Article  CAS  Google Scholar 

  • Fondy BR, Geiger DR, Servaites JC (1989) Photosynthesis, carbohydrate metabolism, and export in Beta vulgaris L. and Phaseolus vulgaris L. during square and sinusoidal light regimes. Plant Physiol 89: 396–402

    Article  PubMed  CAS  Google Scholar 

  • Foyer CH (1988) Feedback inhibition of photosynthesis through source-sink regulation in leaves. Plant Physiol Biochem 26: 483–492

    CAS  Google Scholar 

  • French RC, Beevers H (1953) Respiratory and growth responses induced by growth regulators and allied compounds. Am J Bot 40: 660–666

    Article  CAS  Google Scholar 

  • Fricaud A-C, Walters AJ, Whitehouse DG, Moore AL (1992) The role(s) of adenylate kinase and the adenylate carrier in the regulation of plant mitochondrial respiratory activity. Biochim Biophys Acta 1099: 253–261

    Article  CAS  Google Scholar 

  • Gaastra P (1963) Climatic control of photosynthesis and respiration. In: Evans LT (ed) Environmental control of plant growth. Academic Press, New York, pp 113–138

    Google Scholar 

  • Gale J (1982) Evidence for essential maintenance respiration of leaves of Xanthium strumarium at high temperature. J Exp Bot 33: 471–476

    Article  Google Scholar 

  • Gardeström P (1987) Adenylate ratios in the cytosol, chloroplasts and mitochondria of barley leaf protoplasts during photosynthesis at different carbon dioxide concentrations. FEBS Lett 212: 114–118

    Article  Google Scholar 

  • Gardeström P, Edwards GE (1985) Leaf mitochondria (C3 + C4 + CAM). In: Douce R, Day DA (eds) Higher plant cell respiration. Encyclopedia of plant physiology, NS, vol 18. Springer, Berlin Heidelberg New York, pp 314–346

    Google Scholar 

  • Gardeström P, Wigge B (1988) Influence of photorespiration on ATP/ADP ratios in the chloroplasts, mitochondria, and cytosol, studied by rapid fractionation of barley (Hordeum vulgare) protoplasts. Plant Physiol 88: 69–76

    Article  PubMed  Google Scholar 

  • Gastal F, Saugier B (1989) Relationships between nitrogen uptake and carbon assimilation in whole plants of tall fescue. Plant Cell Environ 12: 407–416

    Article  Google Scholar 

  • Gaudillère J-P, Mousseau M (1989) Short term effect of CO2 enrichment on leaf development and gas exchange of young poplars (Populus euramericana cv. I 214) Acta Oecologica 10: 95–105

    Google Scholar 

  • Geider RJ (1992) Respiration: taxation without representation? In: Falkowski PG, Wood-head AD (eds) Primary productivity and biogeochemical cycles in the sea. Environmental science research, vol 43. Plenum, New York, pp 333–360

    Google Scholar 

  • Gemel J, Randall DD (1992) Light regulation of leaf mitochondrial pyruvate dehydrogenase complex. Role of photorespiratory carbon metabolism. Plant Physiol 100: 908–914

    Article  PubMed  CAS  Google Scholar 

  • Gest H (1987) Evolutionary roots of the citric acid cycle in prokaryotes. In: Kay J, Weitzman PDJ (eds) Krebs’ citric acid cycle — half a century and still turning. Biochemical society symposium 54. Biochemical Soc, London, pp 3–16

    Google Scholar 

  • Getz HP (1991) Sucrose transport in tonoplast vesicles of red beet roots is linked to ATP hydrolysis. Planta 185: 261–268

    Article  CAS  Google Scholar 

  • Gifford RM, Lambers H, Morison JIL (1985) Respiration of crop species under CO2 enrichment. Physiol Plant 63: 351–356

    Article  Google Scholar 

  • Graham D (1980) Effects of light on “dark” respiration. In: Davies DD (ed) Metabolism and respiration. Biochemistry of plants, vol 2. Academic Press, New York, pp 525–579

    Google Scholar 

  • Graham D, Chapman EA (1979) Interactions between photosynthesis and respiration in higher plants. In: Gibbs M, Latzko E (eds) Photosynthesis II. Photosynthetic carbon metabolism and related processes. Encyclopedia of plant physiology, NS, vol 6. Springer, Berlin Heidelberg New York, pp 150–162

    Google Scholar 

  • Grodzinski B (1992) Plant nutrition and growth regulation by CO2 enrichment. BioScience 42: 517–525

    Article  Google Scholar 

  • Hagihara A, Hozumi K (1991) Respiration. In: Raghavendra AS (ed) Physiology of trees. Wiley, New York, pp 87–110

    Google Scholar 

  • Hänisch ten Cate CH, Breteler H (1981) Role of sugars in nitrate utilization by roots of dwarf bean. Physiol Plant 52: 129–135

    Article  Google Scholar 

  • Hansen GK (1977) Adaption to photosynthesis and diurnal oscillation of root respiration rates for Lolium multiflorum. Physiol Plant 39: 275–279

    Article  CAS  Google Scholar 

  • Hansen GK (1980) Diurnal variation of root respiration rates and nitrate uptake as influenced by nitrogen supply. Physiol Plant 48: 421–427

    Article  CAS  Google Scholar 

  • Hanson KR (1992) Evidence for mitochondrial regulation of photosynthesis by a starchless mutant of Nicotiana sylvestris. Plant Physiol 99: 276–283

    Article  PubMed  CAS  Google Scholar 

  • Hatrick A A, Bowling DJF (1973) A study of the relationship between root and shoot metabolism. J Exp Bot 24: 607–613

    Article  Google Scholar 

  • Hatzfeld W-D, Stitt M (1990) A study of the rate of recycling of triose phosphates in heterotrophic Chenopodium rubrum cells, potato tubers, and maize endosperm. Planta 180: 198–204

    CAS  Google Scholar 

  • Hatzfeld W-D, Dancer J, Stitt M (1990) Fructose-2,6-bisphosphate, metabolites and “coarse” control of pyrophosphate: fructose-6-phosphate phosphotransferase during triose-phosphate cycling in heterotrophic cell-suspension cultures of Chenopodium rubrum. Planta 180: 205–211

    CAS  Google Scholar 

  • Heichel GH (1970) Prior illumination and the respiration of maize leaves in the dark. Plant Physiol 46: 359–362

    Article  PubMed  CAS  Google Scholar 

  • Henry M-F, Nyns E-J (1975) Cyanide-insensitive respiration. An alternative mitochondrial pathway. Sub-Cell Biochem 4: 1–65

    CAS  Google Scholar 

  • Herold A (1980) Regulation of photosynthesis by sink activity — the missing link. New Phytol 86: 131–144

    Article  CAS  Google Scholar 

  • Holthausen RS, Caldwell MM (1980) Seasonal dynamics of root system respiration in Atriplex confertifolia. Plant Soil 55: 307–317

    Article  Google Scholar 

  • Huck MG, Hageman RH, Hanson JB (1962) Diurnal variation in root respiration. Plant Physiol 37: 371–375

    Article  PubMed  CAS  Google Scholar 

  • Ikuma H (1972) Electron transport in plant respiration. Annu Rev Plant Physiol 23: 419–136

    Article  CAS  Google Scholar 

  • James WO (1953) Plant respiration. Oxford University Press, London

    Google Scholar 

  • Jordan DB, Ogren WL (1984) The CO2/O2 specificity of ribulose 1,5-bisphosphate carboxylase/oxygenase. Planta 161: 308–313

    Article  CAS  Google Scholar 

  • Journet E-P, Bligny R, Douce R (1986) Biochemical changes during sucrose deprivation in higher plant cells. J Biol Chem 261: 3193–3199

    PubMed  CAS  Google Scholar 

  • Kaiser G, Heber U (1984) Sucrose transport into vacuoles isolated from barley mesophyll protoplasts. Planta 161: 562–568

    Article  CAS  Google Scholar 

  • Kelly GJ, Gibbs M (1973) Nonreversible D-glyceraldehyde 3-phosphate dehydrogenase of plant tissues. Plant Physiol 52: 111–118

    Article  PubMed  CAS  Google Scholar 

  • Kira T (1975) Primary production of forests. In: Cooper JP (ed) Photosynthesis and productivity in different environments. Cambridge University Press, Cambridge, pp 5–40

    Google Scholar 

  • Kirschbaum MUF, Farquhar GD (1987) Investigation of the CO2 dependence of quantum yield and respiration in Eucalyptus pauciflora. Plant Physiol 83: 1032–1036

    Article  PubMed  CAS  Google Scholar 

  • Kok B (1948) A critical consideration of the quantum yield of Chlorella photosynthesis. Enzymologia 13: 1–56

    CAS  Google Scholar 

  • Kowallik W (1982) Blue light effects on respiration. Annu Rev Plant Physiol 33: 51–72

    Article  CAS  Google Scholar 

  • Krapp A, Quick WP, Stitt M (1991) Ribulose-l,5-bisphosphate carboxylase-oxygenase, other Calvin-cycle enzymes, and chlorophyll decrease when glucose is supplied to mature spinach leaves via the transpiration stream. Planta 186: 58–69

    Article  CAS  Google Scholar 

  • Krömer S, Heldt HW (1991a) On the role of mitochondrial oxidative phosphorylation in photosynthesis metabolism as studied by the effect of oligomycin on photosynthesis in protoplasts and leaves of barley (Hordeum vulgare). Plant Physiol 95: 1270–1276

    Article  PubMed  Google Scholar 

  • Krömer S, Heldt HW (1991b) Respiration of pea leaf mitochondria and redox transfer between the mitochondrial and extramitochondrial compartment. Biochim Biophys Acta 1057: 42–50

    Article  Google Scholar 

  • Krömer S, Stitt M, Heldt HW (1988) Mitochondrial oxidative phosphorylation participating in photosynthetic metabolism of a leaf cell. FEBS Lett 226: 352–356

    Article  Google Scholar 

  • Krotkov G (1960) The organic materials of respiration. In: Ruhland W (ed) Plant respiration inclusive fermentations and acid metabolism, part 1. Encyclopedia of plant physiology, vol XII. Springer, Berlin Heidelberg New York, pp 47–65

    Google Scholar 

  • Lafitte HR, Loomis RS (1988) Calculation of growth yield, growth respiration and heat content of grain sorghum from elemental and proximal analysis. Ann Bot 62: 353–361

    CAS  Google Scholar 

  • Laing WA, Ogren WL, Hageman RH (1974) Regulation of soybean net photosynthetic CO2 fixation by the interaction of CO2, O2, and ribulose 1,5-diphosphate carboxylase. Plant Physiol 54: 678–685

    Article  PubMed  CAS  Google Scholar 

  • Larcher W (1983) Physiological plant ecology, 2nd edn. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Lehninger AL (1965) The mitochondrion: molecular basis of structure and function. Benjamin, New York

    Google Scholar 

  • Lorimer GH (1983) Carbon dioxide and carbamate formation: the makings of a biochemical control system. Trends Biochem Sci 8: 65–68

    Article  CAS  Google Scholar 

  • Ludwig LJ, Charles-Edwards DA, Withers AC (1975) Tomato leaf photosynthesis and respiration in various light and carbon dioxide environments. In: Marcelle R (ed) Environmental and biological control of photosynthesis. Junk, The Hague, pp 29–36

    Chapter  Google Scholar 

  • Macduff JH, Jackson SB (1992) Influx and efflux of nitrate and ammonium in Italian ryegrass and white clover roots: comparisons between effects of darkness and defoliation. J Exp Bot 43: 525–535

    Article  CAS  Google Scholar 

  • Mannella CA (1985) The outer membrane of plant mitochondria. In: Douce R, Day DA (eds) Higher plant cell respiration. Encyclopedia of plant physiology, NS, vol 18. Springer, Berlin Heidelberg New York, pp 106–133

    Google Scholar 

  • Margulis L (1970) Origin of eukaryotic cells. Yale University Press, New Haven

    Google Scholar 

  • Massimino D, André M, Richaud C, Daguenet A, Massimino J, Vivoli J (1981) The effect of a day at low irradiance of a maize crop. I. Root respiration and uptake of N, P and K. Physiol Plant 51: 150–155

    Article  CAS  Google Scholar 

  • Maynard Smith J (1978) Optimization theory in evolution. Annu Rev Ecol Syst 9: 31–56

    Article  Google Scholar 

  • McCashin BG, Cossins EA, Canvin DT (1988) Dark respiration during photosynthesis in wheat leaf slices. Plant Physiol 87: 155–161

    Article  PubMed  CAS  Google Scholar 

  • McCree KJ (1986) Whole-plant carbon balance during osmotic adjustment to drought and salinity stress. Aust J Plant Physiol 13: 33–43

    Article  Google Scholar 

  • McDermitt DK, Loomis RS (1981) Elemental composition of biomass and its relation to energy content, growth efficiency, and growth yield. Ann Bot 48: 275–290

    CAS  Google Scholar 

  • Mogensen VO (1977) Field measurements of dark respiration rates of roots and aerial parts in Italian ryegrass and barley. J Appl Ecol 14: 243–252

    Article  Google Scholar 

  • Moldau H, Karolin A (1977) Effect of the reserve pool on the relationship between respiration and photosynthesis. Photosynthetica 11: 38–47

    CAS  Google Scholar 

  • Monteith JL (1972) Solar radiation and productivity in tropical ecosystems. J Appl Ecol 9: 747–766

    Article  Google Scholar 

  • Morin F, André M, Betsche T (1992) Growth kinetics, carbohydrate, and leaf phosphate content of clover (Trifolium subterraneum L.) after transfer to a high CO2 atmosphere or to high light and ambient air. Plant Physiol 99: 89–95

    Article  PubMed  CAS  Google Scholar 

  • Munns R (1988) Why measure osmotic adjustment? Aust J Plant Physiol 15: 717–726

    Article  Google Scholar 

  • Nicholls DG, Ferguson SJ (1992) Bioenergetics 2. Academic Press, London

    Google Scholar 

  • Palmer JM (1979) The “uniqueness” of plant mitochondria. Biochem Soc Trans 7: 246–252

    PubMed  CAS  Google Scholar 

  • Pate JS, Layzell DB (1990) Energetics and biological costs of nitrogen assimilation. Biochem Plants 16: 1–42

    CAS  Google Scholar 

  • Penning de Vries FWT, Brunsting AHM, van Laar HH (1974) Products, requirements and efficiency of biosynthesis: a quantitative approach. J Theor Biol 45: 339–377

    Article  PubMed  CAS  Google Scholar 

  • Penning de Vries FWT, Jansen DM, ten Berge HFM, Bakema A (1989) Simulation of ecophysiological processes of growth in several annual crops. PUDOC, Wageningen, The Netherlands

    Google Scholar 

  • Pirt SJ (1965) The maintenance energy of bacteria in growing cultures. Proc R Soc B 163: 224–231

    Article  CAS  Google Scholar 

  • Prosser CL (1986) Adaptational biology: molecules to organisms. Wiley, New York

    Google Scholar 

  • Rebeille F (1988) Photosynthesis and respiration in air-grown and CO2-grown photoautotrophic cell suspension cultures of carnation. Plant Sci 54: 11–21

    Article  CAS  Google Scholar 

  • Rowland-Bamford AJ, Allen LH Jr, Baker JT, Boote KJ (1990) Carbon dioxide effects on carbohydrate status and partitioning in rice. J Exp Bot 41: 1601–1608

    Article  CAS  Google Scholar 

  • Ryan MG (1991) Effects of climate change on plant respiration. Ecol Appl 1: 157–167

    Article  Google Scholar 

  • Ryle GJA, Powell CE, Gordon AJ (1985) Short-term changes in CO2 evolution associated with nitrogenase activity in white clover in response to defoliation and photosynthesis. J Exp Bot 36: 634–643

    Article  CAS  Google Scholar 

  • Ryle GJA, Powell CE, Tewson V (1992) Effect of elevated CO2 on the photosynthesis, respiration and growth of perennial ryegrass. J Exp Bot 43: 811–818

    Article  Google Scholar 

  • Saradadevi K, Raghavendra AS (1992) Dark respiration protects photosynthesis against photoinhibition in mesophyll protoplasts of pea (Pisum sativum). Plant Physiol 99: 1232–1237

    Article  PubMed  CAS  Google Scholar 

  • Satterlee LD, Koller HR (1984) Response of soybean fruit respiration to changes in whole plant light and CO2 environment. Crop Sci 24: 1007–1010

    Article  Google Scholar 

  • Schäfer C, Simper H, Hofmann B (1992) Glucose feeding results in coordinated changes of chlorophyll content, ribulose-l,5-bisphoshate carboxylase-oxygenase activity and photosynthetic potential in photoautrophic suspension cultured cells of Chenopodium rubrum. Plant Cell Environ 15: 343–350

    Article  Google Scholar 

  • Servaites JC, Geiger DR, Tucci MA, Fondy BR (1989a) Leaf carbon metabolism and metabolite levels during a period of sinusoidal light. Plant Physiol 89: 403–408

    Article  PubMed  CAS  Google Scholar 

  • Servaites JC, Fondy BR, Li B, Geriger DR (1989b) Sources of carbon for export from spinach leaves throughout the day. Plant Physiol 90: 1168–1174

    Article  PubMed  CAS  Google Scholar 

  • Sharkey TD (1985) Photosynthesis in intact leaves of C3 plants: physics, physiology and rate limitations. Bot Rev 51: 53–105

    Article  Google Scholar 

  • Sharkey TD (1988) Estimating the rate of photorespiration in leaves. Physiol Plant 73: 147–152

    Article  CAS  Google Scholar 

  • Sharp RE, Matthews MA, Boyer JS (1984) Kok effect and the quantum yield of photosynthesis. Light partially inhibits dark respiration. Plant Physiol 75: 95–101

    Article  PubMed  CAS  Google Scholar 

  • Sheen J (1990) Metabolic repression of transcription in higher plants. Plant Cell 2: 1027–1038

    Article  PubMed  CAS  Google Scholar 

  • Sims DA, Pearcy RW (1991) Photosynthesis and respiration in Alocasia macrorrhiza following transfers to high and low light. Oecologia 86: 447–453

    Article  Google Scholar 

  • Singh KK, Chen C, Gibbs M (1992) Characterization of an electron transport pathway associated with glucose and fructose respiration in the intact chloroplasts of Chlamydomonas reinhardtii and spinach. Plant Physiol 100: 327–333

    Article  PubMed  CAS  Google Scholar 

  • Sitte P, Eschbach S (1992) Cytosymbiosis and its significance in cell evolution. Prog Bot 53: 29–43

    Google Scholar 

  • Soole KL, Dry IB, James AT, Wiskich JT (1990) The kinetics of NADH oxidation by complex I of isolated plant mitochondria. Physiol Plant 80: 75–82

    Article  CAS  Google Scholar 

  • Soole KL, Dry IB, Wiskich JT (1992) Partial purification and characterization of complex I, NADH : ubiquinone reductase, from the inner membrane of beetroot mitochondria. Plant Physiol 98: 588–594

    Article  PubMed  CAS  Google Scholar 

  • Srere PA (1987) Complexes of sequential metabolic enzymes. Annu Rev Biochem 56: 89–124

    Article  PubMed  CAS  Google Scholar 

  • Steingröver E (1981) The relationship between cyanide-resistant root respiration and the storage of sugars in the taproot in Daucus carota L. J Exp Bot 32: 911–919

    Article  Google Scholar 

  • Tanaka A, Yamaguchi J (1968) The growth efficiency in relation to the growth of the rice plant. Soil Sci Plant Nutr 14: 110–116

    Google Scholar 

  • Thornley JHM (1970) Respiration, growth and maintenance in plants. Nature 227: 304–305

    Article  PubMed  CAS  Google Scholar 

  • Thornley JHM (1971) Energy, respiration, and growth in plants. Ann Bot 35: 721–728

    Google Scholar 

  • Tolbert NE (1980) Photorespiration. In: Davies DD (ed) Metabolism and respiration. Biochemistry of plants, vol 2. Academic Press, New York, pp 487–523

    Google Scholar 

  • Wagner GH, Buyanovsky G A (1989) Soybean root respiration assessed from short-term 14C-activity changes. Plant Soil 117: 301–303

    Article  Google Scholar 

  • Weitzman PDJ (1987) Patterns of diversity of citric acid cycle enzymes. In: Kay J, Weitzman PDJ (eds) Krebs’ citric acid cycle — half a century and still turning. Biochemical society symposium 54. Biochemical Soc, London, pp 33–43

    Google Scholar 

  • Wellburn AR, Owen JH (1991) Control of the rate of respiration in shoots: light, calcium and plant growth regulators. In: Ernes MJ (ed) Compartmentation of plant metabolism in non-photosynthetic tissues. Soc Exp Biol Sem Ser, vol 42. Cambridge University Press, Cambridge, pp 189–198

    Google Scholar 

  • Wenzler HC, Mignery GA, Fisher LM, Park WD (1989) Analysis of a chimeric class-I patatin-GUS gene in transgenic potato plants: high-level expression in tubers and sucrose-inducible expression in cultured leaf and stem expiants. Plant Mol Biol 12: 41–50

    Article  CAS  Google Scholar 

  • Williams JHH, Farrar JF (1990) Control of barley root respiration. Physiol Plant 79: 259–266

    Article  CAS  Google Scholar 

  • Williams K, Percival F, Merino J, Mooney HA (1987) Estimation of tissue construction cost from heat of combustion and organic nitrogen content. Plant Cell Environ 10: 725–734

    CAS  Google Scholar 

  • Williams K, Field CB, Mooney HA (1989) Relationships among leaf construction cost, leaf longevity, and light environment in rain-forest plants of the genus Piper. Am Nat 133: 198–211

    Article  Google Scholar 

  • Wiskich JT, Dry IB (1985) The tricarboxylic acid cycle in plant mitochondria: its operation and regulation. In: Douce R, Day DA (eds) Higher plant cell respiration. Encyclopedia of plant physiology, NS, vol 18. Springer, Berlin Heidelberg New York, pp 281–313

    Google Scholar 

  • Wiskich JT, Bryce JH, Day DA, Dry IB (1990) Evidence for metabolic domains within the matrix compartment of pea leaf mitochondria. Implications for photorespiratory metabolism. Plant Physiol 93: 611–616

    Article  PubMed  CAS  Google Scholar 

  • Wohl K, James WO (1942) The energy changes associated with plant respiration. New Phytol 41: 230–256

    Article  CAS  Google Scholar 

  • Wullschleger SD, Norby RJ, Hendrix DL (1992a) Carbon exchange rates, chlorophyll content, and carbohydrate status of two forest tree species exposed to carbon dioxide enrichment. Tree Physiol 10: 21–31

    PubMed  CAS  Google Scholar 

  • Wullschleger SD, Norby RJ, Gunderson CA (1992b) Growth and maintenance respiration in leaves of Liriodendron tulipifera L. exposed to long-term carbon dioxide enrichment in the field. New Phytol 121: 515–523

    Article  CAS  Google Scholar 

  • Yamaguchi J (1978) Respiration and the growth efficiency in relation to crop productivity. J Fac Agric Hokkaido Univ 59: 59–129

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Amthor, J.S. (1995). Higher Plant Respiration and Its Relationships to Photosynthesis. In: Schulze, ED., Caldwell, M.M. (eds) Ecophysiology of Photosynthesis. Springer Study Edition, vol 100. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79354-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79354-7_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-58571-8

  • Online ISBN: 978-3-642-79354-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics