Skip to main content

Regulation of Photosynthetic Light Energy Capture, Conversion, and Dissipation in Leaves of Higher Plants

  • Chapter
Ecophysiology of Photosynthesis

Part of the book series: Springer Study Edition ((SSE,volume 100))

Abstract

In nature, the intensity of light, or photon flux density (PFD), shows great variation, both temporally and spatially. For example, a leaf in the under-story can experience changes in the incident PFD up to 100-fold within a few seconds (Chazdon and Pearcy 1991). Large changes in PFD are also experienced by exposed leaves when intermittent clouds obscure the sun. In addition, the total daily integrated photon flux varies greatly among habitats as well as within the canopy of a given plant stand. Plants on the floor of a tropical rainforest (Björkman and Ludlow 1972) or redwood forest (Björkman and Powles 1981) may receive as little as 1% of the daily photon flux above the plant canopy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams WW III, Demmig-Adams B (1992) Operation of the xanthophyll cycle in higher plants in response to diurnal changes in incident sunlight. Planta 186: 390–398

    Article  CAS  Google Scholar 

  • Adams WW III, Smith SD, Osmond CB (1987) Photoinhibition of the CAM succulent Opuntia basilaris growing in Death Valley: evidence from 77K fluorescence and quantum yield. Oecologia 71: 221–228

    Article  Google Scholar 

  • Adams WW III, Díaz M, Winter K (1989) Diurnal changes in photochemical efficiency, the reduction state of Q, radiationless energy dissipation, and non-photochemical fluorescence quenching in cacti exposed to natural sunlight in northern Venezuela. Oecologia 80: 553–561

    Article  Google Scholar 

  • Adams WW III, Demmig-Adams B, Winter K (1990) Relative contributions of zeaxanthin-related and zeaxanthin-unrelated types of “high-energy-state” quenching of chlorophyll fluorescence in spinach leaves exposed to various environmental conditions. Plant Physiol 92: 302–309

    Article  PubMed  CAS  Google Scholar 

  • Adams WW III, Volk M, Hoehn A, Demmig-Adams B (1992) Leaf orientation and the response of the xanthophyll cycle to incident light. Oecologia 90: 404–410

    Article  Google Scholar 

  • Anderson JM, Chow WS, Goodchild DJ (1988) Thylakoid membrane organisation in sun/shade acclimation. Aust J Plant Physiol 15: 11–26

    Article  Google Scholar 

  • Begg JE (1980) Morphological adaptations of leaves to water stress. In: Turner NC, Kramer PJ (eds) Adaptation of plants to water and high temperature stress. Wiley-Interscience, New York, pp 33–42

    Google Scholar 

  • Begg JE, Torsseil BWR (1974) Diaphotonastic and parahelionastic leaf movements in Stylosanthes humilis HBK (Townsville Stylo). R Soc N Z Bull 12: 277–283

    Google Scholar 

  • Bilger W, Björkman O (1990) Role of the xanthophyll cycle in photoprotection elucidated by measurements of light-induced absorbance changes, fluorescence and photosynthesis in leaves of Hedera canariensis. Photosynth Res 25: 173–185

    Article  CAS  Google Scholar 

  • Bilger W. Björkman O (1991) Temperature dependence of violaxanthin de-epoxidation and non-photochemical fluorescence quenching in intact leaves of Gossypium hirsutum L. and Malva parviflora L. Planta 184: 226–234

    Article  CAS  Google Scholar 

  • Bilger W, Björkman O, Thayer SS (1989) Light-induced spectral absorbance changes in relation to photosynthesis and the epoxidation state of xanthophyll cycle components in cotton leaves. Plant Physiol 91: 542–551

    Article  PubMed  CAS  Google Scholar 

  • Björkman O (1981) Responses to different quantum flux densities. In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds) Physiological plant ecology I. Encyclopedia of plant physiology, NS, vol 12A. Springer, Berlin Heidelberg New York, pp 57–107

    Google Scholar 

  • Björkman O, Demmig B (1987) Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. Planta 170: 489–504

    Article  Google Scholar 

  • Björkman O, Ludlow MM (1972) Characterization of the light climate on the floor of a Queensland rainforest. Carnegie Inst Wash Yearb 71: 85–94

    Google Scholar 

  • Björkman O, Powles SB (1981) Leaf movement in the shade species Oxalis oregana. I. Response to light level and light quality. Carnegie Inst Wash Yearb 80: 59–62

    Google Scholar 

  • Björkman O, Schäfer C (1989) A gas exchange-fluorescence analysis of photosynthetic performance of a cotton crop under high-irradiance stress [Extended abstract.] Philos Trans R Soc Lond B 323: 309–311

    Article  Google Scholar 

  • Björkman O, Demmig B, Andrews TJ (1988) Mangrove photosynthesis: response to high-irradiance stress. Aust J Plant Physiol 15: 43–61

    Article  Google Scholar 

  • Brugnoli E, Björkman O (1992) Chloroplast movement in leaves: influence on chlorophyll fluorescence and measurements of light-induced absorbance changes related to ApH and zeaxanthin formation. Photosynth Res 32: 23–35

    Article  CAS  Google Scholar 

  • Chazdon RL, Pearcy RW (1991) The importance of sunflecks for forest understory plants. BioScience 41: 760–766

    Article  Google Scholar 

  • Demmig-Adams B (1990) Carotenoids and photoprotection in plants. A role for the xanthophyll zeaxanthin. Biochim Biophys Acta 1020: 1–24

    Article  CAS  Google Scholar 

  • Demmig-Adams B, Adams WW III (1992a) Photoprotection and other responses of plants to high light stress. Annu Rev Plant Physiol Plant Mol Biol 43: 599–626

    Article  CAS  Google Scholar 

  • Demmig-Adams B, Adams WW III (1992b) Carotenoid composition in sun and shade leaves of plants with different life forms. Plant Cell Environ 15: 411–419

    Article  CAS  Google Scholar 

  • Demmig B, Winter K, Krüger A, Czygan F-C (1988) Zeaxanthin and the heat dissipation of excess light energy in Nerium oleander exposed to a combination of high light and water stress. Plant Physiol 87: 17–24

    Article  PubMed  CAS  Google Scholar 

  • Demmig-Adams B, Adams WW III, Winter K, Meyer A, Schreiber U, Pereira JS, Krüger A, Czygan F-C, Lange OL (1989a) Photochemical efficiency of photosystem II, photon yield of O2 evolution, photosynthetic capacity, and carotenoid composition during the “midday depression” of net CO2 uptake in Arbutus unedo growing in Portugal. Planta 177: 377–387

    Article  CAS  Google Scholar 

  • Demmig-Adams B, Winter K, Krüger A, Czygan F-C (1989b) Zeaxanthin and the induction and relaxation kinetics of the dissipation of excess excitation energy in leaves in 2% O2, 0% CO2. Plant Physiol 90: 887–893

    Article  PubMed  CAS  Google Scholar 

  • Demmig-Adams B, Winter K, Winkelmann K, Krüger A, Czygan F-C (1989c) Photo-synthetic characteristics and the ratios of chlorophyll, β-carotene, and the components of the xanthophyll cycle upon a sudden increase in growth light regime in several plant species. Bot Acta 102: 319–325

    CAS  Google Scholar 

  • Demmig-Adams B, Adams WW III, Heber U, Neimanis S, Winter K, Krüger A, Czygan F-C, Bilger W, Björkman O (1990) Inhibition of zeaxanthin formation and of rapid changes in radiationless energy dissipation by dithiothreitol in spinach leaves and chloroplasts. Plant Physiol 92: 293–301

    Article  PubMed  CAS  Google Scholar 

  • Ehleringer JR (1982) The influence of water stress and temperature on leaf pubescence development in Encelia farinosa. Am J Bot 69: 670–675

    Article  Google Scholar 

  • Ehleringer JR (1988) Changes in leaf characteristics of species along elevational gradients in the Wasatch Front, Utah. Am J Bot 75: 680–689

    Article  Google Scholar 

  • Ehleringer JR, Björkman O (1978) Pubescence and leaf spectral characteristics in a desert shrub, Encelia farinosa. Oecologia 36: 151–162

    Article  Google Scholar 

  • Ehleringer JR, Forseth I (1980) Solar tracking by plants. Science 210: 1093–1098

    Article  Google Scholar 

  • Ehleringer JR, Mooney HA, Gulmon SL, Rundel PW (1981) Parallel evolution of leaf pubescence in Encelia in coastal deserts of North and South America. Oecologia 49: 38–41

    Article  Google Scholar 

  • Forseth I, Ehleringer JR (1980) Solar tracking response to drought in a desert annual. Oecologia 44: 159–163

    Article  Google Scholar 

  • Gilmore AM, Yamamoto HY (1991) Zeaxanthin formation and energy-dependent fluorescence quenching in pea chloroplasts under artificially-mediated linear and cyclic electron transport. Plant Physiol 96: 635–643

    Article  PubMed  CAS  Google Scholar 

  • Gilmore AM, Yamamoto HY (1992) Dark induction of zeaxanthin-dependent nonphoto-chemical fluorescence quenching mediated by ATP. Proc Natl Acad Sci USA 89: 1899–1903

    Article  PubMed  CAS  Google Scholar 

  • Hager A (1980) The reversible, light-induced conversions of xanthophylls in the chloroplast. In: Czygan F-C (ed) Pigments in plants. Fischer, Stuttgart, pp 57–79

    Google Scholar 

  • Haupt W, Scheuerlein R (1990) Chloroplast movement. Plant Cell Environ 13: 595–614

    Article  Google Scholar 

  • Horton P, Ruban AV, Rees D, Pascal AA, Noctor G, Young AJ (1991) Control of the light-harvesting function of chloroplast membranes by aggregation of the LHCII chlorophyll-protein complex. FEBS Lett 292: 1–4

    Article  PubMed  CAS  Google Scholar 

  • Inoue Y, Shibata K (1974) Comparative examination of terrestrial plants leaves in terms of light-induced absorption changes due to chloroplast rearrangements. Plant Cell Physiol 15: 717–721

    Google Scholar 

  • Koller D (1990) Light-driven leaf movements. Plant Cell Environ 13: 615–632

    Article  Google Scholar 

  • Koller D, Shak T (1990) Light-driven movements in the solar-tracking leaf of Lupinus palaestinus Boiss. Photochem Photobiol 52: 187–196

    Article  Google Scholar 

  • Krause GH, Weis E (1991) Chlorophyll fluorescence and photosynthesis: the basics. Annu Rev Plant Physiol Plant Mol Biol 42: 313–349

    Article  CAS  Google Scholar 

  • Krause GH, Vernotte C, Briantais J-M (1982) Photoinduced quenching of chlorophyll fluorescence in intact chloroplasts and algae. Resolution into two components. Biochim Biophys Acta 679: 116–124

    CAS  Google Scholar 

  • Krinsky NI (1979) Carotenoid protection against oxidation. Pure Appl Chem 51: 649–660

    Article  CAS  Google Scholar 

  • Ludlow MM, Björkman O (1984) Paraheliotropic leaf movement in Siratro as a protective mechanism against drought-induced damage to primary photosynthetic reactions: damage by excessive light and heat. Planta 161: 505–518

    Article  Google Scholar 

  • Mooney HA, Ehleringer JR, Björkman O (1977) The energy balance of leaves of the evergreen desert shrub Atriplex hymenelytra. Oecologia 29: 301–310

    Article  Google Scholar 

  • Neubauer C, Schreiber U (1989) Photochemical and non-photochemical quenching of chlorophyll fluorescence induced by hydrogen peroxide. Z Naturforsch 44c: 262–270

    Google Scholar 

  • Neubauer C, Yamamoto HY (1992) Mehler-peroxidase reaction mediates zeaxanthin formation and zeaxanthin-related fluorescence quenching in intact chloroplasts. Plant Physiol 99: 1354–1361

    Article  PubMed  CAS  Google Scholar 

  • Powles SB, Björkman O (1981) Leaf movement in the shade species Oxalis oregana. II. Role in protection against injury by intense light. Carnegic Inst Wash Yearb 80: 63–66

    Google Scholar 

  • Schäfer C, Björkman O (1989) Relationship between photosynthetic energy conversion efficiency and chlorophyll fluorescence quenching in upland cotton (Gosspyium hirsutum L.). Planta 17: 367–376

    Article  Google Scholar 

  • Siefermann-Harms D (1987) The light harvesting and protective functions of carotenoids in photosynthetic membranes. Physiol Plant 69: 561–568

    Article  CAS  Google Scholar 

  • Thayer SS, Björkman O (1990) Leaf xanthophyll content and composition in sun and shade determined by HPLC. Photosynth Res 23: 331–343

    Article  CAS  Google Scholar 

  • Thayer SS, Björkman O (1992) Carotenoid distribution and deepoxidation in thylakoid pigment-protein complexes from cotton leaves and bundle-sheath cells of maize. Photosynth Res 33: 213–225

    Article  CAS  Google Scholar 

  • von Caemmerer S, Farquhar GD (1981) Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. Planta 153: 376–387

    Article  Google Scholar 

  • Wainwright CM (1977) Suntracking and related leaf movements in a desert lupin (Lupinus arizonicus). Am J Bot 64: 1032–1041

    Article  Google Scholar 

  • Winter K, Königer M (1989) Dithiothreitol, an inhibitor of violaxanthin de-epoxidation, increases the susceptibility of leaves of Nerium oleander L. to photoinhibition of photosynthesis. Planta 180: 24–31

    Article  CAS  Google Scholar 

  • Yamamoto HY (1979) Biochemistry of the violaxanthin cycle in higher plants. Pure Appl Chem 5: 639–648

    Article  Google Scholar 

  • Yamamoto HY, Kamite L (1972) The effects of dithiothreitol on violaxanthin deepoxidation and absorbance changes in the 500-nm region. Biochim Biophys Acta 267: 538–543

    Article  PubMed  CAS  Google Scholar 

  • Young AJ (1991) The photoprotective role of carotenoids in higher plants. Physiol Plant 83: 702–708

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Björkman, O., Demmig-Adams, B. (1995). Regulation of Photosynthetic Light Energy Capture, Conversion, and Dissipation in Leaves of Higher Plants. In: Schulze, ED., Caldwell, M.M. (eds) Ecophysiology of Photosynthesis. Springer Study Edition, vol 100. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79354-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79354-7_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-58571-8

  • Online ISBN: 978-3-642-79354-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics