Photosynthesis in Aquatic Plants

  • J. A. Raven
Part of the Springer Study Edition book series (volume 100)

Abstract

To address the topic of the ecophysiology of photosynthesis in aquatic plants in the space allotted is a daunting task, and the coverage must of necessity be very selective. Since this Volume is honoring Professor Dr. Lange, I shall emphasize those aspects which interface with his work, and since the rest of the Volume deals with terrestrial plants, I shall emphasize more generally the comparison with terrestrial plants. My third objective is to address particularly those aspects which most interest me and which are, or could be, growth-points in research.

Keywords

Biomass Phosphorus Molybdenum Assimilation Microalgae 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alberte RS (1989) Physiological and cellular features of Prochloron. In: Lewin RA, Cheng L (eds) Prochloron: a microbial enigma. Chapman and Hall, New York, pp 31-52CrossRefGoogle Scholar
  2. Andrews JH (1991) Comparative ecology of microorganisms and macroorganisms. Springer, Berein Heidelberg New YorkCrossRefGoogle Scholar
  3. Babin M, Levasseur M, Michaud D, Legendre L (1992) Effect of angular distribution of light on photosynthesis at the scale of a phytoplankton cell. In: Maestrini S (ed) Poster abstracts of symposium on measurement of primary production from the molecular to the global scale. ICES, Copenhagen, p 1Google Scholar
  4. Berg M (1983) Random walks in biology. Princeton University Press, PrincetonGoogle Scholar
  5. Bertsch A (1966) CO2-Gaswechsel und Wasserhaushalt der aerophilen Grünalge Apactococcus lobatus. Planta 70: 46–62CrossRefGoogle Scholar
  6. Boston HL, Farmer AM, Madsen TD, Adams MS, Hurley JP (1991) Light-harvesting caratenoids in two deep-water bryophytes. Photosynthetica 25: 61–66Google Scholar
  7. Britting SA (1992) Effect of emergence on the physiology and biochemistry of a high intertidal alga, Endocladia muricata (Post & Rupt) J Ag (Cryptonemiates, Rhodophyta). PhD dissertation, University of California, Los AngelesGoogle Scholar
  8. Cooper LW, De Niro MJ (1989) Detection of heavy isotopes of oxygen and hydrogen in tissue water of intertidal plants: implications for water economy. Mar Biol 101: 397–400CrossRefGoogle Scholar
  9. Cowan IR, Lange OL, Green TGA (1992) Carbon-dioxide exchange in lichens: determination of transport and carboxylation reactions. Planta 187: 282–284CrossRefGoogle Scholar
  10. Den Hartog C, Segal C (1964) A new classification of water plant communities. Acta Bot Neerl 13: 367–393Google Scholar
  11. Dring MJ (1981) Chromatic adaptation of photosynthesis in benthic marine algae: an examination of its ecological significance using a theoretical model. Limnol Oceanogr 26: 271–284CrossRefGoogle Scholar
  12. Fawley MW (1991) Disjunct distribution of the xanthophyll loroxanthin in the green algae. J Phycol 27: 544–548CrossRefGoogle Scholar
  13. Fujiward S, Iwahashi H, Someya J, Nishikawd S (1993) Structure and cotranscription of the plastid-encoded rbcL and rbcS genes of Pleuroehrysis carterae (Prymnesiophyta). J Phycol 29: 347–355CrossRefGoogle Scholar
  14. Goericke R, Repeta DJ (1992) The pigments of Prochlorococcus marinus: the presence of divinyl chlorophyll a and b in a marine procaryote. Limnol Oceanogr 37: 425–433CrossRefGoogle Scholar
  15. Greene RM, Gerard VA (1990) Effects of high-frequency light fluctuation on growth and photoacclimation of the red alga Chondus crispus. Mar Biol 105: 337–344CrossRefGoogle Scholar
  16. Guillard RRL, Keller MD, O’Kelly CJ, Floyd GL (1991) Pycnococcus provasolii gen. et sp. nov., a coccoid prasinoxanthin-containing phytoplankton from the western North Atlantic and Gulf of Mexico. J Phycol 27: 39–47CrossRefGoogle Scholar
  17. Karentz D, Cleaver JE, Mitchell DL (1991) Cell survival characteristics and molecular responses of phytoplankton to ultraviolet B radiation. J phycol 27: 326–341CrossRefGoogle Scholar
  18. Kirk JTO (1985) Light and photosynthesis in aquatic ecosystems. Cambridge University Press, CambridgeGoogle Scholar
  19. Kyle DJ, Osmond CB, Arntzen CJ (eds) (1987) Photoinhibition. Elsevier, AmsterdamGoogle Scholar
  20. 1.
    Lange OL (1989) Ecophysiology and photosynthesis: performance of poikilohydric and homoiohydric plants. In: Greuter W, Zimmer B (eds) Proceedings of the XIV International Botanical Congress. Koeltz, Königstein/Taunus, pp 357–383Google Scholar
  21. Lange OL, Schulze ED, Koch W (1970) Experimental-ökologische Untersuchungen an Flechter der Negev-Wüste II CO2-Gaswechsel und Wasserhaushalt von Ramalina maciformis (De) Bory am natürlichen Standort während der sommerlichen Trockenperiode. Flora (Jena) 159: 38–62Google Scholar
  22. Lichtlé C, Spilar A, Dural JC (1992) Immunogold localization of light-harvesting and photosystem I complexes in the thylakoids of Fucus serratus (Phaeophyceae). Protoplasma 166: 99–106CrossRefGoogle Scholar
  23. Littler MM, Littler DS, Blair SM, Norris JN (1985) Deepest known plant life discovered on an unchanted seamount. Science 227: 57–59PubMedCrossRefGoogle Scholar
  24. Littler MM, Littler DS, Blair SM, Norris JN (1986) Deep water plant communities from an uncharted seamount off San Salvador Island, Bahamas: distribution, abundance and primary productivity. Deep-Sea Res 33: 881–892CrossRefGoogle Scholar
  25. Luther H (1947) Vorschlag zu einer ökologischen Grundeinteilung der Hydrophyten. Acta Bot Fenn 44: 1–15Google Scholar
  26. Maberly SC (1985a) Photosynthesis by Fontinalis antipyretica. I. Interaction between photon irradiance, concentration of carbon dioxide and temperature. New Phytol 100: 127–140CrossRefGoogle Scholar
  27. Maberly SC (1985b) Photosynthesis by Fontinalis antipyretica. II. Assessment of environmental factors limiting photosynthesis and production. New Phytol 100: 141–155CrossRefGoogle Scholar
  28. Maberly SC, Madsen TV (1990) Contribution of air and water in the carbon balance of Fucus spiralis. Mar Ecol Prog Ser 62: 175–183CrossRefGoogle Scholar
  29. Madsen TV, Maberly SC (1990) A comparison of air and water as environments for photosynthesis by the intertidal alga Fucus vesiculosus (Phaeophyta). J Phycol 26: 24–30CrossRefGoogle Scholar
  30. Mitchell JG (1991) The influence of cell size on marine bacterial mobility and energetics. Microb Ecol 22: 227–238CrossRefGoogle Scholar
  31. Newman JR (1991) Carbon assimilation by freshwater aquatic macrophytes. PhD Thesis, University of DundeeGoogle Scholar
  32. Palenik B, Haselkorn R (1992) Multiple evolutionary origins of prochlorophytes, the chlorophyll b-containing prokaryotes. Nature 355: 265–267PubMedCrossRefGoogle Scholar
  33. Pienaar RN (1980) Chrysophytes. In: Cox ER (ed) Phytoflagellates. Elsevier, New York, pp 213–242Google Scholar
  34. Pyszniak AM, Gibbs SP (1992) Immunocytochemical localization of photosystem I and the fucoxanthin-chorophyll a/c light-harvesting complex in the diatom Phaeodactylum tricornutum. Protoplasma 166: 208–217CrossRefGoogle Scholar
  35. Ramus J (1978) Seaweed anatomy and photosynthetic performance: the ecological significance of light guides, heterogenous absorption and multiple scatter. J Phycol 14: 352–362CrossRefGoogle Scholar
  36. Raunkaier C (1934) The life forms of plants and statistical plant geography. Clarendon Press, OxfordGoogle Scholar
  37. Raven JA (1981) Nutritional strategies of submerged benthic plants: the acquisition of C, N and P by rhizophytes and haptophytes. New Phytol 88: 1–30CrossRefGoogle Scholar
  38. Raven JA (1984a) Energetics and transport in aquatic plants. Liss, New YorkGoogle Scholar
  39. Raven JA (1984b) A cost-benefit analysis of photon absorption by photosynthetic unicells. New Phytol 98: 593–625CrossRefGoogle Scholar
  40. 1.
    Raven JA (1986a) Physiological consequences of extremely small size for autotrophic organisms in the sea. In: Platt T, Li WKW (eds) Photosynthetic picoplankton. Can Bull Fish Aquat Sci 214: 1–70Google Scholar
  41. Raven JA (1986b) Evolution of life forms. In: Givnish TV (ed) On the economy of plant form and function. Cambridge University Press, Cambridge, pp 421–492Google Scholar
  42. Raven JA (1987) Biochemistry, biophysics and physiology of chlorophyll b-containing algae: implications for taxonomy and phylogeny. Prog Phycol Res 5: 1–122Google Scholar
  43. Raven JA (1989) Fight or flight: the economics of repair and avoidance of photoinhibition of photosynthesis. Funct Ecol 3: 5–19CrossRefGoogle Scholar
  44. Raven JA (1991a) Responses of aquatic photosynthetic organisms to increased solar UV-B. J Photochem Photobiol B: Biology 9: 239–244CrossRefGoogle Scholar
  45. Raven JA (1991b) Implications of inorganic C utilization: ecology, evolution and geochemistry. Can J Bot 68: 905–924Google Scholar
  46. Raven JA (1991c) Physiology of inorganic C acquisition and implications for resource use efficiency by marine phytoplankton: relation to increased CO2 and temperature. Plant Cell Environ 14: 779–794CrossRefGoogle Scholar
  47. Raven JA (1992a) Energy and nutrient acquisition by autotrophic symbioses. Symbiosis 14: 33–60Google Scholar
  48. Raven JA (1992b) How benthic macroalgae cope with flowing freshwater: resource acquisition and retention. J Phycol 28: 133–146CrossRefGoogle Scholar
  49. Raven JA (1993a) Comparative aspects of chrysophyte nutrition with emphasis on carbon, phosphorus and nitrogen. In: Sandgren CD, Smol JP, Kristiansen J (eds) Chrysophyte algae: ecology, phylogeny and development. Cambridge University Press, Cambridge (in press)Google Scholar
  50. Raven JA (1993b) Carbon: a phycocentric view. In: Evans GT, Fasham MJR (eds) Towards & Model of Ocean Biogeochemical Cycles. Springer, Berlin Heidelberg New York, pp 123–152Google Scholar
  51. Raven JA, Johnston AM (1991a) Photosynthetic inorganic carbon assimilation by Prasiola stipitata (Prasiolales, Chlorophyta) under emersed and submersed conditions: relationship to the taxonomy of Prasiola. Br Phycol J 26: 247–247CrossRefGoogle Scholar
  52. Raven JA, Johnston AM (1991b) Carbon assimilation mechanisms. Implications for intensive culture of seaweeds. In: Garcia-Reina G, Pedersen M (eds) Seaweed cellular biotechnology, physiology and intensive cultivation. Las Palmas de Gran Canada, Espana, pp 151–166Google Scholar
  53. Raven JA, Johnston AM (1991c) Mechanisms of inorganic carbon acquisition in marine phytoplankton and their implications for the use of other resources. Limnol Oceanogr 36: 1701–1714CrossRefGoogle Scholar
  54. Raven JA, Richardson K (1984) Dinophyte flagella: a cost-benefit analysis. New Phytol 98: 259–276CrossRefGoogle Scholar
  55. Raven JA, Richardson K (1986) Marine environments. In: Baker NR, Long SP (eds) Photosynthesis in contrasting envioronments. Elsevier, Amsterdam, pp 337–398Google Scholar
  56. Raven JA, Samuelsson G (1986) Repair of photoinhibity damage in Anacystis nidulans 625 (Synechococcus 6301): relation to catalytic capacity for, and energy supply to, protein synthesis, and implications for μmax and the efficiency of light-limited growth. New Phytol 103: 625–643CrossRefGoogle Scholar
  57. Raven JA, Smith FA, Smith SE (1980) Ions and osmoregulation. In: Rains DW, Valentine RC, Hollaender A (eds) Genetic engineering of osmoregulation: impact on plant productivity for food, chemicals and energy. Plenum Press, New York, pp 101–118Google Scholar
  58. Raven JA, Handley LL, MacFarlane JJ, McInroy S, McKenzie L, Richards JH, Samuelsson G (1988) The role of root CO2 uptake and CAM in inorganic C acquisition by plants of the isoetid life form. A review, with new data on Eriocaulon decangulare. New Phytol 108: 125–148CrossRefGoogle Scholar
  59. Raven JA, Johnston AM, Surif MB (1989) The photosynthetic apparatus as a phyletic character. In: Green JC, Leadbeater BSC, Diver WL (eds) The chromophyte algae. Problems and perspectives. Oxford Science Publications, Oxford, pp 63–84Google Scholar
  60. Raven JA, Johnston AM, MacFarlane JJ (1990a) Carbon metabolism. In: Sheath RG, Cole KM (eds) The biology of the red algae. Cambridge University Press, New York, pp 171–202Google Scholar
  61. Raven JA, Johnston AM, Handley LL, McInroy SG (1990b) Transport and assimilation of inorganic carbon by Lichina pygmaea under emersed and submersed conditions. New Phytol 114: 407–417CrossRefGoogle Scholar
  62. Reiskind JB, Bowes G (1991) The role of phosphoenolpyruvate carboxykinase in a marine macroalga with C4-like photosynthetic characteristics. Proc Natl Acad Sci USA 88: 2993–2887CrossRefGoogle Scholar
  63. Rowan KS (1989) Photosynthetic pigments of algae. Cambridge University Press, CambridgeGoogle Scholar
  64. Rugg DA, Norton TA (1987) Pelvetia canaliculata, a high-shore seaweed that shuns the sea. In: Crawford RMM (ed) Plant life in aquatic and amphibious habitats. Blackwell, Oxford, pp 347–358Google Scholar
  65. Sand-Jensen K, Pedersen MF, Nielsen SL (1992) Photosynthetic use of inorganic carbon among primary and secondary water plants in streams. Freshwater Biol 27: 283–293CrossRefGoogle Scholar
  66. Stebbins GL, Hill GJC (1980) Did multicellular plants invade the land? Am Nat 115: 342–353CrossRefGoogle Scholar
  67. Surif MB, Raven JA (1990) Photosynthetic gas exchange under emersed conditions in eulittoral and normally submersed members of the Fucales and the Laminariales: interpretation in relation to C isotope ratio and N and water use efficiency. Oecologia 82: 68–80CrossRefGoogle Scholar
  68. Thomas TE, Turpin DH, Harrison PJ (1987) Desiccation enhanced nitrogen uptake rates in intertidal seaweeds. Mar Biol 94: 293–298CrossRefGoogle Scholar
  69. 1.
    Thomsen HA (1986) A survey of the smallest eucaryotic organisms of the marine phytoplankton. In: Platt TL, Li WKW (eds) Photosynthetic picoplankton. Can Bull Fish Aquat Sci 214: 121–158Google Scholar
  70. Urbach E, Robertson DL, Chisholm SW (1992) Multiple evolutionary origins of prochlorophytes within the cyanobacterial radiation. Nature 355: 267–270PubMedCrossRefGoogle Scholar
  71. Wilhelm C, Wiedemann I (1991) Evidence of protein-bound chlorophyll c3 in a light-harvesting protein isolated from the flagellate alga Prymnesium parvum (Prymnesiophyceae). Photosynthetica 25: 249–255Google Scholar
  72. Willemoes M, Monas E (1991) Relationship between growth irradiance and xanthophyll cycle pool in the diatom Nitzschia palea. Physiol Plant 83: 459–456CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • J. A. Raven

There are no affiliations available

Personalised recommendations