Skip to main content

Photosynthesis as a Tool for Indicating Temperature Stress Events

  • Chapter
Ecophysiology of Photosynthesis

Part of the book series: Springer Study Edition ((SSE,volume 100))

Abstract

Photosynthesis is a major topic in the biophysical and biochemical approaches to plant physiology, as well as in molecular biology. Photosynthesis forms the central theme in the ecophysiology of carbon assimilation and carbon budgets of plants and plant stands, and is the basis upon which heuristic and prognostic production models are constructed. Additionally, photosynthesis provides an indicator for the quantitative characterization of states of stress and of functional limitations imposed by environmental factors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexandrov VY (1964) Cytophysiological and cytoecological investigations of resistance of plant cells toward the action of high and low temperature. Q Rev Bio 39: 35–77

    Article  Google Scholar 

  2. Alexandrov VY (1977) Cells, molecules and temperature. Conformational flexibility of macromolecules and ecological adaptation. Springer, Berlin Heidelberg New York

    Google Scholar 

  3. Bauer H (1972) CO2-Gaswechsel nach Hitzestress bei Abies alba Mill, und Acer pseudo-platanus L. Photosynthetica 6: 424–434

    Google Scholar 

  4. Bauer H, Wierer R, Hatheway WH, Larcher W (1985) Photosynthesis of Coffea arabica after chilling. Physiol Plant 64: 449–454

    Article  CAS  Google Scholar 

  5. Beck E, Scheibe R, Hansen J (1987) Mechanisms of freezing avoidance and freezing tolerance in tropical alpine plants. In: Li PH (ed) Plant cold hardiness. Liss, New York, pp 155–168

    Google Scholar 

  6. Berry J, Björkman O (1980) Photosynthetic response and adaption to temperature in higher plants. Annu Rev Plant Physiol 31: 491–543

    Article  Google Scholar 

  7. Berry JA, Raison JK (1981) Responses of macrophytes to temperature. In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds) Encyclopedia of plant physiology, vol 12A. Springer, Berlin Heidelberg New York, pp 277–338

    Google Scholar 

  8. Bilger HW, Schreiber U, Lange OL (1984) Determination of leaf heat resistance: comparative investigation of chlorophyll fluorescence changes and tissue necrosis methods. Oecologia 63: 256–262

    Article  Google Scholar 

  9. Bodner M, Beck E (1987) Effect of supercooling and freezing on photosynthesis in freezing tolerant leaves of Afroalpine “giant rosette” plants. Oecologia 72: 366–371

    Article  Google Scholar 

  10. Bodner M, Larcher W (1989) Chilling susceptibility of wild Saintpaulia species of different altitudinal origin. Angew Bot 63: 501–512

    Google Scholar 

  11. Burke JJ, Mahan JR, Hatfield JL (1988) Crop-specific thermal kinetics windows in relation to wheat and cotton biomass production. Agron J 80: 553–556

    Article  Google Scholar 

  12. Critchley Ch, Smillie RM, Patterson BD (1978) Effect of temperature on photoreductive activity of chloroplasts from passionfruit species of different chilling sensitivity. Aust J Plant Physiol 5: 443–448

    Article  CAS  Google Scholar 

  13. Demmig-Adams B, Adams III WW, Winter K, Meyer A, Schreiber U, Pereira JS, Krüger A, Czygan FC, Lange OL (1989) Photochemical efficiency of photosystem II, photon yield of O2 evolution, photosynthetic capacity, and carotenoid composition during the midday depression of net CO2 uptake in Arbutus unedo growing in Portugal. Planta 177: 377–387

    Article  CAS  Google Scholar 

  14. Earnshaw MJ, Carver KA, Gunn TC, Kerenga K, Harvey V, Griffiths H, Broadmeadow MSJ (1990) Photosynthetic pathway, chilling tolerance and cell sap osmotic potential values of grasses along an altitudinal gradient in Papua New Guinea. Oecologia 84: 280–288

    Google Scholar 

  15. Greaves JA, Wilson JM (1986) Assessment of the non-freezing cold sensitivity of wild and cultivated potato genotypes by chlorophyll fluorescence analysis. Potato Res 29: 509–520

    Article  Google Scholar 

  16. Greer DH, Hardacre AK (1989) Photoinhibition of photosynthesis and its recovery in two maize hybrids varying in low temperature tolerance. Aust J Plant Physiol 16: 189–198

    Article  Google Scholar 

  17. Havaux M (1987) Effects of chilling on the redox state of the primary electron acceptor QA of photosystem II in chilling-sensitive and resistant plant species. Plant Physiol Biochem 25: 735–743

    Google Scholar 

  18. Havaux M (1989) Fluorimetric determination of the genetic variability existing for chilling tolerance in sweet sorghum and Sudan grass. Plant Breed 102: 327–332

    Article  Google Scholar 

  19. Havaux M, Lannoye R (1984) Effects of chilling temperatures on prompt and delayed chlorophyll fluorescence in maize and barley leaves. Photosynthetica 18: 117–127

    CAS  Google Scholar 

  20. Havaux M, Lannoye R (1985) In vivo chlorophyll fluorescence and delayed light emission as rapid screening techniques for stress tolerance in crop plants. Z Pflanzenzücht 95: 1–13

    Google Scholar 

  21. Havaux M, Greppin H, Strasser RJ (1991) Functioning of photosystems I and II in pea leaves exposed to heat stress in the presence or absence of light. Planta 186: 88–98

    Article  CAS  Google Scholar 

  22. Heber U, Santarius KA (1973) Cell death by cold and heat, and resistance to extreme temperatures. Mechanisms of hardening and dehardening. In: Precht H, Christophersen J, Hensel H, Larcher W (eds) Temperature and life. Springer, Berlin Heidelberg New York, pp 232–292

    Google Scholar 

  23. Kamps TL, Isleib TG, Herner RC, Sink KC (1987) Evaluation of techniques to measure chilling injury in tomato. Hortic Sci 22: 1309–1312

    Google Scholar 

  24. Kappen L (1981) Ecological significance of resistance to high temperature. In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds) Encyclopedia of plant physiology, vol 12A. Springer, Berlin Heidelberg New York, pp 439–474

    Google Scholar 

  25. Kappen L (1989) Field measurements of carbon dioxide exchange of the Antarctic lichen Usnea sphacelata in the frozen state. Antarct Sci 1: 31–34

    Google Scholar 

  26. Kappen L, Friedmann EI (1983) Ecophysiology of lichens in the dry valleys of southern Victoria Land, Antarctica. II. CO2 gas exchange in cryptoendolithic lichens. Polar Biol 1: 227–232

    Article  Google Scholar 

  27. Kappen L, Redon J (1987) Photosynthesis and water relations of three maritime antarctic lichen species. Flora 179: 215–229

    Google Scholar 

  28. Kislyuk IM (1964) Issledovanie povrezhdayushchego deistviya okhlazhdeniya na kletki listev rastenii, chuvstvitelnykh k kholodu. Nauka, Moskau

    Google Scholar 

  29. Krause GH, Grafflage S, Rumich-Bayer S, Somersalo S (1988) Effects of freezing on plant mesophyll cells. In: Long SF, Woodward FI (eds) Plants and temperature. Comp Biol, Cambridge, pp 311–327

    Google Scholar 

  30. Lange OL (1965) Der CO2-Gaswechsel von Flechten bei tiefen Temperaturen. Planta 64: 1–19

    Article  CAS  Google Scholar 

  31. Lange OL (1969) Experimentell-ökologische Untersuchungen an Flechten der Negev-Wüste. I. CO2-Gaswechsel von Ramalina maciformis (Del.) Bory unter kontrollierten Bedingungen im Laboratorium. Flora 158 B: 324–359

    Google Scholar 

  32. Larcher W (1980) Klimastress im Gebirge — Adaptationstraining und Selektionsfilter für Pflanzen. Rheinisch-Westfälische Akad Wiss, Vortr N 291. Westdeutscher Vlg, Leverkusen, pp 49–88

    Google Scholar 

  33. Larcher W (1982) Typology of freezing phenomena among vascular plants and evolutionary trends in frost acclimation. In: Li PH, Sakai A (eds) Plant cold hardiness and freezing stress, vol 2. Academic Press, New York, pp 417–426

    Google Scholar 

  34. Larcher W, Bodner M (1987) Criteria for chilling stress in Saintpaulia ionantha. Angew Bot 61: 309–323

    Google Scholar 

  35. Larcher W, Cernusca A (1985) Mikrocomputergesteuerte mobile Anlage zum fluoro-metrischen Nachweis von Photosynthesestörungen. Sitzungsber österr Akad Wiss Math-Naturwiss Kl I 194: 45–64

    Google Scholar 

  36. Larcher W, Vareschi V (1988) Variation in morphology and functional traits of Dictyonema glabratum from contrasting habitats in the Venezuelan Andes. Lichenologist 20: 269–277

    Article  Google Scholar 

  37. Larcher W, Wagner J, Thammathaworn A (1990) Effects of superimposed temperature stress on in vivo chlorophyll fluorescence of Vigna unguiculata under saline stress. J Plant Physiol 136: 92–102

    CAS  Google Scholar 

  38. Larcher W, Wagner J, Neuner G, Mendez M, Jimenez MS, Morales D (1991a) Thermal limits of photosynthetic function and viability of leaves of Persea indica and Persea americana. Acta Oecol 12: 529–541

    Google Scholar 

  39. Larcher W, Meindl U, Raiser E, Ishikawa M (1991b) Persistent supercooling and silica deposition in cell walls of palm leaves. J Plant Physiol 139: 146–154

    CAS  Google Scholar 

  40. Levitt J (1980) Responses of plants to environmental stresses, vol I. Chilling, freezing, and high temperature stresses, 2nd edn. Academic Press, New York

    Google Scholar 

  41. Lichtenthaler HK (1988) In vivo chlorophyll fluorescence as a tool for stress detection in plants. In: Lichtenthaler HK (ed) Applications of chlorophyll fluorescence. Kluwer, Dordrecht, pp 129–142

    Google Scholar 

  42. Lichtenthaler HK, Buschmann C, Rinderle U, Schmuck G (1986) Application of fluorescence in ecophysiology. Radiat Environ Biophys 25: 297–308

    Article  PubMed  CAS  Google Scholar 

  43. Lyons JM (1973) Chilling injury in plants. Annu Rev Plant Physiol 24: 445–466

    Article  CAS  Google Scholar 

  44. MacRae EA, Hardacre AK, Ferguson IB (1986) Comparison of chlorophyll fluorescence with several other techniques used to assess chilling sensitivity in plants. Physiol Plant 67: 659–665

    Article  Google Scholar 

  45. Mäenpää P, Aro EM, Somersalo S, Tyystjärvi E (1988) Rearrangement of the chloroplast thylakoid at chilling temperature in the light. Plant Physiol 87: 762–766

    Article  PubMed  Google Scholar 

  46. McCain DC, Croxdale J, Markley JL (1989) Thermal damage to chloroplast envelope membranes. Plant Physiol 90: 606–609

    Article  PubMed  CAS  Google Scholar 

  47. Melcarek PK, Brown GN (1977) Effects of chill stress on prompt and delayed chlorophyll fluorescence from leaves. Plant Physiol 60: 822–825

    Article  PubMed  CAS  Google Scholar 

  48. Melcarek PK, Brown GN (1979) Chlorophyll fluorescence monitoring of freezing point exotherms in leaves. Cryobiology 16: 69–73

    Article  PubMed  CAS  Google Scholar 

  49. Nash TH, Kappen L, Lösch R, Larson DW, Matthes-Sears U (1987) Cold resistance of lichens with Trentepohlia- or Trebouxia photobionts from the North American West coast. Flora 179: 241–251

    Google Scholar 

  50. Neuner G, Larcher W (1990) Determination of differences in chilling susceptibility of two soybean varieties by means of in vivo chlorophyll fluorescence measurements. J Agron Crop Sci 164: 73–80

    Article  Google Scholar 

  51. Neuner G, Larcher W (1991) The effect of light, during and subsequent to chilling, on the photosynthetic activity of two soybean cultivars, measured by in vivo chlorophyll fluorescence. Photosynthetica 25: 257–266

    Google Scholar 

  52. Öquist G, Martin B (1986) Cold climates. In: Baker NR, Long SP (eds) Photosynthesis in contrasting environments. Elsevier, Amsterdam, pp 237–293

    Google Scholar 

  53. Pisek A, Kemnitzer R (1968) Der Einfluß von Frost auf die Photosynthese der Weißtanne (Abies alba Mill.). Flora 157 B: 314–326

    Google Scholar 

  54. Pisek A, Larcher W, Unterholzner R (1967) Kardinale Temperaturbereiche der Photosynthese und Grenztemperaturen des Lebens der Blätter verschiedener Spermatophyten. I. Temperaturminimum der Netto-Assimilation, Gefrier- und Frostschadensbereiche der Blätter. Flora 157 B: 239–264

    Google Scholar 

  55. Rütten D, Santarius KA (1992) Age-related differences in frost sensitivity of the photosynthetic apparatus of two Plagiomnium species. Planta 187: 224–229

    Article  Google Scholar 

  56. Sachs MM, Ho THD (1986) Alteration of gene expression during environmental stress in plants. Annu Rev Plant Physiol 37: 363–376

    Article  CAS  Google Scholar 

  57. Sakai A, Larcher W (1987) Frost survival of plants. Responses and adaptation to freezing stress. Springer, Berlin Heidelberg New York

    Google Scholar 

  58. Santarius KA, Weis E (1988) Heat stress and membranes. In: Harwood JL, Walton TJ (eds) Plant membranes — structure, assembly and function. Biochem Soc, London, pp 97–112

    Google Scholar 

  59. Santarius KA, Exner M, Thebud-Lassak R (1991) Effects of high temperature on the photosynthetic apparatus in isolated mesophyll protoplasts of Valerianella locusta (L.) Betcke. Photosynthetica 25: 17–26

    CAS  Google Scholar 

  60. Schreiber U, Berry JA (1977) Heat-induced changes of chlorophyll fluorescence in intact leaves correlated with damage of the photosynthetic apparatus. Planta 136: 233–238

    Article  CAS  Google Scholar 

  61. Schroeter B, Kappen L, Moldaenke C (1991) Continuous in situ recording of the photosynthetic activity of Antarctis lichens — established methods and a new approach. Lichenologist 23: 253–265

    Google Scholar 

  62. Seemann JR, Berry JA, Downton WJS (1984) Photosynthetic response and adaptation to high temperature in desert plants. A comparison of gas exchange and fluorescence methods for studies of thermal tolerance. Plant Physiol 75: 364–368

    Article  PubMed  CAS  Google Scholar 

  63. Senser M, Beck E (1977) On the mechanisms of frost injury and frost hardening of spruce chloroplasts. Planta 137: 195–201

    Article  CAS  Google Scholar 

  64. Shen JR, Terashima I, Katoh S (1990) Cause for dark, chilling-induced inactivation of photosynthetic oxygen-evolving system in cucumber leaves. Plant Physiol 93: 1354–1357

    Article  PubMed  CAS  Google Scholar 

  65. Smillie RM, Hetherington SE (1983) Stress tolerance and stress-induced injury in crop plants measured by chlorophyll fluorescence in vivo. Plant Physiol 72: 1043–1050

    Article  PubMed  CAS  Google Scholar 

  66. Smillie RM, Nott R (1979) Assay of chilling injury in wild and domestic tomatoes based on photosystem activity of the chilled leaves. Plant Physiol 63: 796–801

    Article  PubMed  CAS  Google Scholar 

  67. Smillie RM, Hetherington SE, He J, Nott R (1988) Photoinhibition at chilling temperatures. Aust J Plant Physiol 15: 207–222

    Article  Google Scholar 

  68. Steponkus PL, Webb MS (1992) Freeze-induced dehydration and membrane de-stabilization in plants. In: Somero GN, Osmond CB, Bolis CL (eds) Water and life. Springer, Berlin Heidelberg New York, pp 338–362

    Google Scholar 

  69. Terzaghi WB, Fork DC, Berry JA, Field CB (1989) Low and high temperature limits to PS II. A survey using trans-parinaric acid, delayed light emission, and F0 chlorophyll fluorescence. Plant Physiol 91: 1494–1500

    Article  PubMed  CAS  Google Scholar 

  70. Wise RR, Terashima I, Ort DR (1990) The effect of chilling in the light on photo-phosphorylation. Analysis of discrepancies between in vitro and in vivo results. Photo-synth Res 25: 137–139

    Article  CAS  Google Scholar 

  71. Yordanov IT, Goltsev V, Doltchinkova V, Kruleva L (1989) Effect of some polyamines on the functional activity of thylakoid membranes. Photosynthetica 23: 314–323

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Larcher, W. (1995). Photosynthesis as a Tool for Indicating Temperature Stress Events. In: Schulze, ED., Caldwell, M.M. (eds) Ecophysiology of Photosynthesis. Springer Study Edition, vol 100. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79354-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79354-7_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-58571-8

  • Online ISBN: 978-3-642-79354-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics