Skip to main content

As to the Mode of Action of the Guard Cells in Dry Air

  • Chapter

Part of the book series: Springer Study Edition ((SSE,volume 100))

Abstract

The first observation that stomata tend to close in dry air seems to have been made by one whose name is not usually found in reviews of stomatal physiology. Joseph Banks (1805) wrote that the pores in the stems of wheat, “which exist also on the leaves and glumes”, are shut in dry weather and open in wet. The context is an essay on the cause of mildew in wheat, in which Banks supposes that the infection takes place through the stomata. He presumed the pores are “a provision intended no doubt to compensate, in some measure, the want of locomotion in vegetables” and remarked that “A plant cannot when thirsty go to the brook and drink: but it can open innumerable orifices for the reception of every degree of moisture, which either falls in the shape of rain or dew, or is separated from the mass of water always held in solution in the atmosphere….”

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ball JT, Woodrow I, Berry JA (1987) A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions. In: Biggins J (ed) Progress in photosynthesis research, vol IV. Martinus Nijhoff, Dordrecht, pp 221–224

    Google Scholar 

  • Banks J (1805) A short account of the causes of the diseases in corn, called by farmers the blight, the mildew, and the rust. In: Curtis LW (ed) Practical observations on the British grasses, especially such as are best adapted to the laying down or improving meadows and pasture, likewise an enumeration of the British grasses, 6th edn, 1824. Sherwood, Jones and Co, London, pp 151–166

    Google Scholar 

  • Bates LM, Hall AE (1981) Stomatal closure with soil water depletion not associated with changes in bulk leaf water status. Oecologia 50: 62–65

    Article  Google Scholar 

  • Blackman PG, Davies WT (1985) Root to shoot communication in maize plants of the effects of soil drying. J Exp Bot 36: 39–48

    Article  Google Scholar 

  • Coster HGL, Steudle E, Zimmermann U (1970) Turgor pressure sensing in plant cell membranes. Plant Physiol 58: 636–643

    Article  Google Scholar 

  • Cowan IR (1972) Oscillations in stomatal conductance and plant functioning associated with stomatal conductance: observations and a model. Planta 106: 185–219

    Article  Google Scholar 

  • Cowan IR (1977) Stomatal behaviour and environment. Adv Bot Res 4: 117–228

    Article  Google Scholar 

  • Darwin F (1898) Observations on stomata. Philos Trans R Soc Ser B 190: 531–621

    Article  Google Scholar 

  • Edwards M, Meidner H (1978) Stomatal responses to humidity and the water potentials of epidermal and mesophyll tissue. J Exp Bot 29: 771–780

    Article  Google Scholar 

  • Fanjul L, Jones HG (1982) Rapid stomatal responses to humidity. Planta 154: 135–138

    Article  Google Scholar 

  • Farquhar GD (1978) Feedforward responses of stomata to humidity. Aust J Plant Physiol 5: 787–800

    Article  Google Scholar 

  • Fischer RA (1973) The relationship of stomatal aperture and guard-cell turgor pressure in Vicia faba. J Exp Bot 24: 387–399

    Article  CAS  Google Scholar 

  • Gollan T, Passioura JB, Munns R (1986) Soil water status affects the stomatal conductance of fully turgid wheat and sunflower leaves. Aust J Plant Physiol 13: 459–464

    Article  Google Scholar 

  • Gutknecht J (1968) Salt transport in Valonia: inhibition of potassium uptake by small hydrostatic pressures. Science 160: 68–70

    Article  PubMed  CAS  Google Scholar 

  • Hall AE, Schulze E-D, Lange OL (1976) Current perspectives of steady-state stomatal response to environment. In: Lange OL, Kappen L, Schulze ED (eds) Water and plant life. Ecological studies 19. Springer, Berlin Heidelberg New York, pp 169–185

    Google Scholar 

  • Kappen L, Haeger S (1991) Stomatal responses of Tradescantia albiflora to changing air humidity in light and in darkness. J Exp Bot 241: 979–986

    Article  Google Scholar 

  • Kappen L, Andresen G, Lösch R (1987) In situ observations of stomatal movements. J Exp Bot 38: 126–141

    Article  Google Scholar 

  • Lange OL, Lösch R, Schulze E-D, Kappen L (1971) Responses of stomata to changes in humidity. Planta 100: 76–86

    Article  Google Scholar 

  • Lange OL, Schulze E-D, Kappen L, Buschbom U, Evenari M (1975) Photosynthesis of desert plants as influenced by internal and external factors. In: Gates DM, Schmere RB (eds) Perspectives of biophysical ecology. Springer, Berlin Heidelbery New York, pp 121–143

    Google Scholar 

  • Leitgeb H (1886) Beiträge zur Physiologie der Spaltöffnungsapparate. Mittheilungen aus dem Botanischen Institute zu Graz Bd I

    Google Scholar 

  • Little CHA, Eidt DC (1968) Effect of abscisic acid on budbreak and transpiration in woody species. Nature 220: 498–499

    Article  CAS  Google Scholar 

  • Lösch R, Schenk B (1978) Humidity responses of stomata and the potassium content of guard cells. J Exp Bot 29: 781–787

    Article  Google Scholar 

  • MacRobbie EAC (1987) Ionic relations of guard cells. In: Zeiger H, Farquhar GD, Cowan IR (eds) Stomatal function. Stanford University Press, Stanford, pp 125–162

    Google Scholar 

  • Maercker U (1965a) Mikroautoradiographischer Nachweis tritiumhaltigen Transpiration wassers. Naturwissenschaften 52: 15

    Article  CAS  Google Scholar 

  • Maercker U (1965b) Zur Kenntnis der Transpiration der Schließzellen. Protoplasma 60: 61–78

    Article  CAS  Google Scholar 

  • Maier-Maercker U (1979) “Peristomatal transpiration” and stomatal movement: a controversial view I. Additional proof of peristomatal transpiration by hydrophotography and a comprehensive discussion in the light of recent results. Z Pflanzenphysiol 91: 25–43

    Google Scholar 

  • Mark R (1982) Experiments in Gothic architecture. MIT Press, Cambridge, Mass

    Google Scholar 

  • Meidner H (1976) Vapour loss through stomatal pores with the mesophyll tissue excluded. J Exp Bot 27: 172–174

    Article  Google Scholar 

  • Meidner H (1982) Guard cell pressures and wall properties during stomatal opening. J Exp Bot 33: 355–359

    Article  Google Scholar 

  • Meidner H (1986) Cuticular conductance and the humidity response of stomata. J Exp Bot 37: 517–525

    Article  Google Scholar 

  • Meidner H, Edwards M (1975) Direct measurements of turgor pressure potentials of guard cells, I. J Exp Bot 26: 319–330

    Article  Google Scholar 

  • Mittleheuser CJ, van Steveninck RFM (1969) Stomatal closure and inhibition of transpiration induced by (RS)-abscisic acid. Nature 221: 281–282

    Article  Google Scholar 

  • Mohl Hv (1856) Welche Ursachen bewirken die Erweiterung und Verengung der Spaltöffnungen? Bot Zeit 14: 697–704

    Google Scholar 

  • Mott KA, Parkhurst DF (1991) Stomatal responses to humidity in air and helox. Plant Cell Environ 14: 509–515

    Article  Google Scholar 

  • Nonami H, Schulze E-D, Ziegler H (1990) Mechanisms of stomatal movement in response to air humidity, irradiance and xylem water potential. Planta 183: 57–64

    Google Scholar 

  • Raschke K (1970) Stomatal responses to pressure changes and interruptions in the water supply of detached leaves of Zea mays L. Plant Physiol 45: 415–423

    Article  PubMed  CAS  Google Scholar 

  • Raschke K (1979) Movements of stomata. In: Haupt W, Feinleib ME (eds) Physiology of movements. Encyclopedia of plant physiology 7. Berlin Springer Berlin Hedelberg New York, pp 383–441

    Google Scholar 

  • Raschke K (1987) Action of abscisic acid on guard cells. In: Zeiger E, Farquhar GD, Cowan IR (eds) Stomatal function. Stanford University Press, Stanford, pp 253–279

    Google Scholar 

  • Schimper AFW (1890) Pflanzen-geographlz anf physiologischer fremdlap. Gustav Fischer Unrlc, Jena, 875 pp.

    Google Scholar 

  • Schönherr J (1976) Water permeability of isolated cuticular membranes: the effect of cuticular waxes on diffusion of water. Planta 131: 159–164

    Article  Google Scholar 

  • Schulze E-D, Hall AE (1982) Stomatal responses, water loss and CO2 assimilation rates of plants in contrasting environments. In: Lange OL, Nobel PS, Osmonol CB, Ziegler H (eds) Physiological plant ecology 2. Encyclopedia of plant physiology 12B. Springer, Berlin Heidelberg New York, pp 181–230

    Chapter  Google Scholar 

  • Schulze E-D, Lange OL, Buschbom U, Kappen L, Evenari M (1972) Stomatal responses to changes in humidity in plants growing in the desert. Planta 108: 259–270

    Article  Google Scholar 

  • Schwendener S (1881) über Bau und Mechanik der Spaltöffnungen. Monatsber Kgl Acad Wiss Berl 46: 833–867

    Google Scholar 

  • Seybold A (1962) Ergebnisse und Probleme pflanzlicher Transpirationsanylesen. Jahresh Heidelb Akad Wiss 1961/62: 5–8

    Google Scholar 

  • Sharpe PJH, Wu H, Spence RD (1987) Stomatal mechanics In: Zeiger E, Farquhar GD, Cowan IR (eds) Stomatal function. Stanford University Press, Stanford, pp 91–114

    Google Scholar 

  • Stahl E (1894) Einige Versuche über Transpiration und Assimilation. Bot Zeit 52: 117–145

    Google Scholar 

  • Ståffelt MG (1927) Die photischen Reaktionen im Spaltöffnungsmechanismus. Flora NF 21: 236–272

    Google Scholar 

  • Ståffelt MG (1929) Die Abhängigkeit der Spaltöffnungsreaktionen von der Wasserbilanz. Planta 8: 287–340

    Article  Google Scholar 

  • Staffelt MG (1955) The stomata as a hydrophotic regulator of the water deficit of the plant. Physiolgial Plant 8: 572–593

    Article  Google Scholar 

  • Turner NC, Schulze E-D, Gollan T (1985) The responses of stomata and leaf gas exchange to vapour pressure deficits and soil water content. II. In the mesophytic herbaceous species Helianthus annuus. Oecologia 65: 348–355

    Article  Google Scholar 

  • Wright STC, Hiron RWP (1969) (+)-abscisic acid, the growth inhibitor induced in detached wheat leaves by a period of wilting. Nature 224: 719–720

    Article  CAS  Google Scholar 

  • Ziegenspeck H (1938) Die Micellierung der Turgeszenzmechanismen. I. Die Spaltöffnungen (mit phylogenetischen Ausblicken). Bot Arch 39: 268–309

    Google Scholar 

  • Ziegenspeck H (1955) Das Vorkommen von Fila in radialer Anordnung in den Schlies-szellen. Protoplasma 44: 385–388

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cowan, I.R. (1995). As to the Mode of Action of the Guard Cells in Dry Air. In: Schulze, ED., Caldwell, M.M. (eds) Ecophysiology of Photosynthesis. Springer Study Edition, vol 100. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79354-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79354-7_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-58571-8

  • Online ISBN: 978-3-642-79354-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics