Skip to main content

The Role of Nitric Oxide in Vascular Haemostasis and Thrombosis: Implications for Septicaemia and Cell Damage

  • Conference paper
Book cover Shock, Sepsis, and Organ Failure — Nitric Oxide
  • 41 Accesses

Abstract

Bacterial endotoxin (lipopolysaccharide, LPS) is the cell wall component of gram-negative bacteria responsible for initiation of fever, cardiovascular shock and severe disturbances in haemostatic-thrombotic balance-disseminated intravascular coagulation (DIC). Interactions between LPS and plasma, circulating blood cells and endothelium are of great interest since many deleterious effects of LPS during septicaemia are the result of the activation of a haemostatic-thrombotic system brought about by these interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alheid U, Reichwehr I, Forstermann U (1989) Human endothelial cells inhibit platelet aggregation by separately stimulating platelet cyclic AMP and cyclic GMP. Eur J Pharmacol 164: 103–110

    Article  PubMed  CAS  Google Scholar 

  • Amado JA, Salas E, Botana MA, Poveda J J, Berrazueta JR (1993) Low levels of intraplatelet cGMP in IDDM. Diabetes Care 16: 809–811

    Article  PubMed  CAS  Google Scholar 

  • Aono J, Sugawa M, Koide T, Takato M (1991) The role of cGMP in the anti-aggregating properties of BY1949, a novel dibenzoxazepine derivative. Eur J Pharmacol 195: 225–231

    Article  PubMed  CAS  Google Scholar 

  • AzumaH, IshikawaM, SekizakiS (1986) Endothelium-dependent inhibition of platelet aggregation. Br J Pharmacol 88: 411–415

    Google Scholar 

  • Barrett ML, Willis AL, Vane JR (1989) Inhibition of platelet-derived mitogen release by nitric oxide ( EDRF ). Agents Actions 27: 488–491

    Google Scholar 

  • Beckman JS, Beckman TW, Chen J, Marshall PA, Freeman BA (1990) Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci USA 87: 1620–1624

    Article  PubMed  CAS  Google Scholar 

  • Berkels R, Klaus W, Rosen R (1993) Nifedipine induced inhibition of platelet aggregation–a nitric oxide mediated process. Endothelium 1: S69

    Article  Google Scholar 

  • Bhardwaj R, Page CP, May GR, Moore PK (1988) Endothelium-derived relaxing factor inhibits platelet aggregation in human whole blood in vitro and in the rat in vivo. Eur J Pharmacol 157: 83–91

    Article  PubMed  CAS  Google Scholar 

  • BredtDS, Hwang PM, Glatt CE, Lowenstein C, Reed RR, Snyder SH (1991) Cloned and expressed nitric oxide synthase structurally resembles cytochrome P-450 reductase. Nature 351: 714–718

    Article  Google Scholar 

  • Broekman MJ, Eiroa AM, Marcus AJ (1991) Inhibition of human platelet reactivity by endothelium-derived relaxing factor from human umbilical vein endothelial cells in suspension: blockade of aggregation and secretion by an aspirin-insensitive mechanism. Blood 78: 1033–1040

    PubMed  CAS  Google Scholar 

  • Brune B, Volker U (1991) Different calcium pools in human platelets and their role in throm-boxane A2 formation. J Biol Chem 266: 19232–19237

    PubMed  CAS  Google Scholar 

  • BultH, Fret HRL, van den Bossche RM, Herman AG (1988) Platelet inhibition by endothelium-derived relaxing factor from the rabbit perfused aorta. Br J Pharmacol 95: 1308–1314

    Google Scholar 

  • Bult H, Fret HRL, Jordaens FH, Herman AG (1991) Dipyridamole potentiates the antiaggre-gating and vasodilator activity of nitric oxide. Eur J Pharmacol 199: 1–8

    Article  PubMed  CAS  Google Scholar 

  • Busse R, Luckhoff A, Bassenge E (1987) Endothelium-derived relaxing factor inhibits platelet activation. Naunyn Schmiedebergs Arch Pharmacol 336: 566–571

    Article  PubMed  CAS  Google Scholar 

  • Cadwgan TM, Benjamin N (1993) Evidence for altered platelet nitric oxide synthesis in essential hypertension. J Hypertens 11: 417–420

    Article  PubMed  CAS  Google Scholar 

  • Calver A, Collier J, Moncada S, Vallance P (1992a) Effect of local infusion of NG-monomethyl-L-arginine in patients with hypertension. The nitric oxide dilator mechanism appears abnormal. J Hypertens 10: 1025–1031

    Google Scholar 

  • Calver A, Collier J, Vallance P (1992b) Inhibition and stimulation of nitric oxide synthesis in the human forearm arterial bed of patients with insulin-dependent diabetes. J Clin Invest 90: 2548–2554

    Article  PubMed  CAS  Google Scholar 

  • Chester AH, O’Neil GS, Moncada S, Tadjkarimi S, Yacoub M (1990) Low basal and stimulated release of nitric oxide in atherosclerotic epicardial coronary arteries. Lancet 336: 897–900

    Article  PubMed  CAS  Google Scholar 

  • Cooke JP, Tsao P (1992) Cellular mechanisms of atherogenesis and the effects of nitric oxide. Curr Opin Cardiol 7: 799–804

    Article  Google Scholar 

  • Cooke JP, Rossitch E Jr, Andon NA, Loscalzo J, Dzau VJ (1991) Flow activates an endothelial potassium channel to release an endogenous nitrovasodilator. J Clin Invest 88: 1663–1671

    Article  PubMed  CAS  Google Scholar 

  • Corn M (1966) Effect of thrombin, ADP, connective tissue and endotoxin on platelet glycolysis. Nature 212: 508

    Article  PubMed  CAS  Google Scholar 

  • Corrigan JJ Jr, Ray W, May N (1968) Changes in the blood coagulation system associated with septicemia. N Engl J Med 279: 851–856

    Article  PubMed  Google Scholar 

  • Craeger MA, Gallagher SJ, Girerd XJ, Coleman SM, Dzau VJ, Cooke JP (1991) L-Arginine improves endothelium-dependent vasodilatation in hypercholesterolemic humans. J Clin Invest 90: 1248–1253

    Article  Google Scholar 

  • Craven PA, DeRubertis FR (1978) Restoration of the responsiveness of purified guanylate cyclase to nitrosoguanidine, nitric oxide, and related activators by heme and hemoproteins. Evidence for involvement of the paramagnetic nitrosyl-heme complex in enzyme activation. J Biol Chem 253: 8433–8443

    Google Scholar 

  • De Belder A, MacAllister RA, Radomski MW, Moncada S, Vallance P (1994) Effects of S- nitrosoglutathione in the human forearm circulation: evidence for selective inhibition of platelet activation. Cardiovasc Res 28: 691–694

    Article  PubMed  Google Scholar 

  • De Graaf JC, Banga JD, Moncada S, Palmer RMJ, de Groot PG, Sixma JJ (1992) Nitric oxide functions as an inhibitor of platelet adhesion under flow conditions. Circulation 85: 2284–2290

    Google Scholar 

  • Des Pres RM, Horowitz HI, Hook EW (1967) Effects of bacterial endotoxin on rabbit platelets. I. Platelet aggregation and release of platelet factors in vitro. J Exp Med 114: 857–873

    Google Scholar 

  • Drexler H, Zeiher AM, Meinzer K, Just H (1991) Correction of endothelial dysfunction in coronary microcirculation of hypercholesterolaemic patients by L-arginine. Lancet 338: 1546–1550

    Article  PubMed  CAS  Google Scholar 

  • Feelisch M, Noack EA (1987) Correlation between nitric oxide formation during degradation of organic nitrates and activation of guanylate cyclase. Eur J Pharmacol 139: 19–30

    Article  PubMed  CAS  Google Scholar 

  • Furchgott RF, Zawadzki JV (1980) The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288: 373–376

    Article  PubMed  CAS  Google Scholar 

  • Furlong B, Henderson AH, Lewis MJ, Smith JA (1987) Endothelium-derived relaxing factor inhibits in vitro platelet aggregation. Br J Pharmacol 90: 687–692

    PubMed  CAS  Google Scholar 

  • Gebalska J (1990) Platelet adhesion and aggregation in relation to clinical course of acute myocardial infarction. MD thesis, Warsaw (in Polish)

    Google Scholar 

  • Geiger J, Nolte C, Butt E, Sage SO, Walter U (1992) Role of cGMP and cGMP-dependent protein kinase in nitrovasodilator inhibition of agonist-evoked calcium elevation in human platelets. Proc Natl Acad Sci USA 89: 1031–1035

    Article  PubMed  CAS  Google Scholar 

  • Gerzer R, Karrenbrock B, Siess W, Heim JM (1988) Direct comparison of the effects of nitroprusside, SIN 1, and various nitrates on platelet aggregation and soluble guanylate cyclase activity. Thromb Res 52: 11–21

    Article  PubMed  CAS  Google Scholar 

  • Goldberg ND, Haddox MK, Nicol SE, Glass DB, Sanford CH, Kuehl FA Jr, Estensen R (1975) In: Drummond GI, Greengard P, Robinson GA (eds) Advances in cyclic nucleotide research, vol 5. Raven, New York

    Google Scholar 

  • Golino P, Capelli-Bigazzi M, Ambrosio G, Ragni M, Russolillo E, Condorelli M, Chiariello M (1992) Endothelium-derived relaxing factor modulates platelet aggregation in an in vivo model of recurrent platelet activation. Circ Res 71: 1447–1456

    PubMed  CAS  Google Scholar 

  • Gryglewski RJ, Palmer RMJ, Moncada S (1986) Superoxide anion is involved in the breakdown of endothelium-derived vascular relaxing factor. Nature 320: 454–456

    Article  PubMed  CAS  Google Scholar 

  • Hawiger J, Hawiger A, Steckley S, Timmons S, Cheng C (1977) Membrane changes in human platelets induced by lipopolysaccharide endotoxin. Br J Haematol 35: 285–299

    Article  PubMed  CAS  Google Scholar 

  • Hawkins DJ, Meyrik BO, Murray JJ (1988) Activation of guanylate cyclase and inhibition of platelet aggregation by endothelium-derived relaxing factor released from cultured cells. Biochem Biophys Acta 969: 289–296

    Article  PubMed  CAS  Google Scholar 

  • Herbaczynska-Cedro K, Lembowicz K, Pytel B (1991) NG-Monomethyl-L-arginine increases platelet deposition on damaged endothelium in vivo. A scanning electron microscopy study. Thromb Res 64: 1–9

    Google Scholar 

  • Hibbs JB Jr, Taintor RR, Vavrin Z, Granger DL, Drapier JC, Amber IJ, Lancaster JR Jr (1990) In: Moncada S, Higgs EA (eds) Nitric oxide from L-arginine: a bioregulatory system. Elsevier, Amsterdam

    Google Scholar 

  • Hogan JC, Lewis MJ, Henderson AH (1988) In vivo EDRF activity influences platelet function. Br J Pharmacol 94: 1020–1022

    PubMed  CAS  Google Scholar 

  • Houston DS, Robinson P, Gerrard JM (1990) Inhibition of intravascular platelet aggregation by endothelium-derived relaxing factor: reversal by red blood cells. Blood 76: 953–958

    PubMed  CAS  Google Scholar 

  • Humphries RG, Tomlinson W, O’Connor SE, Leff P (1990) Inhibition of collagen and ADP- induced platelet aggregation by substance P in vivo: involvement of endothelium-derived relaxing factor. J Cardiovasc Pharmacol 16: 292–297.

    Article  PubMed  CAS  Google Scholar 

  • Hunt NCA, Goldin RD (1992) Nitric oxide production by monocytes in alcoholic liver disease. J Hepatol 14: 146–150

    Article  PubMed  CAS  Google Scholar 

  • Ialenti A, Moneada S, Di Rosa M (1993) Modulation of adjuvant arthritis by endogenous nitric oxide. Br J Pharmacol 110: 701–706

    PubMed  CAS  Google Scholar 

  • Ischiropoulos H, Zhu L, Beckman JS (1992) Peroxynitrite release from macrophage-derived nitric oxide. Arch Biochem Biophys 298: 446–451

    Article  PubMed  CAS  Google Scholar 

  • Ivanova K, Schaefer M, Drummer C, Gerzer R (1993) Effects of nitric oxide-containing compounds on increases in cytosolic ionized calcium and on aggregation of human platelets. Eur J Pharmacol 244: 37–47

    Article  PubMed  CAS  Google Scholar 

  • Kilbourn RG, Gross SS, Adams J, Jubran A, Griffith OW, Levi R, Lodato RF (1990) NG-Methyl-L-arginine inhibits tumor necrosis factor-induced hypotension: implications for the involvement of nitric oxide. Proc Natl Acad Sci USA 87: 3629–3632

    Article  PubMed  CAS  Google Scholar 

  • Kubes P, Suzuki M, Granger DN (1991) Nitric oxide: an endogenous modulator of leukocyte adhesion. Proc Natl Acad Sci USA 88: 4651–4655

    Article  PubMed  CAS  Google Scholar 

  • Kurose I, Kubes P, Wolf R, Anderson DC, Paulson J, Miyasaka M, Granger DN (1993) Inhibition of nitric oxide production. Mechanisms of vascular albumin leakage. Circ Res 73: 164–171

    Google Scholar 

  • Langford EJ, Brown AS, Wainwright RJ, de Belder AJ, Thomas MR, Smith REA, Radomski MW, Martin JF, Moneada S (1994) Inhibition of platelet activity by S-nitrosoglutathione during coronary angioplasty. Lancet 344: 1458–1460

    CAS  Google Scholar 

  • Lelchuk R, Radomski MW, Martin JF, Moneada S (1992) Constitutive and inducible nitric oxide synthases in human megakaryoblastic cells. J Pharmacol Exp Ther 262: 1220–1224

    PubMed  CAS  Google Scholar 

  • Lyons CR, Orloff GJ, Cunningham JM (1992) Molecular cloning and functional expression of an inducible nitric oxide synthase from a murine macrophage cell line. J Biol Chem 267: 6470–6474

    Google Scholar 

  • Macdonald PS, Read MA, Dusting GJ (1988) Synergistic inhibition of platelet aggregation by endothelium-derived relaxing factor and prostacyclin. Thromb Res 49: 437–449

    Article  PubMed  CAS  Google Scholar 

  • Malinski T, Radomski MW, Taha Z, Moneada S (1993) Direct electrochemical measurement of nitric oxide released from human platelets. Biochem Biophys Res Commun 194: 960–965

    Article  PubMed  CAS  Google Scholar 

  • Mantovani A, Dejana E (1989) Cytokines as communication signals between leukocytes and endothelial cells. Immunol Today 10: 370–375

    Article  PubMed  CAS  Google Scholar 

  • Marcus AJ, Zucker MB (1965) The physiology of blood platelets. Grune and Stratton, New York

    Google Scholar 

  • Marsden PA, Shappert KT, Chen HS, Flowers M, Sundell CL, Wilcox JN, Lamas S, Michel T (1992) Molecular cloning and characterisation of human endothelial nitric oxide synthase. FEBS Lett 307: 287–293

    Article  PubMed  CAS  Google Scholar 

  • Maurice DH, Haslam RJ (1990) Molecular basis of the synergistic inhibition of platelet function by nitro vasodilators and activators of adenylate cyclase: inhibition of cyclic AMP breakdown by cyclic GMP. Mol Pharmacol 37: 671–681

    PubMed  CAS  Google Scholar 

  • May GR, Crook P, Moore PK, Page CP (1991) The role of nitric oxide as an endogenous regulator of platelet and neutrophil activation within the pulmonary circulation. Br J Pharmacol 102: 759–763.

    PubMed  CAS  Google Scholar 

  • McCall TB, Boughton-Smith NK, Palmer RMJ, Whittle BJR, Moneada S (1989) Synthesis of nitric oxide from L-arginine by neutrophils. Biochem J 261: 293–296

    PubMed  CAS  Google Scholar 

  • Mellion BT, Igmarro LJ, Ohlstein EH, Pontecorvo EG, Hyman AL, Kadowitz PJ (1981) Evidence for the inhibitory role of guanosine 3’, 5’-monophosphate in ADP-induced human platelet aggregation in the presence of nitric oxide and related vasodilators. Blood 57: 946–955

    PubMed  CAS  Google Scholar 

  • Mellion BT, Ignarro LJ, Myers CB, Ohlstein EH, Ballot BA, Hyman AL, Kadowitz PJ (1983) Inhibition of human platelet aggregation by S-nitrosothiols. Heme-dependent activation of soluble guanylate cyclase and stimulation of cyclic GMP accumulation. Mol Pharmacol 23: 653–664

    Google Scholar 

  • Moilanen E, Vuorinen P, Metsa-Ketela T, Vapaatalo H (1993) Inhibition by nitric oxide donors of human polymorphonuclear leucocyte functions. Br J Pharmacol 109: 852–858

    PubMed  CAS  Google Scholar 

  • Molina y Vedia L, McDonald B, Reep B, Bruñe B, Di Silvio M, Billiar TR, Lapetina EG (1992) Nitric oxide-induced nitrosylation of lyceraldehyde-3-phosphate dehydrogenase inhibits enzymatic activity and increases endogenous ADP-ribosylation. J Biol Chem 257: 24929–24932

    Google Scholar 

  • Moncada S (1992) The 1991 Ulf von Euler Lecture. The L-arginine-nitric oxide pathway. Acta Physiol Scand 145: 201–227

    Article  Google Scholar 

  • Moncada S, HiggsEA (1993) The L-arginine-nitric oxide pathway. N Engl J Med 329: 2002–2012

    Google Scholar 

  • Moncada S, Gryglewski RJ, Bunting S, Vane JR (1976) An enzyme isolated from arteries transforms prostaglandin endoperoxides to an unstable substance that inhibits platelet aggregation. Nature 263: 663–665

    Article  PubMed  CAS  Google Scholar 

  • Morgan RO, Newby AC (1989) Nitroprusside differentially inhibits ADP-stimulated calcium influx and mobilization in human platelets. Biochem J 258: 447–454

    PubMed  CAS  Google Scholar 

  • Moro MA, Darley-Usmar VM, Goodwin DA, Read NG, Zamora-Pino R, Feelisch M, Radomski MW, Moncada S (1994) Paradoxical fate and biological action of peroxynitrite on human platelets. Proc Natl Acad Sci USA 91: 6702–6706

    Article  PubMed  CAS  Google Scholar 

  • Mueller-Eckhardt CH, Luscher EF (1968) Immune reactions of human blood platelets. IV. Investigations on the problem of an immunologically induced effect of endotoxin on human platelets. Thromb Diath Haemorrh 20: 336–344

    Google Scholar 

  • Nakashima S, Tohmatsu T, Hattori H, Okano Y, Nozawa Y (1986) Inhibitory action of cyclic GMP on secretion, phosphoinositide hydrolysis and calcium mobilization in thrombin-stimulated human platelets. Biochem Biophys Res Commun 135: 1099–1104

    Article  PubMed  CAS  Google Scholar 

  • Noris M, Benigni A, Boccardo P, Aiello S, Gaspari F, Todeschini M, Figliuzzi M, Remuzzi G (1993) Enhanced nitric oxide synthesis in uremia: implications for platelet dysfunction and dialysis hypotension. Kidney Int 44: 445–450

    Article  PubMed  CAS  Google Scholar 

  • Palmer RMJ, Ferrige AG, Moncada S (1987) Nitric oxide accounts for the biological activity of endothelium-derived relaxing factor. Nature 327: 524–526

    Article  PubMed  CAS  Google Scholar 

  • Palmer RMJ, Ashton DS, Moncada S (1988 a) Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature 333: 664–666

    Google Scholar 

  • Palmer RMJ, Rees DD, Ashton DS, Moncada S (1988b) L-Arginine is the physiological precursor for the formation of nitric oxide in endothelium-dependent relaxation. Biochem Bio¬phys Res Commun 153: 1251–1256

    Article  CAS  Google Scholar 

  • Palmer RMJ, Bridge L, Foxwell NA, Moncada S (1992) The role of nitric oxide in endothelial cell damage and its inhibition by glucocorticoids. Br J Pharmacol 105: 11–12

    PubMed  CAS  Google Scholar 

  • Petros A, Bennet D, Vallance P (1991) Effect of NO synthase inhibitors on hypotension in patients with septic shock. Lancet 338: 1557–1558

    Article  PubMed  CAS  Google Scholar 

  • Pohl U, Busse R (1989) EDRF increases cyclic GMP in platelets during passage through the coronary vascular bed. Circ Res 65: 1798–1803

    PubMed  CAS  Google Scholar 

  • Pronai L, Ichimori K, Nozaki H, Nakazawa H, Okino H, Carmichael AJ, Arroyo CM (1991) Investigation of the existence and biological role of L-arginine/nitric oxide pathway in human platelets by spin-trapping/EPR studies. Eur J Biochem 202: 923–930

    Article  PubMed  CAS  Google Scholar 

  • Radi R, Beckman JS, Bush KM, Freeman BA (1991a) Peroxynitrite-induced membrane lipid peroxidation: the cytotoxic potential of superoxide and nitric oxide. Arch Biochem Biophys 222: 481–487

    Article  Google Scholar 

  • Radi R, Beckman JS, Bush KM, Freeman BA (1991b) Peroxynitrite oxidation of sulfhydryls. J Biol Chem 266: 4244–4250

    PubMed  CAS  Google Scholar 

  • Radi R, Rodriguez M, Castro L, Telleri R (1994) Inhibition of mitochondrial electron transport by peroxynitrite. Arch Biochem Biophys 308: 89–95

    Article  PubMed  CAS  Google Scholar 

  • Radomski MW, Palmer RMJ, Moncada S (1987a) Comparative pharmacology of endothelium-derived relaxing factor, nitric oxide and prostacyclin in platelets. Br J Pharmacol 92: 181–187

    PubMed  CAS  Google Scholar 

  • Radomski MW, Palmer RMJ, Moncada S (1987b) The anti-aggregating properties of vascular endothelium: interactions between prostacyclin and nitric oxide. Br J Pharmacol 92: 639–646

    PubMed  CAS  Google Scholar 

  • Radomski MW, Palmer RMJ, Moncada S (1987 c) Endogenous nitric oxide inhibits human platelet adhesion to vascular endothelium. Lancet 11: 1057–1058

    Google Scholar 

  • Radomski MW, Palmer RMJ, Moncada S (1987 d) The role of nitric oxide and cGMP in platelet adhesion to vascular endothelium. Biochem Biophys Res Commun 148: 1482–1489

    Google Scholar 

  • Radomski MW, Palmer RMJ, Moncada S (1990a) An L-arginine/nitric oxide pathway present in human platelets regulates aggregation. Proc Natl Acad Sci USA 87: 5193–5197

    Article  PubMed  CAS  Google Scholar 

  • Radomski MW, Palmer RMJ, Moncada S (1990b) Characterization of the L-arginine: nitric oxide pathway in human platelets. Br J Pharmacol 101: 325–328

    PubMed  CAS  Google Scholar 

  • Radomski MW, Palmer RMJ, Moncada S (1990 c) Glucocorticoids inhibit the expression of an inducible but not the constitutive, nitric oxide synthase in vascular endothelial cells. Proc Natl Acad Sci USA 87: 10043–10047

    Google Scholar 

  • Radomski MW, Rees DD, Dutra A, Moncada S (1992) S-Nitrosoglutathione inhibits platelet activation in vitro and in vivo. Br J Pharmacol 107: 745–749

    PubMed  CAS  Google Scholar 

  • Radomski MW, Vallance P, Whitley G, Foxwell N, Moncada S (1993) Platelet adhesion to human vascular endothelium is modulated by constitutive and cytokine induced nitric oxide. Cardiovasc Res 27: 1380–1382

    Article  PubMed  CAS  Google Scholar 

  • Rees DD, Palmer RMJ, Moncada S (1989) Role of endothelium-derived nitric oxide in the reg¬ulation of blood pressure. Proc Natl Acad Sci USA 86: 3375–3378

    Article  PubMed  CAS  Google Scholar 

  • Rees DD, Cellek S, Palmer RMJ, Moncada S (1990) Dexamethasone prevents the induction by endotoxin of a nitric oxide synthase and the associated effects on vascular tone: an insight into endotoxin shock. Biochem Biophys Res Commun 173: 541–547

    Article  PubMed  CAS  Google Scholar 

  • Rickles FR, Levin J, Hardin JA, Conrad ME Jr (1977) Tissue factor generation by human mononuclear cells: effects of endotoxin and dissociation of tissue factor generation from mitogenic response. J Lab Clin Med 89: 792–803

    PubMed  CAS  Google Scholar 

  • Rosenblum WI, Nelson GH, Povlishock JT (1987) Laser-induced endothelial damage inhibits endothelium-dependent relaxation in the cerebral microcirculation of the mouse. Circ Res 60: 169–176

    PubMed  CAS  Google Scholar 

  • Rubanyi GM, Vanhoutte PM (1986) Superoxide anions and hyperoxia inactivate endothelium-derived relaxing factor. Am J Physiol 250: H822–H827

    PubMed  CAS  Google Scholar 

  • Saba HI, Saba SR, Morelli G, Hartman RG (1984) Endotoxin-mediated inhibition of human platelet aggregation. Thromb Res 34: 19–33

    Article  PubMed  CAS  Google Scholar 

  • Salas E, Moro MA, Radomski MW, Askew S, Hodson HH, Butler AR, Moncada S (1994) Comparative pharmacology of analogues of S-nitroso-N-acetyl-DL-penicillamine in platelets. Br J Pharmacol 112: 1071–1076

    PubMed  CAS  Google Scholar 

  • Schultz PJ, Raij L (1992) Endogenously synthesized nitric oxide prevents endotoxin-induced glomerular thrombosis. J Clin Invest 90: 1718–1725

    Article  Google Scholar 

  • Scott-Burden T, Vanhoutte PM (1991) Regulation of vascular smooth muscle proliferation: role of endothelium-derived relaxing factor (nitric oxide). J Vase Biol 3: 445–446

    Google Scholar 

  • SemeraroN, ColucciM, Fumarola D, Vermylen J (1978) Platelets and endotoxins: complement-dependent and complement-independent interactions. In: di Gaetano G, Garatini S (eds) Platelets: a multidisciplinary approach. Raven, New York, pp 292–301

    Google Scholar 

  • Sessa WV, Harrison JK, Barber CM, Zeng D, Durieux ME, D’Angelo DD, Lynch KR, Peach MJ (1992) Molecular cloning and expression of cDNA encoding endothelial cell nitric oxide synthase. J Biol Chem 267: 15274–15276

    PubMed  CAS  Google Scholar 

  • Sinzinger H, Fitscha P, O’Grady J, Rauscha F, Rogatt W, Vane JR (1990) Synergistic effect of prostaglandin E, and isosorbide dinitrate in peripheral vascular disease. Lancet 335: 627–628

    Article  PubMed  CAS  Google Scholar 

  • Sinzinger H, Rauscha F, O’Grady J, Fitscha P (1992a) Prostaglandin I2 and the nitric oxide donor molsidomine have synergistic effect on thromboresistance in man. Br J Clin Pharmacol 33: 289–292

    PubMed  CAS  Google Scholar 

  • Sinzinger H, Virgolini I, O’Grady J, Rauscha F, Fitscha P (1992b) Modification of platelet function by isosorbide dinitrate in patients with coronary artery disease. Thromb Res 65: 323–335

    Article  PubMed  CAS  Google Scholar 

  • Sneddon JM, Vane JR (1988) Endothelium-derived relaxing factor reduces platelet adhesion to bovine endothelial cells. Proc Natl Acad Sci USA 85: 2800–2804

    Article  PubMed  CAS  Google Scholar 

  • Stamler JS, Vaughan DE, Loscalzo J (1989) Synergistic disaggregation of platelets by tissue-type plasminogen activator, prostaglandin Et and glyceryl trinitrate. Circ Res 65: 796–804

    PubMed  CAS  Google Scholar 

  • Stamler JS, Jaraki O, Osborne J, Simon DI, Keaney J, Vita J, Singel D, Valeri CR, Loscalzo J (1992) Nitric oxide circulates in mammalian plasma primarily as an S-nitroso adduct of serum albumin. Proc Natl Acad Sci USA 89: 7674–7677

    Article  PubMed  CAS  Google Scholar 

  • Van der Vliet A, O’Neil CA, Halliwell B, Cross CE, Kaur H (1994) Aromatic hydroxylation and nitration of phenylalanine and tyrosine by peroxynitrite. Evidence for hydroxyl radical production from peroxynitrite. FEBS Lett 339: 89–92

    Google Scholar 

  • Venturini CM, Del Vecchio PJ, Kaplan JE (1989) Thrombin-induced platelet adhesion to endothelium is modified by endothelial derived relaxing factor ( EDRF ). Biochem Biophys Res Commun 159: 349–354

    Google Scholar 

  • Venturini CM, Weston LK, Kaplan JE (1992) Platelet cGMP but not cAMP, inhibits thrombin- induced platelet adhesion to pulmonary vascular endothelium. Am J Physiol 32: H606–H612

    Google Scholar 

  • Verbeuren TJ, Jordaens FH, Zonnekeyn LL, van Hove CE, Coene MC, Herman AG (1986) Effect of hypercholesterolemia on vascular reactivity in the rabbit. I. Endothelium- dependent and endothelium-independent contractions and relaxations in isolated arteries of control and hypercholesterolemic rabbits. Circ Res 58: 552–564

    Google Scholar 

  • Walter U (1989) Physiological role of cGMP and cGMP-dependent protein kinase in the cardiovascular system. Rev Physiol Biochem Pharmacol 113: 41–88

    Article  PubMed  CAS  Google Scholar 

  • Wautier JL, Weill D, Kadeva H, Maclouf J, Soria C (1989) Modulation of platelet function by SIN-i. J Cardiovasc Pharmacol 14: S111–114

    PubMed  CAS  Google Scholar 

  • Yao SK, Ober JC, Krishnaswami A, Ferguson JJ, Anderson HV, Golino P, Buja LM, Wilierson JT (1992) Endogenous nitric oxide protects against platelet aggregation and cyclic flow variations in stenosed and endothelium-injured arteries. Circulation 86: 1302–1309

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Radomski, M.W. (1995). The Role of Nitric Oxide in Vascular Haemostasis and Thrombosis: Implications for Septicaemia and Cell Damage. In: Schlag, G., Redl, H. (eds) Shock, Sepsis, and Organ Failure — Nitric Oxide. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79343-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79343-1_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79345-5

  • Online ISBN: 978-3-642-79343-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics