Advertisement

Centrifugal Pumps — Now and the Future

  • L. A. R. Golding
  • W. A. Smith

Abstract

Since their introduction in the 1970s into the clinical practice of cardiothoracic surgery, many uses have been found for centrifugal pumps (Table 1). It is estimated that these devices have replaced roller pumps in 30% of routine cardiac surgical procedures, especially for procedures that are more prolonged. Their simplicity, reliability, and low cost have also gained for them a major role in the other situations, and it is only in bridging to transplantation that there has been decreasing use as the requirements for longer support (30 days +) and patient mobility have become apparent. Even in some of these patients, however, centrifugal pumps are still briefly deployed to stabilize the patient prior to the decision to utilize a more durable implantable system.

Keywords

Centrifugal Pump Journal Bearing Blood Pump Total Artificial Heart Pulsatile Pump 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Golding L, Loop F, Peter M, Jacobs G, Gill C, Groves L, Nosé Y (1979) Use of a temporary left ventricular assist system postoperatively. Proceedings of the 2nd Meeting of the International Society for Artificial Organs. Artif Organs 3[Suppl]:394–397Google Scholar
  2. 2.
    Golding LR, Groves LK, Peter M, Jacobs G, Sukalac R, Nosé Y, Loop FD (1980) Initial clinical experience with a new temporary left ventricular assist device. Ann Thorac Surg 29:66–69PubMedCrossRefGoogle Scholar
  3. 3.
    Golding LR, Loop FD, Sandberg GW, Jacobs G, Lewis RC (1981) Left ventricular assist device support: twenty-one month survival. Cleve Clin Q 48:373–377PubMedGoogle Scholar
  4. 4.
    Golding LAR, Harasaki H, Gill CC, Jacobs G, Loop FD, Nosé Y (1981) Clinical mechanical ventricular support. Proceedings of the 3rd Meeting of the International Society for Artifical Organs. Artif Organs 5[Suppl]:565–567Google Scholar
  5. 5.
    Golding LR, Jacobs G, Groves LK, Gill CC, Nosé Y, Loop FD (1982) Clinical results of mechanical support of the failing left ventricle. J Thorac Cardiovasc Surg 83:597–601PubMedGoogle Scholar
  6. 6.
    Golding LAR (1984) Centrifugal pumps. In: Unger F (ed) Assisted circulation, vol 2. Springer, Berlin Heidelberg New York, p 142CrossRefGoogle Scholar
  7. 7.
    Golding LAR, Loop FD, Nosé Y (1985) Clinical and experimental use of the centrifugal pump. In: Attar S (ed) New developments in cardiac assist devices. Praeger Saunders, New York, 92–102Google Scholar
  8. 8.
    Golding LAR, Stewart RW, Loop FD (1989) Centrifugal pumps in clinical practice. In: Unger F (ed) Assisted circulation, vol 3. Springer, Berlin Heidelberg New York, pp 160–166Google Scholar
  9. 9.
    Golding LAR, Oyer PE, Cabrol C (1989) Circulatory support 1988: weaning and bridging. Ann Thorac Surg 47:102–107PubMedCrossRefGoogle Scholar
  10. 10.
    Golding LAR (1990) Biomedicus centrifugal pump for mechanical cardiac support. In: Sezai Y (ed) Proceedings of Nihon University International Symposium on the Development of Biomation in the 21st Century, May 1990. Saunders, Philadelphia, pp 248–252Google Scholar
  11. 11.
    Golding LAR, Crouch RD, Stewart RW, Novoa R, Lytle BW, McCarthy PM, Taylor PC, Loop FD, Cosgrove DM (1992) Postcardiotomy centrifugal mechanical ventricular support. Ann Thorac Surg 54:1059–1064PubMedCrossRefGoogle Scholar
  12. 12.
    Golding LR, Jacobs G, Murakami T, Takatani S, Valdes F, Harasaki H, Nosé Y (1980) Chronic nonpulsatile blood flow in an alive, awake animal: 34-day survival. Trans Am Soc Intern Organs 26:251Google Scholar
  13. 13.
    Golding LR, Murakami G, Harasaki H, Takatani S, Jacobs G, Yada I, Tomita K, Yozu R, Valdes F, Fujimoto LK, Koike S, Nosé Y (1982) Chronic nonpulsatile blood flow. Trans Am Soc Artif Intern Organs 28:81–85PubMedGoogle Scholar
  14. 14.
    Golding LAR, Loop FD, Nosé Y (1985) Clinical and experimental use of the centrifugal pump. In: Attar S (ed) New developments in cardiac assist devices. Praeger Saunders, New York, pp 92–102Google Scholar
  15. 15.
    Sugita Y, Golding LR, Jacobs G, Harasaki H, Yozu R, Sato N, Fujimoto LK, Morimoto T, Snow J, Olsen E, Smith W, Murabayashi S, Kambic H, Kiraly R, Nosé Y (1984) Comparison of osmotic and body fluid balance in chronic nonpulsatile biventricular bypass (NPBVB) and total artificial heart (TAH) experiments. Trans Am Soc Artif Intern Organs 30:148–154PubMedGoogle Scholar
  16. 16.
    Takatani S, Golding LR, Jacobs GB, Murakami T, Harasaki H, Ozawa K, Kiraly R, Nosé Y (1979) Comparison of nonpulsatile and pulsatile pumps as left ventricular assist devices. Trans Jpn Soc Artif Intern Organs 9:372Google Scholar
  17. 17.
    Takatani S, Golding L, Harasaki H, Yada I, Koike S, Yozu R, Fujimoto L, Murakami G, Tomita K, Jacobs G, Nosé Y (1983) Nonpulsatile biventricular bypass during ventricular fibrillation. Jpn J Artif Organs 12:254Google Scholar
  18. 18.
    Valdes F, Takatani S, Jacobs GB, Murakami T, Harasaki H, Golding LR, Nosé Y (1980) Comparison of hemodynamic changes in a chronic nonpulsatile biventricular bypass (BVB) and total artificial heart (TAH). Trans Am Soc Artif Intern Organs 26:455PubMedGoogle Scholar
  19. 19.
    Valdes F, Golding LR, Harasaki H, Takatani S, Jacobs G, Nosé Y (1981) Hemodynamic response to exercise during chronic ventricular fibrillation and nonpulsatile biventricular bypass (BVB). Trans Am Soc Artif Intern Organs 27:449–452PubMedGoogle Scholar
  20. 20.
    Yada I, Golding LR, Harasaki H, Jacobs G, Koike S, Yozu R, Sato N, Fujimoto LK, Snow J. Olsen E, Murabayashi S, Venkatesen VS, Kiraly R, Nosé Y (1983) Physiopathological studies of nonpulsatile blood flow in chronic models. Trans Am Soc Artif Intern Organs 29:520PubMedGoogle Scholar
  21. 21.
    Yozu R, Golding LAR, Shimomitsu T, Jacobs G, Watanabe T, Harasaki H, Nosé Y (1985) Exercise response in chronic nonpulsatile and pulsatile TAH animals. Trans Am Soc Artif Intern Organs 31:22–27PubMedGoogle Scholar
  22. 22.
    Golding LAR, Tishko DJ, Stewart RW (1988) Results of mechanical ventricular assist in bridging to cardiac transplantation. Cleve Clin J Med 55:59–62PubMedGoogle Scholar
  23. 23.
    Golding LR, Tishko DJ, Fujimoto LK, Moise J, Nosé Y (1988) Permanent and temporary mechanical ventricular assist. Cleve Clin Found ASAIO Primers 3:31–37Google Scholar
  24. 24.
    Golding LAR, Stewart RW, Sinkewich M, Smith W, Cosgrove DM (1987) Nonpulsatile ventricular assist bridging to transplantation. ASAIO Trans 34:476–479Google Scholar
  25. 25.
    Dasse KA, Frazier OH, Lesniak JM, Myers T, Burnett CM, Poirier VL (1992) Clinical responses to ventricular assistance versus transplantation in a series of bridge-to-transplant patients. ASAIO J 38:M622–626PubMedCrossRefGoogle Scholar
  26. 26.
    Frazier OH, Rose EA, Macmanus Q, Burton NA, Lefrak EA, Poirier VL, Dasse KA (1992) Multicenter clinical evaluation of the HeartMate 1000 IP left ventricular assist device. Ann Thorac Surg 53:1080–1090PubMedCrossRefGoogle Scholar
  27. 27.
    Frazier OH (1993) Chronic left ventricular support with a vented electric assist device. Ann Thorac Surg 55:273–275PubMedCrossRefGoogle Scholar
  28. 28.
    Hamrock BJ (1991) Fundamentals of fluid film lubrication. US Government Printing Office, Washington DC (NASA Reference Publication 1255)Google Scholar
  29. 29.
    Pinkus O, Sternlicht B (1961) Theory of hydrodynamic lubrication. McGraw Hill, New YorkGoogle Scholar
  30. 30.
    Shigley JE (1977) Mechanical engineering design, 3rd edn. McGraw Hill, New York, 347–397Google Scholar
  31. 31.
    Jarvik RK (1991) Intraventricular artificial hearts and methods of their surgical implantation and use. (US patent 4,994,078)Google Scholar
  32. 32.
    Moise JC (1988) Magnetically suspended rotor axial flow blood pump. (US patent 4,779,614)Google Scholar
  33. 33.
    Olsen DB, Bramm G, Novak P (1987) Magnetically suspended rotated impeller pump apparatus and method. (US patent 4,688,998)Google Scholar
  34. 34.
    Wampler RK (1986) High-capacity intravascular blood pump utilizing percutaneous access. (US patent 4,625,712)Google Scholar
  35. 35.
    Akamatsu T, Nakazeki T, Hoh H (1992) Centrifugal blood pump with a magnetically suspended impeller. Artif Organs 16:305–308PubMedCrossRefGoogle Scholar
  36. 36.
    Dorman FD, Bernstein EF, Blackshear PL (1971) Implantable blood pump. (US patent 3,608,088)Google Scholar
  37. 37.
    Isaacson MS, Lioi AP (1992) Hydrodynamically suspended rotor axial flow blood pump. (US patent 5,112,200)Google Scholar
  38. 38.
    Golding LAR, Smith WA, Mitchell D, Wade WF (1990) Continuous blood flow - an alternate approach. Cardiovascular science and technology. Basic and applied II. Oxymoron, Boston, pp 281–283Google Scholar
  39. 39.
    Golding LAR, Smith WA, Wade WF (1991) Sealless pump. (US patent 5,049,4134)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • L. A. R. Golding
  • W. A. Smith

There are no affiliations available

Personalised recommendations