Skip to main content

Centrifugal Pumps — Now and the Future

  • Chapter
Assisted Circulation 4

Abstract

Since their introduction in the 1970s into the clinical practice of cardiothoracic surgery, many uses have been found for centrifugal pumps (Table 1). It is estimated that these devices have replaced roller pumps in 30% of routine cardiac surgical procedures, especially for procedures that are more prolonged. Their simplicity, reliability, and low cost have also gained for them a major role in the other situations, and it is only in bridging to transplantation that there has been decreasing use as the requirements for longer support (30 days +) and patient mobility have become apparent. Even in some of these patients, however, centrifugal pumps are still briefly deployed to stabilize the patient prior to the decision to utilize a more durable implantable system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Golding L, Loop F, Peter M, Jacobs G, Gill C, Groves L, Nosé Y (1979) Use of a temporary left ventricular assist system postoperatively. Proceedings of the 2nd Meeting of the International Society for Artificial Organs. Artif Organs 3[Suppl]:394–397

    Google Scholar 

  2. Golding LR, Groves LK, Peter M, Jacobs G, Sukalac R, Nosé Y, Loop FD (1980) Initial clinical experience with a new temporary left ventricular assist device. Ann Thorac Surg 29:66–69

    Article  PubMed  CAS  Google Scholar 

  3. Golding LR, Loop FD, Sandberg GW, Jacobs G, Lewis RC (1981) Left ventricular assist device support: twenty-one month survival. Cleve Clin Q 48:373–377

    PubMed  CAS  Google Scholar 

  4. Golding LAR, Harasaki H, Gill CC, Jacobs G, Loop FD, Nosé Y (1981) Clinical mechanical ventricular support. Proceedings of the 3rd Meeting of the International Society for Artifical Organs. Artif Organs 5[Suppl]:565–567

    Google Scholar 

  5. Golding LR, Jacobs G, Groves LK, Gill CC, Nosé Y, Loop FD (1982) Clinical results of mechanical support of the failing left ventricle. J Thorac Cardiovasc Surg 83:597–601

    PubMed  CAS  Google Scholar 

  6. Golding LAR (1984) Centrifugal pumps. In: Unger F (ed) Assisted circulation, vol 2. Springer, Berlin Heidelberg New York, p 142

    Chapter  Google Scholar 

  7. Golding LAR, Loop FD, Nosé Y (1985) Clinical and experimental use of the centrifugal pump. In: Attar S (ed) New developments in cardiac assist devices. Praeger Saunders, New York, 92–102

    Google Scholar 

  8. Golding LAR, Stewart RW, Loop FD (1989) Centrifugal pumps in clinical practice. In: Unger F (ed) Assisted circulation, vol 3. Springer, Berlin Heidelberg New York, pp 160–166

    Google Scholar 

  9. Golding LAR, Oyer PE, Cabrol C (1989) Circulatory support 1988: weaning and bridging. Ann Thorac Surg 47:102–107

    Article  PubMed  Google Scholar 

  10. Golding LAR (1990) Biomedicus centrifugal pump for mechanical cardiac support. In: Sezai Y (ed) Proceedings of Nihon University International Symposium on the Development of Biomation in the 21st Century, May 1990. Saunders, Philadelphia, pp 248–252

    Google Scholar 

  11. Golding LAR, Crouch RD, Stewart RW, Novoa R, Lytle BW, McCarthy PM, Taylor PC, Loop FD, Cosgrove DM (1992) Postcardiotomy centrifugal mechanical ventricular support. Ann Thorac Surg 54:1059–1064

    Article  PubMed  CAS  Google Scholar 

  12. Golding LR, Jacobs G, Murakami T, Takatani S, Valdes F, Harasaki H, Nosé Y (1980) Chronic nonpulsatile blood flow in an alive, awake animal: 34-day survival. Trans Am Soc Intern Organs 26:251

    CAS  Google Scholar 

  13. Golding LR, Murakami G, Harasaki H, Takatani S, Jacobs G, Yada I, Tomita K, Yozu R, Valdes F, Fujimoto LK, Koike S, Nosé Y (1982) Chronic nonpulsatile blood flow. Trans Am Soc Artif Intern Organs 28:81–85

    PubMed  CAS  Google Scholar 

  14. Golding LAR, Loop FD, Nosé Y (1985) Clinical and experimental use of the centrifugal pump. In: Attar S (ed) New developments in cardiac assist devices. Praeger Saunders, New York, pp 92–102

    Google Scholar 

  15. Sugita Y, Golding LR, Jacobs G, Harasaki H, Yozu R, Sato N, Fujimoto LK, Morimoto T, Snow J, Olsen E, Smith W, Murabayashi S, Kambic H, Kiraly R, Nosé Y (1984) Comparison of osmotic and body fluid balance in chronic nonpulsatile biventricular bypass (NPBVB) and total artificial heart (TAH) experiments. Trans Am Soc Artif Intern Organs 30:148–154

    PubMed  CAS  Google Scholar 

  16. Takatani S, Golding LR, Jacobs GB, Murakami T, Harasaki H, Ozawa K, Kiraly R, Nosé Y (1979) Comparison of nonpulsatile and pulsatile pumps as left ventricular assist devices. Trans Jpn Soc Artif Intern Organs 9:372

    Google Scholar 

  17. Takatani S, Golding L, Harasaki H, Yada I, Koike S, Yozu R, Fujimoto L, Murakami G, Tomita K, Jacobs G, Nosé Y (1983) Nonpulsatile biventricular bypass during ventricular fibrillation. Jpn J Artif Organs 12:254

    Google Scholar 

  18. Valdes F, Takatani S, Jacobs GB, Murakami T, Harasaki H, Golding LR, Nosé Y (1980) Comparison of hemodynamic changes in a chronic nonpulsatile biventricular bypass (BVB) and total artificial heart (TAH). Trans Am Soc Artif Intern Organs 26:455

    PubMed  CAS  Google Scholar 

  19. Valdes F, Golding LR, Harasaki H, Takatani S, Jacobs G, Nosé Y (1981) Hemodynamic response to exercise during chronic ventricular fibrillation and nonpulsatile biventricular bypass (BVB). Trans Am Soc Artif Intern Organs 27:449–452

    PubMed  CAS  Google Scholar 

  20. Yada I, Golding LR, Harasaki H, Jacobs G, Koike S, Yozu R, Sato N, Fujimoto LK, Snow J. Olsen E, Murabayashi S, Venkatesen VS, Kiraly R, Nosé Y (1983) Physiopathological studies of nonpulsatile blood flow in chronic models. Trans Am Soc Artif Intern Organs 29:520

    PubMed  CAS  Google Scholar 

  21. Yozu R, Golding LAR, Shimomitsu T, Jacobs G, Watanabe T, Harasaki H, Nosé Y (1985) Exercise response in chronic nonpulsatile and pulsatile TAH animals. Trans Am Soc Artif Intern Organs 31:22–27

    PubMed  CAS  Google Scholar 

  22. Golding LAR, Tishko DJ, Stewart RW (1988) Results of mechanical ventricular assist in bridging to cardiac transplantation. Cleve Clin J Med 55:59–62

    PubMed  CAS  Google Scholar 

  23. Golding LR, Tishko DJ, Fujimoto LK, Moise J, Nosé Y (1988) Permanent and temporary mechanical ventricular assist. Cleve Clin Found ASAIO Primers 3:31–37

    Google Scholar 

  24. Golding LAR, Stewart RW, Sinkewich M, Smith W, Cosgrove DM (1987) Nonpulsatile ventricular assist bridging to transplantation. ASAIO Trans 34:476–479

    Google Scholar 

  25. Dasse KA, Frazier OH, Lesniak JM, Myers T, Burnett CM, Poirier VL (1992) Clinical responses to ventricular assistance versus transplantation in a series of bridge-to-transplant patients. ASAIO J 38:M622–626

    Article  PubMed  CAS  Google Scholar 

  26. Frazier OH, Rose EA, Macmanus Q, Burton NA, Lefrak EA, Poirier VL, Dasse KA (1992) Multicenter clinical evaluation of the HeartMate 1000 IP left ventricular assist device. Ann Thorac Surg 53:1080–1090

    Article  PubMed  CAS  Google Scholar 

  27. Frazier OH (1993) Chronic left ventricular support with a vented electric assist device. Ann Thorac Surg 55:273–275

    Article  PubMed  CAS  Google Scholar 

  28. Hamrock BJ (1991) Fundamentals of fluid film lubrication. US Government Printing Office, Washington DC (NASA Reference Publication 1255)

    Google Scholar 

  29. Pinkus O, Sternlicht B (1961) Theory of hydrodynamic lubrication. McGraw Hill, New York

    Google Scholar 

  30. Shigley JE (1977) Mechanical engineering design, 3rd edn. McGraw Hill, New York, 347–397

    Google Scholar 

  31. Jarvik RK (1991) Intraventricular artificial hearts and methods of their surgical implantation and use. (US patent 4,994,078)

    Google Scholar 

  32. Moise JC (1988) Magnetically suspended rotor axial flow blood pump. (US patent 4,779,614)

    Google Scholar 

  33. Olsen DB, Bramm G, Novak P (1987) Magnetically suspended rotated impeller pump apparatus and method. (US patent 4,688,998)

    Google Scholar 

  34. Wampler RK (1986) High-capacity intravascular blood pump utilizing percutaneous access. (US patent 4,625,712)

    Google Scholar 

  35. Akamatsu T, Nakazeki T, Hoh H (1992) Centrifugal blood pump with a magnetically suspended impeller. Artif Organs 16:305–308

    Article  PubMed  CAS  Google Scholar 

  36. Dorman FD, Bernstein EF, Blackshear PL (1971) Implantable blood pump. (US patent 3,608,088)

    Google Scholar 

  37. Isaacson MS, Lioi AP (1992) Hydrodynamically suspended rotor axial flow blood pump. (US patent 5,112,200)

    Google Scholar 

  38. Golding LAR, Smith WA, Mitchell D, Wade WF (1990) Continuous blood flow - an alternate approach. Cardiovascular science and technology. Basic and applied II. Oxymoron, Boston, pp 281–283

    Google Scholar 

  39. Golding LAR, Smith WA, Wade WF (1991) Sealless pump. (US patent 5,049,4134)

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Golding, L.A.R., Smith, W.A. (1995). Centrifugal Pumps — Now and the Future. In: Unger, F. (eds) Assisted Circulation 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79340-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79340-0_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79342-4

  • Online ISBN: 978-3-642-79340-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics