Skip to main content

Abstract

It has been reported that vascular smooth muscle from hypertensive animals shows hypersensitivity for vasoconstrictors (Holloway and Bohr 1973; Thompson et al. 1987; Boonen and De Mey 1990; Bodin et al. 1993). This hyperre-activity has been suggested to arise either from a change in receptor affinity (Nyborg and Bevan 1988), in receptor number, or in the transduction mechanisms of the receptor (Asano et al. 1988; Johnson et al. 1991). In addition to these observations, several reports have demonstrated abnormalities of Ca2+ handling in vascular smooth muscle cells (SMC) of hypertensive animals which, regarding the important role played by Ca2+ in the regulation of vascular tone, could be responsible for marked changes in vessel reactivity (Kwan 1985; Sada et al. 1990). Different observations suggest that voltage-dependent Ca2+ Channels might be altered in vessels from hypertensive rats. The first argument for the implication of a change in Ca2+ Channels in hypertension is the blood pressure-lowering effect of dihydropyridine Ca2+ antagonists (MacGregor et al. 1982; Kazda and Knorr 1990). These antagonists have also been shown to suppress the myogenic active tone displayed by blood vessels from hypertensive rats (Aoki and Asano 1986; Sada et al. 1990).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agabiti–Rosei E, Muiesan ML, Romanelli G, Beschi M, Castellano M, Muiesan G (1988) Reversal of cardiac hypertrophy by long-term treatment with calcium antagonists in hypertensive patients. J Cardiovasc Pharmacol 12 [Suppl 6]: S75–S78

    Article  Google Scholar 

  • Aoki K, Asano M (1986) Effects of Bay K 8644 and nifedipine on femoral arteries of spontaneously hypertensive rats. Br J Pharmacol 88: 221–230

    PubMed  CAS  Google Scholar 

  • Asano M, Masuzawa K, Matsuda T, Asano T (1988) Reduced function of the stimulatory GTP-binding protein in ß-adrenoceptor-adenylate cyclase system of femoral arteries isolated from spontaneously hypertensive rats. J Pharmacol Exp Ther 246: 709–718

    PubMed  CAS  Google Scholar 

  • Bodin P, Travo C, Stoclet JC, Travo P (1993) High sensitivity of hypertensive aortic myocytes to norepinephrine and angiotensin. Am J Physiol 264: C441–C445 Boonen HCM, De Mey JGR (1990) Increased calcium sensitivity in isolated resistance arteries from spontaneously hypertensive rats: effects of dihydropyridines. Eur J Pharmacol 179: 403–412

    Google Scholar 

  • Chai S, Webb RC (1992) Extracellular calcium, contractile activity and membrane potential in tail arteries from genetically hypertensive rats. J Hypertens 10: 1137–1143

    Article  PubMed  CAS  Google Scholar 

  • Chatelain P, Demol D, Roba J (1984) Comparison of [3H]nitrendipine binding to heart membranes of normotensive and spontaneously hypertensive rats. J Cardiovasc Pharmacol 6: 220–223

    Article  PubMed  CAS  Google Scholar 

  • Cheung DW (1984) Membrane potential of vascular smooth muscle and hypertension in spontaneously hypertensive rats. Can J Physiol Pharmacol 62: 957–960

    Article  PubMed  CAS  Google Scholar 

  • Christensen KL, Jespersen LT, Mulvany MJ (1989) Development of blood pressure in spontaneously hypertensive rats after withdrawal of long-term treatment related to vascular structure. J Hypertens 7: 83–90

    Article  PubMed  CAS  Google Scholar 

  • Egleme C, Godfraind T, Miller RC (1984) Enhanced responsiveness of rat isolated aorta to Clonidine after removal of the endothelial cells. Br J Pharmacol 81: 16–18

    PubMed  CAS  Google Scholar 

  • Ferrante F, Amenta F (1991) Effect of long-term isradipine treatment on the hypertension- dependent changes in coronary arteries in spontaneously hypertensive rats. Drugs Exp Clin Res 17: 363–370

    PubMed  CAS  Google Scholar 

  • Fujii K, Tominaga F, Ohmori S, Kobayashi K, Koga T, Takata Y, Fujishima M (1992) Decreased endothelium-dependent hyperpolarization to acetylcholine in smooth muscle of the mesenteric artery of spontaneously hypertensive rats. Circ Res 70: 660–669

    PubMed  CAS  Google Scholar 

  • Galletti F, Rutledge A, Krogh V, Triggle DJ (1991) Age related changes in Ca2+ Channels in spontaneously hypertensive rats. Gen Pharmacol 22: 173–176

    Article  PubMed  CAS  Google Scholar 

  • Godfraind T, Egleme C, AI Osachie I (1985) Role of endothelium in the contractile response of rat aorta to a–adrenoceptors agonists. Clin Sei 68 [Suppl 10]: 65s–71s

    CAS  Google Scholar 

  • Godfraind T, Mennig D, Morel N, Wibo M. (1989) Effect of endothelin-1 on calcium Channel gating by agonists in vascular smooth muscle. J Cardiovasc Pharmacol 13 [Suppl 5]: S112–S117

    Article  PubMed  CAS  Google Scholar 

  • Godfraind T, Kazda S, Wibo, M (1991) Effects of a chronic treatment by nisoldipine, a calcium antagonistic dihydropyridine, on arteries of spontaneously hypertensive rats. Circ Res 68: 674–682

    PubMed  CAS  Google Scholar 

  • Hermsmeyer K (1976) Electrogenesis of increased norepinephrine sensitivity of arterial vascular muscle in hypertension. Circ Res 38: 362–367

    PubMed  CAS  Google Scholar 

  • Hess P, Lansman JB, Tsien RW (1984) Different modes of Ca Channel gating behaviour favoured by dihydropyridine Ca agonists and antagonists. Nature 311: 538–544

    Article  PubMed  CAS  Google Scholar 

  • Holloway ET, Bohr DF (1973) Reactivity of vascular smooth muscle in hypertensive rats. Circ Res 33: 678–685

    PubMed  CAS  Google Scholar 

  • Ihara M, Noguchi K, Saeki T, Fukuroda T, Tsuchida S, Kimura S, Fukami T, Ishikawa K, Nishikibe M, Yano M (1992) Biological profiles of highly potent novel endothelin antagonists selective for the ETA receptor. Life Sei 50: 247–255

    Article  CAS  Google Scholar 

  • Ishii K, Kano T, Kurobe Y, Ando J (1983) Binding of [3H] nitrendipine to heart and brain membranes from normotensive and spontaneously hypertensive rats. Eur J Pharmacol 88: 277–278

    Article  PubMed  CAS  Google Scholar 

  • Johnson MD, Wand HY, Ciechanowski D, Friedman E (1991) Reduced G–protein function in desensitized rat aorta. J Pharmacol Exp Ther 259: 255–259

    PubMed  CAS  Google Scholar 

  • Jones AW (1973) Altered ion transport in vascular smooth muscle from spontaneously hypertensive rats: influence of aldosterone, norepinephrine and angiotensin. Circ Res 33: 563–572

    PubMed  CAS  Google Scholar 

  • Jones AW (1974) Reactivity of ion fluxes in rat aorta during hypertension and circulatory control. Fed Proc 33: 133–137

    PubMed  CAS  Google Scholar 

  • Kazda S, Knorr A (1990) Calcium antagonists. In: Ganten D, Mulrow PJ (eds) Pharmacology of anti-hypertensive therapeutics. Springer, Berlin Heidelberg New York, pp 301–375

    Google Scholar 

  • Kazda S, Garthoff B, Knorr A (1985) Interference of the calcium antagonist nisoldipine with the abnormal response of vessels from hypertensive rats to α-adrenergic Stimulation. J Cardiovasc Pharmacol 7 [Suppl 6]: S61–S65

    Article  PubMed  CAS  Google Scholar 

  • Krippeit–Drews P, Morel N, Godfraind T (1992) Effect of nitric oxide on membrane Potential and contraction of rat aorta. J Cardiovasc Pharmacol 20 [Suppl 12]: S72–S75

    Google Scholar 

  • Kuriyama H, Suzuki H (1978) Electrical property and chemical sensitivity of vascular smooth muscles in normotensive and spontaneously hypertensive rats. J Physiol (Lond) 285: 409–424

    CAS  Google Scholar 

  • Kwan CY (1985) Dysfunction of calcium handling by smooth muscle in hypertension. Can J Physiol Pharmacol 63: 366–374

    Article  PubMed  CAS  Google Scholar 

  • Lamb FS, Webb RC (1989) Regenerative electrical activity and arterial contraction in hypertensive rats. Hypertension 13: 70–76

    PubMed  CAS  Google Scholar 

  • Lariviere R, Day R, Schiffrin EL (1993) Increased expression of endothelin-1 gene in blood vessels of deoxycorticosterone acetate–salt hypertensive rats. Hypertension 21: 916–920

    PubMed  CAS  Google Scholar 

  • Lüscher TF, Vanhoutte PM (1986) Endothelium–dependent contraction to acetylcholine in the aorta from spontaneously hypertensive rat. Hypertension 8: 344–348

    PubMed  Google Scholar 

  • Lüscher TF, Boulanger CM, Dohi Y, Yang Z (1992) Endothelium-derived contracting factors. Hypertension 19: 117–130

    PubMed  Google Scholar 

  • MacGregor GA, Rotellar C, Markandu ND, Smith SJ, Saguella GA (1982) Contrasting effects of nifedipine, Captopril and propranolol in normotensive and hypertensive subjects. J Cardiovasc Pharmacol 4: S358–S362

    Article  PubMed  Google Scholar 

  • Morel N, Godfraind T (1991) Characterization in rat aorta of the binding sites responsible for blockade of noradrenaline-evoked calcium entry and contraction by nisoldipine. Br J Pharmacol 102: 467–477

    PubMed  CAS  Google Scholar 

  • Mülsch A, Busse R (1990) NG-nitro-L-arginine ( NG-[imino(nitroamino)methyl]-L-ornithine) impairs endothelium-dependent dilations by inhibiting cytosolic nitric oxide synthesis from L-arginine. Naunyn Schmiedebergs Arch Pharmacol 341: 143–147

    Google Scholar 

  • Nayler WG (1988) The effect of amlodipine on hypertension-induced cardiac hypertrophy and reperfusion–induced calcium overload. J Cardiovasc Pharmacol 12 [Suppl 7]: S41–S44

    Article  CAS  Google Scholar 

  • Nishikibe M, Tsuchida S, Okada M, Fukuroda T, Shimamoto K, Yano M, Ishikawa K, Ikemoto F (1993) Antihypertensive effect of a newly synthesized endothelin antagonist, BQ-123, in a genetic hypertensive model. Life Sei 52: 717–724

    Article  CAS  Google Scholar 

  • Nyborg NCB, Bevan JA (1988) Increased a–adrenergic receptor affinity in resistance vessels from hypertensive rats. Hypertension 11: 635–638

    PubMed  CAS  Google Scholar 

  • Sada T, Koike H, Ikeda M, Sato K, Ozaki H, Karaki H (1990) Cytosolic free calcium of aorta in hypertensive rats. Chronic inhibition of angiotensin Converting enzyme. Hypertension 16: 245–251

    Google Scholar 

  • Storm DS, Stuenkel EL, Webb RC (1992) Calcium Channel activation in arterioles from genetically hypertensive rats. Hypertension 20: 380–388

    PubMed  CAS  Google Scholar 

  • Thompson LP, Bruner CA, Lamb FS, King CM, Webb RC (1987) Calcium influx and vascular reactivity in systemic hypertension. Am J Cardiol 59: 29A–34A

    Article  PubMed  CAS  Google Scholar 

  • Tomobe Y, Ishikawa T, Yanagisawa M, Kimura S, Masaki T, Goto K (1991) Mechanisms of altered sensitivity to endothelin-1 between aortic smooth muscles of spontaneously hypertensive and Wistar-Kyoto rats. J Pharmacol Exp Ther 257: 555–561

    PubMed  CAS  Google Scholar 

  • Van de Voorde J, Vanheel B, Leusen I (1992) Endothelium-dependent relaxation and hyperpolarization in aorta from control and renal hypertensive rats. Circ Res 70: 1–8

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Godfraind, T., Morel, N. (1995). Functional Modifications in Blood Vessels of Hypertensive Rats. In: Garthoff, B., Knorr, A.M., Busse, WD., Seuter, F. (eds) Experimental Hypertension and Therapeutic Progress: Vasodilation and Beyond. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79338-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79338-7_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-58545-9

  • Online ISBN: 978-3-642-79338-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics