Skip to main content

Decontamination or Consolidation of Metal-Contaminated Soils by Biological Means

  • Chapter
Heavy Metals

Part of the book series: Environmental Science ((ENVSCIENCE))

Abstract

All industrialized and nonindustrialized countries have used and are deliberately using heavy metals for industrial, agricultural, and domestic purposes without any consideration in advance of the treatment of the remnant metals. As a consequence, heavy metals are being deposited widespread in the environment. The metal deposition chain starts with the remnants of mining activities in the form of mine tailings, spoil heaps, and dumps, in Southern, Central, and Western Europe, often dating back to Greek and Roman minings (Ernst 1974, 1990). Insufficient precautions for stored ore dust and for a strong reduction in metal emission during grinding, smelting, and processing of ores and metal products and refining has polluted and still pollutes the surroundings of smelters, blast furnaces, and other metal-processing industries either by dust and particulate matter or by metal-enriched effluents (Ernst and Joosse-van Damme 1983, 1989). Environmental pollution was and is independent of political regimes, and unfortunately, in many cases, even independent of the technological conditions of a country, as the metal pollution around metal smelters has demonstrated in former West Germany (Ernst 1972; MAGS 1977), former East Germany (Fiedler and Rosier 1987), Bulgaria (Tsuldschijan 1978), former Yugoslavia (Djuric et al. 1971), and Poland (Fabiszewski et al. 1983; Greszta 1988). Although mining and processing activities have often been finished for some time, tailings and dumps are still scarcely covered by vegetation (Ernst 1974; Banásová 1976) and are exposed to water and wind erosion, thus extending the pollution of the environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Banásová V (1970) Vegetácia dobsinskych azbestovych háld. Biológia (Bratislava) 25: 699–708

    Google Scholar 

  • Banásová V (1976) Vegetácia medenych a antimónovych háld. Biologické Práce 22(1): 5–109

    Google Scholar 

  • Banásová V (1989) Relation of plant species to the pH of the soil on mine heaps. Ekológia (CSSR) 8: 117–122

    Google Scholar 

  • Brown G, Brinkman K (1992) Heavy metal tolerance in Festuca ovina L. from contaminated sites in the Eifel Mountains, Germany. Plant Soil 148: 239–247

    Article  Google Scholar 

  • Brown MT, Wilkins DA (1985) Zinc tolerance of mycorrhizal Betula. New Phytol 99: 101–106

    Article  CAS  Google Scholar 

  • Brown PH, Dunemann L, Schulz R, Marschner H (1989) Influence of redox potential and plant species on the uptake of nickel and cadmium from soils. Z Pflanzenernaehr Bodenkd 152: 85–91

    Article  CAS  Google Scholar 

  • Bröker W (1963) Genetisch-physiologische Untersuchungen über die Zinkverträglichkeit von Silene inflata Sm. Flora (Jena) 153: 122–156

    Google Scholar 

  • Colpaert JV, van Assche JA (1992) Zinc toxicity in ectomycorrhizal Pinus sylvestris. Plant Soil 143: 201–211

    Article  CAS  Google Scholar 

  • Cox RM, Thurman DA (1978) Inhibition of zinc of soluble and cell wall acid phosphatases by zinc-tolerant and non-tolerant clones of Agrostis stolonifera Sibth. J Exp Bot 29: 525

    Article  Google Scholar 

  • Diels L, Mergeay M (1990) DNA-probe-mediated detection of new bacteria resistant to heavy metals. Appl Environ Microbiol 56: 1485–1491

    CAS  Google Scholar 

  • Djuric D, Kerin Z, Graovac-Leposavic L, Novak L, Kop M (1971) Environmental contamination by lead from a mine and a smelter. Arch Environ Health 23: 275–279

    CAS  Google Scholar 

  • Dobrzanska J (1955) Flora and ecological studies on calamine flora in the district of Boleslaw and Olkusz. Acta Soc Bot Pol 24: 357–408 (in Polish)

    Google Scholar 

  • Dueck ThA, Ernst WHO, Faber J, Pasman F (1984) Heavy metal emission and genetic constitution of plant populations in the vicinity of two metal emission sources. Angew Bot 58: 47–59

    CAS  Google Scholar 

  • Dunemann L, von Wirén N, Schulz R, Marschner H (1991) Speciation analysis of nickel in soil solutions and availability to plants. Plant Soil 133: 263–269

    Article  CAS  Google Scholar 

  • Eltrop G, Brown G, Joachim O, Brinkmann K (1991) Lead tolerance of Betula and Salix in the mining area of Mechemich/Germany. Plant Soil 131: 275–285

    Article  CAS  Google Scholar 

  • Ernst WHO (1972) Zink- und Cadmium-Immissionen auf Böden und Pflanzen in der Umgebung einer Zinkhütte. Ber D Bot Ges 85: 295–300

    CAS  Google Scholar 

  • Ernst WHO (1974) Schwermetallvegetation der Erde. Fischer, Stuttgart

    Google Scholar 

  • Ernst WHO (1975) Physiology of heavy metal resistance in plants. Int Conf Heavy Metals Environ, Toronto 1975, 2: 121–136

    Google Scholar 

  • Ernst WHO (1985) Schwermetallimmissionen — ökophysiologische und populationsgenetische Aspekte. Düsseldorfer Geobot Koll 2: 43–57

    Google Scholar 

  • Ernst WHO (1988) Response of plants and vegetation to mine tailings and dredged materials. In: Salomons W, Förstner U (eds) Chemistry and biology of solid waste. Dredged materials and mine tailings. Springer, Berlin Heidelberg New York, pp 54–69

    Google Scholar 

  • Ernst WHO (1990) Mine vegetation in Europe. In: Shaw AJ (ed) Heavy metal tolerance in plants: evolutionary aspects. CRC Press, Boca Raton, pp 21–51

    Google Scholar 

  • Ernst WHO (1994) Geobotanical and biogeochemical prospecting for heavy metal deposits in Europe and Africa. In: Markert B (ed) Plants as biomonitors for heavy metal pollution of the terrestrial environment. VCH, Weinheim (in press)

    Google Scholar 

  • Ernst WHO, Joose-van Damme ENG (1983) Umweltbelastung durch Mineralstoffe. Fischer, Jena

    Google Scholar 

  • Ernst WHO, Joose-van Damme ENG (1989) Zanieczyszezenic srodowiska substancjanii mineralnymi. Panstwowe Wydawnictwo Rolnicze i Lesne, Warszawa

    Google Scholar 

  • Ernst WHO, Schat H, Verkleij JAC (1990) Evoltionary biology of metal resistance in Silene vulgaris. Evol Trends Plants 4: 45–51

    Google Scholar 

  • Ernst WHO, Verkleij JAC, Shat H (1994) Metal tolerance in plants. Acta Bot Neerl 41(3) (in press)

    Google Scholar 

  • Fabiszewski J, Breij T, Bielecki K (1983) Plant indication examinations on environmental influence of copper smelter. Prace Wroclawskiego towarzystwa naukowego (Wroclaw) Ser B 207: 1–109 (in Polish)

    Google Scholar 

  • Fiedler HJ, Rosier HJ (1987) Spurenelemente in der Umwelt. Fischer, Jena

    Google Scholar 

  • Förster U, Wittmann GTW (1981) Metal pollution in the aquatic environment. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Gartside DW, McNeilly T (1974) Genetic studies in heavy metal-tolerant plants. II Zinc tolerance in Agrostis tenuis. Heredity 33: 303

    Article  Google Scholar 

  • Gemmel RP (1977) Colonization of industrial wasteland. Arnold, London

    Google Scholar 

  • Gildon A, Tinker PB (1981) A heavy metal-tolerant strain of a mycorrhizal fungus. Trans Br Mycol Soc 77: 648–649

    Article  Google Scholar 

  • Godbold DL, Host WJ, Collins JC, Thurman DA, Marschner H (1984) Accumulation of zinc and organic acids in roots of zinc-tolerant and non-tolerant ecotypes of Deschampsia coespitosa. J Plant Physiol 116: 59–

    CAS  Google Scholar 

  • Greszta J (ed) (1988) Detrimental effect of dusts emitted by various industries on trees and forest biotope. Sci Pap Krakow Agric Acad 226, Krakow

    Google Scholar 

  • Griffioen WAJ, Ernst WHO (1990) The role of VA mycorrhiza in the heavy metal tolerance of Agrostis capillaris L. Agric Ecosyst Environ 29: 173–177

    Article  Google Scholar 

  • Ietswaart JH, Griffioen WAJ, Ernst WHO (1992) Seasonality of VAM infection in three populations of Agrostis capillaris on soils with and without enrichment of heavy metals. Plant Soil 139: 67–73

    Article  CAS  Google Scholar 

  • Karataglis S (1982) Effect of aerial pollution on selection and evolution in Festuca rubra. Environ Pollut A27: 1–8

    Google Scholar 

  • Kelly BC, Tuovinen OH (1988) Microbiological oxidations of minerals in mine tailings. In: Salomons W, Förstner U (eds) Chemistry and biology of solid waste. Dredged materials and mine tailings. Springer, Berlin Heidelberg New York, pp 33–53

    Google Scholar 

  • MAGS (1975) Umweltprobleme durch Schwermetalle im Raum Stolberg. Minist Arbeit Gesundheit Soziales Nordrhein-Westfalen, Düsseldorf

    Google Scholar 

  • MAGS (1977) Umweltbelastung im Raum Datteln. Minist Arbeit Gesundheit Soziales Nordrhein-Westfalen, Düsseldorf

    Google Scholar 

  • Nicholls MK, McNeilly T (1982) The possible polyphyletic origin of copper tolerance in Agrostis tenuis (Gramineae). Plant Syst Evol 140: 109–

    Article  CAS  Google Scholar 

  • Otte ML (1991) Heavy metals and arsenic in vegetation of salt marshes and flood plains. Doctorate Thesis, Vrije Univ Amsterdam

    Google Scholar 

  • Otte ML, Rozema J, Beek MA, Kater BJ, Broekman RA (1990) Uptake of arsenic by estuarine plants and interactions with phosphate, in the field (Rhine estuary) and under outdoor experimental conditions. Sci Total Environ 97/98: 839–854

    Google Scholar 

  • Petrunia ES (1974) Geochimicekskaja ekologija rasteii v provincijach s isbitocnim soder-saniem mikroelementov. Tr Biogeochem Lab (Moskwa) 13: 57–117

    Google Scholar 

  • Posthuma L (1990) Genetic differentiation between populations of Orchesella cincta (Collembola) from heavy metal contaminated sites. J Appl Ecol 27: 609–622

    Article  Google Scholar 

  • Prat S (1934) Die Erblichkeit der Resistenz gegen Kupfer. Ber Dtsch Bot Ges 52: 65–67

    CAS  Google Scholar 

  • Römheld V, Marschner H (1990) Genotypical differences among graminaceous species in release of phytosiderophores and uptake of iron siderophores. Plant Soil 123: 147–153

    Article  Google Scholar 

  • Schat H, ten Bookum WM (1992) Genetic control of copper tolerance in Silene vulgaris. Heredity 68: 219–229

    Article  CAS  Google Scholar 

  • Simon E, Lefèbvre C (1975) Aspects de la tolérance aux metaux lourds chez Agrostis tenuis Sibth. Festuca ovina L. et Armeria maritima (Mill.) Willd. Oecol Plant 12: 95

    Google Scholar 

  • Symeonidis L, McNeilly T, Brachhaw AJ (1985) Interpopulation variation tolerance to cadmium, copper, lead, nickel and zinc in nine populations of Agrostis capillaris L. New Phytol 101:917–

    Google Scholar 

  • Tschuldschijan ChD (1978) Chemical forms of copper in soil and their toxicity to plants in the processes of pollution. Thesis Agric Sci, Sofia (in Bulgarian)

    Google Scholar 

  • Urquhart C (1971) Genetics of lead tolerance in Festuca ovina. Heredity 26: 19–33

    Article  Google Scholar 

  • Van Capelleveen HE (1985) The ecotoxicity of zinc and cadmium for terrestrial isopods. Int Conf Heavy Metals Environ, Athens 1985, CEP Consultants, Edinburgh, pp 245–247

    Google Scholar 

  • Van Gestel CAM, Dirven-van Breemen EM, Kamerman JW (1992) Evaluation of decontaminated soils. V Applicability of bioassays with plants and earthworms on contaminated and decontaminated soils. Natl Inst Publ Health Environ Prot 216402005, Bilthoven (in Dutch)

    Google Scholar 

  • Verkleij JAC, Ernst WHO (1991) Environmentally hazardous substances and their effects on higher plants. In: Hekstra GP, van Linden FJM (eds) Flora en fauna chemisch onder druk. Pudoc, Wageningen, pp 81–102

    Google Scholar 

  • Verkleij JAC, Prast JE (1989) Cadmium tolerance and co-tolerance in Silene vulgaris (Moench) Garcke [= S. cucubalus (L.) Wib.]. New Phytol 111: 637–645

    Article  CAS  Google Scholar 

  • Wu L, Antonovics J (1975) Zinc and copper uptake by Agrostis stolonifera, tolerant to both zinc and copper. New Phytol 75: 231–237

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ernst, W.H.O. (1995). Decontamination or Consolidation of Metal-Contaminated Soils by Biological Means. In: Förstner, U., Salomons, W., Mader, P. (eds) Heavy Metals. Environmental Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79316-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79316-5_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79318-9

  • Online ISBN: 978-3-642-79316-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics