Skip to main content

Reduction of Metal Emissions by Cleaner Mineral Processing Technology

  • Chapter
Heavy Metals

Part of the book series: Environmental Science ((ENVSCIENCE))

Abstract

A review is given of the technology applied in four mineral processing industries aimed at reducing metal emissions to the environment. The processes selected are zinc and aluminum refining, phosphoric acid manufacturing and titanium dioxide production. Following a brief description of the state of the art, recent achievements and current R&D efforts towards cleaner production are summarized for each process. The four processes are subsequently compared to identify fundamental differences and similarities. It is concluded that a number of generic technological problems can be discerned in mineral processing. In spite of the entirely different nature of the processes and products described, general guidelines can be derived for reduction of metal emissions and improvement of the recovery of valuable ore components. Notwithstanding the poor environmental performance of the classical thermal and pyrometallurgical processes, pyrometallurgy holds some promises for waste and emission prevention in the future mineral processing industries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Zelms, J.F., Lead in the 1990’s, Continuing growth or beginning of the end?. In: Lead, Zinc’90, Proc. of the World Symp. on Pb and Zn, Mackey, T.S. and Prengaman, R.D. (Eds.), TMS-AIME, Warrendale, Pa (1990), pp. 5 – 11.

    Google Scholar 

  2. Elgersma, F., unpublished results (1990).

    Google Scholar 

  3. Elgersma, F., Integrated hydrometallurgical jarosite treatment. Ph.D. thesis, Delft University of Technology (1992).

    Google Scholar 

  4. Rodier, D.D., An overview of silver and trace metal recovery strategies in the zinc industry. Ibid [1], pp. 57 – 85.

    Google Scholar 

  5. Witkamp, G.J., Crystallization of calcium sulfate and uptake of impurities. Ph.D. thesis, Delft University of Technology (1989).

    Google Scholar 

  6. Economic Commission for Europe, Use and disposal of wastes from phosphoric acid and titanium dioxide production. UN-report New York (1988) ISBN 92-1-116433-8.

    Google Scholar 

  7. Sabbioni, E., Goetz, L., Springer, A. and Pietra, R., Trace metals from coal-fired power plants: derivation of an average data base for assessment studies of the situation in the European Communities. Sci.Total Environment 29 (1983): 213 – 227.

    Article  CAS  Google Scholar 

  8. Coles, D.G., Ragaini, R.C., Ondov, J.M., Fisher, G.L., Silberman, D. and Prentice, B.A., Chemical studies of stack fly ash from a coal fired plant. 13 (4), (1979): 455–459.

    CAS  Google Scholar 

  9. Weis, N.L., Mineral Processing Handbook. SME/AIME-publishers, New York (1985).

    Google Scholar 

  10. Wickham, G.A., Zinc industry in the 1990’s. Ibid [1], pp. 13–21.

    Google Scholar 

  11. Dyvik, F., Mercury removal and control, the application of the Boliden Norzink process in sulphuric acid manufacture. Paper presented at the IMM Conf. on Extractive Metallurgy, London (1985).

    Google Scholar 

  12. Rosato, L.I., Stanley, R.W., Bérubé, M., Blais, M., Léroux, G. and Shink, D., Precious metal recovery from zinc plant residue by thiourea leaching. Ibid [1], pp. 109 – 120.

    Google Scholar 

  13. Scott, J.D. and Dienstbach, U., Circuit optimization, with silver recovery options and deportment, in the Kidd Creek zinc plant. Ibid [1], pp. 121–134.

    Google Scholar 

  14. Demarthe, J.M., Rousseau, A.M. and Fernandez, F.L., Recovery of specialty metals, mainly germanium and indium, from zinc primary smelting. Ibid [1], pp. 151 – 160.

    Google Scholar 

  15. Huang, Z., The recovery of silver and scarce elements at Zhuzhou smelters. Ibid [1], pp. 239 – 250.

    Google Scholar 

  16. Ek, C.S., Recovery of silver from residues of the zinc jarosite process. Ibid [1], pp. 227 – 238.

    Google Scholar 

  17. Rastas, J., Leppinen, J., Hintikka, V. and Fugleberg, S., Recovery of lead, silver and gold from zinc process residues by a sulfidization-flotation method. Ibid [1], pp. 193 – 209.

    Google Scholar 

  18. Pammenter, R.V. and Haigh, C.J., Process for precipitating iron as jarosite with a low non-ferrous metal content. US-patent 4,192,852 (1980).

    Google Scholar 

  19. Matthew, I.G., Haigh, C.J. and Pammenter, R.V., Initial pilot plant evaluation of the low contaminant jarosite process. In: Hydrometallurgy, Research, Development and Plant Practice, Osseo-Asare, K. and Miller, J.D. (Eds.), TMS-AIME Warrendale, Pa (1983) pp. 553 – 567.

    Google Scholar 

  20. Röpenack, A. von, Hematite, the solution to a disposal problem — an example from the zinc industry. In: Iron control in hydrometallurgy, Dutrizac, J.E. and Monhemius, A.J. (Eds.), Ellis Horwood Publishers, Chichester GB (1986) pp. 730 – 741.

    Google Scholar 

  21. Elgersma, F. and Zegers, T.W., Integrating jarosite residue processing in hydrometallurgical zinc refining — comparison of five potential processes. In: Residues and Effluents, Processing and Environmental Considerations, Reddy, R.G., Imrie, W.P. and Queneau, P.B. (Eds.), TMS-AIME, Warrendale, Pa (1992) pp. 413 – 448.

    Google Scholar 

  22. Tuovinen, H., Metsärinta, M. and Lilja, L., Development of processes for minimizing the wastes. Ibid [21], pp. 45 – 72.

    Google Scholar 

  23. Robilliard, K.R., King, P.J. and Floyd, J.M., Sirosmelt technology for solving the lead and zinc industry waste problem. Ibid [21], pp. 331 – 348.

    Google Scholar 

  24. Elgersma, F., Witkamp, G.J. and Rosmalen, G.M. van, Incorporation of zinc during continuous jarosite precipitation, Hydrometallurgy vol. 33 (1993), p. 313–339.

    Article  CAS  Google Scholar 

  25. Elgersma, F., Witkamp, G.J. and Rosmalen, G.M. van, Simultaneous dissolution of zinc ferrite and precipitation of jarosite, in print Hydrometallurgy (1993).

    Google Scholar 

  26. Cardew, P.T. and Davey, R.J., The kinetics of solvent-mediated phase transformations. Proc. Roy. Soc. Lond 398 (1985): 415 – 428.

    Article  CAS  Google Scholar 

  27. Barnes, L.J., Sherren, J., Janssen, F.J., Scheeren, P.J.H., Versteegh, J.H. and Koch, R.O., Simultaneous microbial removal of sulphate and heavy metals from waste water. In: Proc. 1st European Metals Conf., organized by TMS-AIME, IMM and GDMB, Brussels (1991) pp. 391 – 401.

    Google Scholar 

  28. Scheeren, P.J.H., Koch, R.O., Buisman, C.J.N., Barnes, L.J. and Versteegh, J.H., New biological treatment plant for heavy metal contaminated groundwater. Ibid [27], pp. 403–416.

    Google Scholar 

  29. Becker, P., Phosphates and phosphoric acid; raw materials, technology and economics of the wet process. 2nd Ed., Marcel Dekker Inc., New York (1989).

    Google Scholar 

  30. Elgersma, F., Anderberg, B.S. and Stigliani, W.M., Emission factors for aqueous industrial cadmium emissions in the Rhine River basin; a historical reconstruction for the period 1970 – 1988. In: Proc. 7th Int. Cadmium Conf., Cadmium Association, New Orleans (1992).

    Google Scholar 

  31. EC-council, On limit values and quality objectives for cadmium discharges. Off. J. European Communities, October 24th (1983), no. L 291/ 1–8.

    Google Scholar 

  32. Kirk-Othmer, Encyclopedia of Chemical Technology, 3rd Ed., Vol. 23 (1983).

    Google Scholar 

  33. Hudson, L.K., Alumina production. In: Production of Aluminium and Alumina, Burkin, A.R. (Ed.), Critical Reports on Applied Chemistry, John Wiley & Sons, Chichester (1987), pp. 11–46.

    Google Scholar 

  34. Jarrett, N., Process description. Ibid [33], pp. 3–10.

    Google Scholar 

  35. Smits, D.F., Zee, G. van and Weijnen, M.P.C., Sustainable resource management: technological directions for effective management of non-renewable resources, excluding fossile resources. Advisory Council for Research on Nature and Environment: RMNO doc. no. 61–1, Delft (1992).

    Google Scholar 

  36. Weast, R.C., Handbook of Chemistry and Physics, 61st Ed. (1980–1981), CRC-press, Boca Raton, Florida.

    Google Scholar 

  37. Collins, M.J., The zinc pressure leaching process applications. Ibid [1]

    Google Scholar 

  38. Clarke, G., Industrial Minerals, Aug. 1988

    Google Scholar 

  39. Heil, J., Schmelzreduktion handelsüblicher Titanschlacken im Grosslabor — GLBO und anschliessende Chlorierung der Reduktionsprodukte un einem Wirbelschichtreaktor. Thesis (German language), 1990.

    Google Scholar 

  40. Merchant, A.J. et al., Smelting Reduction of Hematite and Titania-bearing ores. IMM Transact., sept-dec. 1992

    Google Scholar 

  41. Anonymous, Sachtleben: Standardsicherung für TiO2. Farbe + Lack 95 (1989) 5, p.364

    Google Scholar 

  42. Ban, B.C., Pyrometallurgische Aufbereitung titanhaltige Vorstoffe im Gleichstromlichtbogenofen (GLBO). Thesis. (German Language), 1987.

    Google Scholar 

  43. Saavedra, A.F. et al., The reduction of alumina beyond the year 2000. Overview of existing and new processes.

    Google Scholar 

  44. Morgan, S.W., Zinc and its alloys and compounds. Ellis Horwood Ltd (1985)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Weijnen, M.P.C., Schinkel, J.N., Elgersma, F. (1995). Reduction of Metal Emissions by Cleaner Mineral Processing Technology. In: Förstner, U., Salomons, W., Mader, P. (eds) Heavy Metals. Environmental Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79316-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79316-5_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79318-9

  • Online ISBN: 978-3-642-79316-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics