Skip to main content

The effects of liming on aquatic flora

  • Chapter
Liming of Acidified Surface Waters

Summary

Most studies of the effects of liming on the flora of lakes and watercourses have concentrated on phytoplankton, while little attention has been devoted to epiphytic algae, macrophytes and wetland flora.

Lake liming results in an initial decline in the phytoplankton biomass, although this is generally followed by an increase after 1–2 months. The post-liming biomass may be either greater or lesser than it was during the acidification phase and a long-term decline has been observed in certain cases. New species become established and, in most lakes, the number of species increases. The composition of species changes, from initially being dominated by dinoflagellates (Dinophyceae) or blue-green algae (Cyano phyceae) to a community containing greater variety, with golden-brown algae (Chrysophyceae), green algae (Chlorophyceae) and diatoms (Bacillariophyceae). It has often been possible to observe a shift from larger to smaller plankton species. There is a suggestion that suspended calcium particles cause a release of microscopic algae from the bottom sediment, which may partially explain the unexpected algal blooms that have been observed after liming. The risk of algal blooms is probably greater, however, in cases where the acidification damage is more extensive. Few studies have been carried out on primary production among phytoplankton and no clear effects have been identified. If lakes are limed early on in the acidification phase, i.e. before extensive biological damage has occurred, less far-reaching changes are involved than if the lake has had time to become severely acidified.

Mougeotia, a filamentous green alga, which thrives under acidic conditions, disappears after liming but may become re-established if the water becomes re-acidified. Felt carpets of filamentous blue-green and green algae decline. Epiphytic growths of certain species of desmids (e.g. Desmidiales) on water lobelia (Lobelia dortmanna) increase.

Macrophyte species usually increase after liming, but it may take time — up to several decades — for new colonies to become established. Sphagnum mosses decline sharply, with a consequent reduction in biomass in the most acidified lakes, and colonization of surfaces previously covered by Sphagnum is usually slow. Proliferation of alternate water milfoil (Myriophyllum alterniflorum) has been observed in a number of shallow lakes after repeated liming treatments.

Severe damage to wetland vegetation has been observed after liming Sphagnum mosses are completely eliminated in many cases, and other species such as Polytrichum mosses usually become established in places where the Sphagnum has died out. Liverworts (Hepaticae) and lichens often suffer as well. The field layer is affected in the long term through an increase in the dwarf-shrub layer, among other things. The long-term biological and hydrological effects of ground-layer damage in wetlands have not been studied.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alenäs, I. 1986. Kalkningsprojektet Härskogen 1976–1986. [The Härskogen liming project 1976–1986.] - Swedish Environm. Res. Inst., B 846.

    Google Scholar 

  • Alenäs. I., Andersson, I., Hultberg, H. and Rosemarin, A. 1991. Liming and reacidification reactions of a forest lake ecosystem, Lake Lysevatten, in SW Sweden. - Water Air Soil Poll. 59: 55–77.

    Google Scholar 

  • Aimer, B., Dickson, W., Ekström, C. and Hörnström, E. 1978. Sulphur pollution and the aquatic environment. - In: Nriago, J.O. (Ed.) Sulphur in the environment. Part II. Wiley amp; Sons, New York, pp. 271–311.

    Google Scholar 

  • Andersson, I. and Hultberg, H. 1988. Lake Lysevatten — a study of acidification and liming effects in a forest lake ecosystem in southwestern Sweden. - Swedish Environm. Res. Inst., B1077.

    Google Scholar 

  • Andersson, P., Grahn, P., Hörnström, E., Nyberg, P. and Dahlquist, K. 1989. Kalkning och gödsling i Rammsjön och Ämten, Örebro län 1980–1987. Ett försök att minska kvicksilverhalten i fisk. [Liming and fertilization of Lake Rammsjön and Lake Ämten, county of Örebro, 1980–1987. An attempt to decrease mercury levels in fish.] - Swedish Environm. Prot. Agency 3584.

    Google Scholar 

  • Appelberg, M., Ekström, C. and Hörnström, E. 1990. Stora Härsjön - ett exempel på integrerad uppföljning av kalkningens effekter. [English summary: Lake Stora Härsjon — a case study for integrated monitoring of the effects of liming.] - Inform. Inst. Freshw. Res., Drottningholm (1).

    Google Scholar 

  • Aronsson, J.-A. 1990. Våtmarkskalkning. Förandringar på miljö och vegetation. [Wetland liming. Changes of environment and vegetation.] - Swedish Environm. Prot. Agency 3827.

    Google Scholar 

  • Arvola, L., Salonen, K., Bergström, I., Heinänen, A. and Ojala, A. 1986. Effects of experimental acidification on phyto-, bacterio- and zooplankton enclosures of a highly humic lake. - Int. Rev. ges. Hydrobiol. Syst. Beih. 71: 737–758.

    Google Scholar 

  • Aulio, K. 1987. Rapid decline of the mass occurrence of Juncus bulbosus in a deacidified freshwater. - Memo. Soc. Fauna Flora Fenn. 63: 41–44.

    Google Scholar 

  • Bengtsson, R. 1987. Biologisk undersökning av några försurade sjöar i Kronobergs län — påväxtalger och bottenfauna. [Biological study on some acidified lakes in the county of Kronoberg — benthic algae and bottom fauna.] - Swedish Environm. Res. Inst., 11/90–586–85.

    Google Scholar 

  • Blomquist, P., Olsson, H., Olofsson, H. and Broberg O. 1989. Enclosure experiments with low-dose additions of phosphorus and nitrogen in the acidified lake Njupfatet, central Sweden. - Int. Rev. ges. Hydrobiol. 74: 611–631.

    Google Scholar 

  • Blomquist, P., Bell, R.T., Olofsson, H., Stensdotter, U. and Vrede, K. 1993. Pelagic ecosystem responses to nutrient additions in acidified and limed lakes in Sweden. - Ambio 22: 283–289.

    Google Scholar 

  • Brettum, P. and Hindar, A. 1985. Effects of lime treatment on the biological system. - In: Baalsrud, K., Hindar, A., Johannessen, M. and Matsow, D. (Eds.) Liming of acid water. Liming project, final report. Dep. Environm. Direct. Nat. Managem., Norway, pp. 79–108.

    Google Scholar 

  • Bukaveckas, P. A. 1989. Effects of calcite treatment on primary producers in acidified Adirondack lakes. II. Short-term response by phytoplankton communities. - Can. J. Fish. Aquat. Sci. 46: 352–359.

    Google Scholar 

  • Bukaveckas, P.A. 1991. Effects of lake and watershed liming on light attenuation, thermal stratification, and phytoplankton production. - In: Olem, H., Schreiber, R.K., Brocksen, R.W. and Porcella, D.B. (Eds.) International lake and watershed liming practices. The Terrene Inst., Washington D.C., USA, pp. 129–144.

    Google Scholar 

  • Bukaveckas, P.A. and Driscoll, C. 1991. Effects of whole-lake base addition on the optical properties of three clearwater acidic lakes. - Can. J. Fish. Aquat. Sci. 48: 1030–1040.

    Google Scholar 

  • Bukaveckas, P. A. and Likens, G. 1990. Effects of lake and watershed liming on lake productivity and trophic interactions. - Ann. Prog. Rep. Natl. Fish Res. Center, US Fish Wildl. Serv., Kearneysville, USA.

    Google Scholar 

  • Clymo, R.S., Foster, G.N., McKay, J., Robertson, J., Shore, R. andSkidmore, D.I. 1992. Terrestrial biology in limed catchments. - In: Howells, G. and Dalziel, T.R.K. (Eds.) Restoring acid waters: Loch Fleet 1984–1990. Elsevier Appl. Sci., London, pp. 331–361.

    Google Scholar 

  • Cronberg, G. 1988. Bioassayförsök med Gonyostomum semen in situ i Ostersjon, nord- vastra Skåne, Juli-augusti 1988 [Bio-assay trials with Gonyostomum semen in situ in the Baltic, north-western Skåne, July-Agust 1988]. - Research Applic.

    Google Scholar 

  • Cronberg, G., Lindmark, G. and Björk, S. 1988. Mass development of the flagellate Gonyostomum semen (Raphidophyta) in Swedish forest lakes — an effect of acidification? - Hydrobiologia 161: 217–236.

    Article  CAS  Google Scholar 

  • Dillon, P.J., Yan, N.D., Scheider, W.A. and Conroy, N. 1979. Acid lakes in Ontario, Canada: characterization, extent and response to base and nutrient addition. - Arch. Hydrobiol. Beh. 13: 317–335.

    Google Scholar 

  • Eriksson, F. 1988. Makrofytvegetation i kalkade sjöar. - [Macrophyte vegetation in limed lakes.] - Inform. Inst. Freshw. Res., Drottningholm (9).

    Google Scholar 

  • Eriksson, F. 1991. Vegetationsförändringar inom kalkade områden på. Fulufjället. [Vegetational changes in limed areas in the Fulufjället district.] - Nat. Board Fish., Rep. 1, 1991, pp. 34–35.

    Google Scholar 

  • Eriksson, F., Hörnström, E., Mossberg, P. and Nyberg, P. 1982. Ekologiska effekter av kalkning i försurade sjöar och vattendrag. [English summary: Ecological effects of lime treatment in acidified surface waters.] - Inform. Inst. Freshw. Res., Drottningholm (6).

    Google Scholar 

  • Eriksson, F., Hörnström, E., Mossberg, P. and Nyberg, P. 1983. Ecological effects of lime treatment of acidified lakes and rivers in Sweden. - Hydrobiologia 101: 145–164.

    Article  Google Scholar 

  • Fairchild, W.G. and Sherman, J.W. 1990. Effects of liming on nutrient limitation of epilithic algae in an acid lake. - Water Air Soil Poll. 52: 133–147.

    Article  CAS  Google Scholar 

  • Findlay, D.L. and Kasian, S.E.M. 1990. Phytoplankton communities of lakes experimentally acidified with sulfuric and nitric acids. - Can. J. Fish. Aquat. Sci. 47: 1378–1386.

    Google Scholar 

  • Findlay, D.L. and Kasian, S.E.M. 1991. Response of a phytoplankton community to controlled partial recovery from experimental acidification. - Can. J. Fish. Aquat. Sci. 48: 1022–1029.

    Google Scholar 

  • Fritzon, A. 1984. Fylleån - Biologiska effekter vid kalkning av en försurad å- Slutrapport Fylleå-projektet. [The River Fylleån — biological effects of liming of an acidified river — final report from the the River Fylleå project.] - Dep. Limnol. Univ. Lund, unpubl. rep.

    Google Scholar 

  • Gahnström, G., Grané1i, W. and Tranvik, L. 1990. Effekter av försurning och kalkning på mikrobiella processer i pelagial och sediment. Experimentella studier. [Effects of acidification and liming on microbial processes in the pelagial and the sediment. Experimental studies.] - Dep. Ecology/Limnology, Univ. Lund, unpubl. rep.

    Google Scholar 

  • Grahn, O. 1977. Macrophyte succession in Swedish lakes caused by deposition of airborne acid substances. - Water Air Soil Poll. 7: 295–305.

    Article  CAS  Google Scholar 

  • Grahn, O. 1985. Macrophyte biomass and production in Lake Gårdsjön — an acidified Clearwater lake in SW Sweden. - Ecol. Bull. ( Stockholm ) 37: 203–212.

    Google Scholar 

  • Grahn, O. and Sangfors, O. 1988. A comparative study of macrophytes in Lake Gårdsjön, during acid and limed conditions. - In: Dickson, W. (Ed.) Liming of Lake Gårdsjön, an acidified lake in SW Sweden. Swedish Environm. Prot. Agency 3426, pp. 281–308.

    Google Scholar 

  • Grahn, O., Hultberg, H. and Landner, L. 1974. Oligotrophication — a self-accelerating process in lakes subjected to excessive supply of acid substances. - Ambio 3: 93–94.

    Google Scholar 

  • Grönlund, T. 1987. Igenväxningsproblem med hårslinga — en kalkningseffekt? [Bottoms overgrown by water-milfoil — an effect of liming?]–Fiskevård (3): 28–29.

    Google Scholar 

  • Hasselrot, B., Andersson, B.I. and Hultberg, H. 1984. Ecosysytem shifts after the reintroduction of Arctic char (Salvelinus salvelinus) after liming of a strongly acidified lake in sothwestern Sweden. - Rep. Inst. Freshw. Res., Drottningholm 61: 78–92.

    Google Scholar 

  • Havens, K.E. and DeCosta, J. 1987. Freshwater plankton community succession during experimental acidification. - Arch. Hydrobiol. Ill: 37–65.

    Google Scholar 

  • Heitto, L. 1990. Macrophytes in Finnish forest lakes and possible effects of airborne acidification. - In: Kauppi, P., Anttila, P. and Kenttamies, K. (Eds.) Acidification in Finland. Springer, Berlin Heidelberg New York, pp. 963–983.

    Google Scholar 

  • Hendrey, G.R. 1976. Effects of pH on the growth of perihytic algae in artificial stream channels. - SNSF-project, Internat. Rep. 25. Ås, Norway.

    Google Scholar 

  • Henrikson, L., Larsson, S., Nyman, H.G. and Oscarson, H.G. 1989. Stora Le före och efter kalkning. [Lake Stora Le before and after liming.] - Nat. Board Fish, unpubl. rep.

    Google Scholar 

  • Herrmann, J., Degerman, E., Gerhardt, A., Johansson, C., Lingdell, P.-E. and Muniz, I. 1993. Acid-stress effects on stream biology. - Ambio 22: 298–307.

    Google Scholar 

  • Hörnström, E. and Ekström, C. 1986. Acidification and liming effects on phyto- and zooplankton in some Swedish west coast lakes. - Swedish Environm. Prot. Agency 1863.

    Google Scholar 

  • Hörnström, E., Ekström, C. and Duraini, M.O. 1984. Effects of pH and different levels of aluminium on lake plankton in the Swedish west coast area. - Rep. Inst. Freshw. Res., Drottningholm 61: 115–127.

    Google Scholar 

  • Hörnström, E., Ekström, C. and Andersson, P. 1992a. Tio mellansvenska sjoar. Kalkningseff- ekter pi plankton och vattenkemi. [English summary: Ten lakes in central Sweden, liming effects on plankton and water chemistry.] - Swedish Environm. Prot. Agency 4048.

    Google Scholar 

  • Hörnström, E., Ekström, C., Fröberg, E. and Ek, J. 1992b. Plankton and chemical-physical development in six swedish west coast lakes, under acidic and limed conditions. - Can. J. Fish. Aquat. Sci. 50: 688–702.

    Google Scholar 

  • Howell, E.T., Coker, G., Booth, G.M., Keller, W., Neary, B., Nicholls, K.B., Tomassini, F.D., Yan, N., Gunn, J.M. and Reitveld, H. 1991. Ecosystem responses of pH 5.9 of lake trout to whole lake liming. - In: Olem, H., Schreiber, R.K., Brocksen, R.W. and Porcella, D.B. (Eds.) International lake and watershed liming practices. The Terrene Inst., Washington D.C., USA, pp. 61–96.

    Google Scholar 

  • Hultberg, H. and Andersson, I. 1982. Liming of acidified lakes — induced long-term changes. - Water Air Soil Poll. 18: 333–342.

    Article  Google Scholar 

  • Jackson, M.B., Vandermeer, E.M., Lester, N., Booth, J.A., Molot, L. and Gray, I.M. 1990. Effects of neutralization and early reacidification on filamentous algae and macrophytes in Bowland Lake. - Can. J. Fish. Aquat. Sci. 47: 432–439.

    Google Scholar 

  • Jansson, M., Persson, G. and Broberg, O. 1986. Phosphorus in acidified lakes. The example of Lake Gårdsjön, Sweden. - Hydrobiologia 139: 81–96.

    Google Scholar 

  • Johansson, K. and Nyberg, P. 1981. Försurning av svenska ytvatten — effekter och omfattning 1980. [Acidification of Swedish surface waters — effects and extent 1980.] - Inf. Inst. Freshw. Res., Drottningholm (6).

    Google Scholar 

  • Keller, W., Dodge, D.P. and Booth, G.M. 1990. Experimental lake neutralization program: overview of neutralization studies in Ontario. - Can. J. Fish. Aquat. Sci. 47: 410–411.

    Google Scholar 

  • Lagerman, B. 1983. Kalkningsprojektet Unden. [The Lake Unden liming project.] - Nat. Board Fish., unpubl. rep.

    Google Scholar 

  • Larsson, S. 1988. Liming effects on phytoplankton in Lake Gårdsjön 1982–1985. - In: Dickson, W. (Ed.) Liming of Lake Gårdsjön, an acidified lake in SW Sweden. Swedish Environm. Prot. Agency 3426, pp. 245–290.

    Google Scholar 

  • Larsson, S. 1991. Gårdsjöprojektet. Effekter av kalkning och fiskisättning på växtplankton. [The Lake Gårdsjön project. Effects on phytoplankton of liming and fish introduction.] - Nat. Board Fish., Rep. 1, 1990, pp. 36–40.

    Google Scholar 

  • Lazarek, S. 1979. Periphyton in four acidified lakes of southwestern Sweden. - Res. rep. Dep. Limnol., Univ. Lund, ISSN 0348–1798.

    Google Scholar 

  • Lazarek, S. 1981. Mikrobiella mattor i försurade sjöar. [Microbial mats in acidified lakes.] - Sv. Bot. Tidskr. 81: 225–227.

    Google Scholar 

  • Lazarek, S. 1982a. Structure and function of a cyanophycean mat community in an acidified lake. - Can. J. Bot. 60: 22352–2240.

    Google Scholar 

  • Lazarek, S. 1982b. Structure and productivity of epiphytic algal communities on Lobelia dortmanna L. in acidified and limed lakes. - Water Air Soil Poll. 18: 333–342.

    Article  Google Scholar 

  • Lazarek, S. 1985. Epiphytic algal production in the acidified Lake Gårdsjön, SW Sweden. - Ecol. Bull. ( Stockholm ) 37: 213–218.

    Google Scholar 

  • Lazarek, S. 1986. Responses of tht Lobelia epiphyte complex to liming. - Aquat. Bot. 25: 73–81.

    Google Scholar 

  • Lessmark, O. 1987. Markkalkning som metod för att motverka försurning av sjöar och vattendrag. [English summary: Ground liming as a method of mitigating acidification of surface waters.] - Inform. Inst. Freshw. Res., Drottningholm (9).

    Google Scholar 

  • Lindmark, G. 1982. Acidified lake: sediment treatment with sodium carbonate - a remedy? - Hydrobiologia 92: 537–547.

    Google Scholar 

  • Lindmark, G. 1984. Acidified lakes: ecosystem response following sediment treatment with sodium carbonate. - Verh. Internat. Verein. Limnol. 22: 173–178.

    Google Scholar 

  • Lindmark, G. 1991. The use of soda ash briquettes in the neutralization of acidified lakes. - Solvay, Stockholm.

    Google Scholar 

  • Malone, T.C. 1980. Algal size. - In: Morris, I. (Ed.) The physiological ecology of phytoplankton. Blackwell, Oxford, pp. 433–463.

    Google Scholar 

  • Molot, L., Heintsch, L. and Nicholls, K.H. 1990. Response of phytoplankton in acidic lakes in Ontario to whole-lake neutralization. - Can. J. Fish Aquat. Sci. 47: 422–431.

    Google Scholar 

  • Morling, G. 1981. Effects of acidification on some lakes in western Sweden. - Vatten 37: 25–38.

    CAS  Google Scholar 

  • Morling, G. and Willén, T. 1990. Acidification and phytoplankton development in some west-Swedish lakes 1966–1983. - Limnologica (Berlin) 20: 291–306.

    Google Scholar 

  • Nalewajko, C. and Paul, B. 1985. Effects of manipulations of aluminium concentrations and pH on phosphate uptake and planktonic communities in two Precambrian shield lakes. - Can. J. Fish. Aquat. Sci. 42: 1946–1953.

    Google Scholar 

  • NBF and SEPA (National Board of Fisheries and Swedish Environmental Protection Agency) 1981. Kalkning av sjöar och vattendrag 1977–1981. [Liming of lakes and streams 1977–81.] - Inform. Inst. Freshw. Res., Drottningholm (4).

    Google Scholar 

  • Niinioja, R., Ahtiainen, M. and Holopainen, A.-L. 1990. Liming of the acidic lake Valkealampi in eastern Finland: effects on water chemistry and phytoplankton. - In: Kauppi, P., Anttila, P. and Kenttamies, K. (Eds.) Acidification in Finland. Springer, Berlin Heidelberg New York, pp. 1127–1143.

    Google Scholar 

  • Nilssen, J.P. 1980. Acidification of a small watershed in southern Norway and some characteristics of acidic aquatic environments. - Int. Rev. ges. Hydrobiol. 65: 177–207.

    Google Scholar 

  • Olofsson, H., Blomqvist, P., Olsson, H. and Broberg, O. 1988. Restoration of the pelagic food web in acidified and limed lakes by gentle fertilization. - Limnologica (Berlin) 19: 27–35.

    CAS  Google Scholar 

  • Olsson, H. and Pettersson, A. 1993. Oligotrophication of acidified lakes — a review of hypotheses. - Ambio 22: 312–317.

    Google Scholar 

  • Persson, G. and Broberg, O. 1985. Nutrient concentrations in the acidified Lake Gårdsjön. The role of transport and retention of phosphorus, nitrogen and DOC in watershed and lake. - Ecol. Bull. ( Stockholm ) 37: 176–192.

    Google Scholar 

  • Pettersson, A. and Blomqvist, P. 1992. Bioassay for phospate demand in phytoplankton from acidified lakes: Lake Njupfatet, an example of phosphate deficiency induced by liming. - Hydrobiologia 246: 99–110.

    Article  CAS  Google Scholar 

  • Porcella, D.B., Fahey, T.J., Schofield, C.L., Driscoll, C.T., Newton, R.M., Raynal, D.J., Leopold, D., Yawitt, J. and DePinto, J. 1991. Limestone treatment for management of aquatic and terrestrial ecosystems. - In: Olem, H., Schreiber, R.K., Brocksen, R.W. and Porcella, D.B. (Eds.) International lake and watershed liming practices. The Terrene Inst., Washington D.C., USA, pp. 5–14.

    Google Scholar 

  • Rafstedt, T. 1991. Effekter av kalkning (vegetation). [Effects of liming (vegetation).] - Nat. Board Fish., Rep. 1, 1990, pp. 28–33.

    Google Scholar 

  • Ramberg, L. 1976. Relations between phytoplankton and light climate in two Swedish forest lakes. - Int. Rev. ges. Hydrobiol. 64: 749–782.

    Google Scholar 

  • Renberg, I. and Hellberg, T. 1982. The pH history of lakes in south-western Sweden, as calculated from subfossil diatom flora of the sediments. - Ambio 11: 30–33.

    Google Scholar 

  • Renberg, I. and Hultberg, H. 1992. A paleoecological assessment of acidification and liming effects on diatom assemblages in a Swedish lake. - Can. J. Fish. Aquat. Sci. 49: 65–72.

    Google Scholar 

  • Renberg, I. and Wallin, J.-E. 1985. The history of acidification of Lake Gårdsjön as deduced from diatoms and Sphagnum leaves in the sediment. - Ecol. Bull. ( Stockholm ) 37: 47–52.

    Google Scholar 

  • Renberg, I., Korsman, K. and Anderson, N.J. 1993. A temporal perspective of lake acidification in Sweden. - Ambio 22: 264–271.

    Google Scholar 

  • Roelefs, J.G.M. 1983. Impact of acidification and eutrophication on macrophyte communities in soft waters in the Netherlands. I. Field observations. - Aquat. Bot. 17: 139–155.

    Google Scholar 

  • Rørslett, B. and Brettum, P. 1989. The genus Isoetes in Scandinavia: an ecological review and perspectives. - Aquat. Bot. 35: 223–261.

    Google Scholar 

  • Rosøn G. 1981. Tusen sjöar–växtplanktons miljökrav. [Thousand lakes — environmental demands of phytoplankton.] - Swedish Environm. Prot. Agency/liber Förlag, Stockholm.

    Google Scholar 

  • Salonen, K., Järvinen, M., Kuoppamäki, K. and Arvola, L. 1990. Effects of liming on the chemistry and biology of a small acid humic lake. - In: Kauppi, P., Anttila, P. and Kenttämies, K. (Eds.) Acidification in Finland. Springer, Berlin Heidelberg New York, pp. 1145–1167.

    Google Scholar 

  • Sangfors, O. 1991. Inventering av makrofyter i Gårdsjön, September 1991. [Inventory of macrophytes in Lake Gårdsjön, September 1991.] - Environm. Res. Group, Kil, Rep. F91 /085: 2

    Google Scholar 

  • Scheider, W., Adamski, J. and Paylor, M. 1975. Reclamation of acidified lakes near Sudbury, Ontario. - Ontario Min. Env. Rep. Techn. Rep., Toronto.

    Google Scholar 

  • Shearer, J.A., Fee, E.J., DeBruyn, E.R. and DeClerq, D.R. 1987. Phytoplankton primary production and light attenuation responses to the experimental acidification of a small Canadian shield lake. - Can. J. Fish Aquat. Sci. 44 (Suppl. 1): 83–90.

    Article  CAS  Google Scholar 

  • Stokes, P.M. 1981. In: Singer, R. (Ed.), Effects of acidic precipitation on benthos. NABS, Springfield, IL, pp. 119–138.

    Google Scholar 

  • Svedäng, M. 1990. The growth dynamics of Juncus bulbosus L. - a strategy to avoid competition? - Aquat. Bot. 37: 123–138.

    Google Scholar 

  • Torkelsson, S. and Åhren, Å. 1986. Comparison of the effect of acidification and liming on a humic stream-lake system in southwest Sweden. - Dep. Limnol., Univ. Lund, Rep.

    Google Scholar 

  • Turner, M.A., Jackson, M.B., Findlay, D.L., Graham, R.W., De Bruyn, E.R. and Vandermeer, E.M. 1987. Early responses of periphyton to experimental lake acidification. - Can. J. Fish Aquat. Sci. 44 (Suppl. 1): 135–149.

    Article  CAS  Google Scholar 

  • Vöge, M. 1989. Tauchuntersuchungen an Isoetiden in einigen sauren Seen Sudnorwegens. - Tuexenia 9: 29–37.

    Google Scholar 

  • Waters, T.F. 1956. The effects of lime application to acid bog lakes in northern Michigan. - Trans. Am. Fish. Soc. 86: 329–344.

    Google Scholar 

  • Willén, E., Hajdu, S. and Pejler, B. 1990. Summer phytoplankton in 73 nutrient-poor Swedish lakes. Classification, ordination and choice of long-term monitoring objects. - Limnologica 20: 217–227.

    Google Scholar 

  • Wright, D., Danks, M., Popp, W., Eiler, P. and Schreiber, R.K. 1991. Biological response of Thrush Lake, Minnesota, to a protective liming treatment. - In: Olem, H., Schreiber, R.K., Brocksen, R.W. and Porcella, D.B. (Eds.) International lake and watershed liming practices. The Terrene Inst., Washington D.C., USA, pp. 111–128.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Larsson, S. (1995). The effects of liming on aquatic flora. In: Henrikson, L., Brodin, Y.W. (eds) Liming of Acidified Surface Waters. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79309-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79309-7_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79311-0

  • Online ISBN: 978-3-642-79309-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics