Acidification of Swedish freshwaters

  • Y.-W. Brodin


Estimates indicate that at least 20% of plant and animal species have died out in the 15,000–25,000 European lakes where the pH has fallen by more than 0.5 units as a result of anthropogenic acid deposition. Severe depletion of species is also to be found in watercourses in several areas of Europe, but there is a lack of data upon which to base quantitative assessments.

No species has yet been reported extinct as a result of acidification, but it is important to bear in mind that few data are available upon which to determine whether or not a species has died out or is under threat.

In Sweden, at least 20% of species has probably disappeared from 5,000–7,000 acidified lakes and thousands of acidified watercourses. The number of lakes would probably have been higher (7,000–9,000) without liming. Significantly acidified lakes and watercourses can be found almost throughout the country. The most severely affected waters are to be found in south-western Sweden where about 80% of waters would have been significantly damaged by acidification had they1 not been limed.

Acidified lakes and watercourses are often characterised by a sharp increase in filamentous algae and Sphagnum moss, and a significant decline in the number of species of phytoplankton. The number of animal species is declining in all groups, in lakes and watercourses alike, mainly among molluscs, bivalves, crustaceans and mayflies. At a pH of below 5, only a few species remain in these groups. In acidified lakes, organic material decomposes more slowly on the surface of the sediment, but it is unclear whether this also applies within the sediment.

Lakes and watercourses where the critical load for acid deposition has been exceeded can be found throughout Sweden. This indicates that there is a clear risk of acidification affecting more waters than it already has done. Estimates show that if the acidifying load remains unchanged, the number of significantly acidified lakes and watercourses in Sweden may rise by about 50% within the next 20 years. In order to prevent Swedish surface waters from deteriorating, emissions in Europe must be reduced by 60%–70%. This can be compared with 30% reduction in emissions which will result from current international agreements and the action which has been planned at a national level.

In order to prevent increasing depletion of fauna and flora and rising mercury levels in fish, large-scale liming operations to prevent acidification of Swedish freshwaters must continue for at least the next 30–50 years.


Critical Load Brown Trout Acid Deposition Nitrogen Deposition Benthic Fauna 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alcamo, J., Shaw, R. and Hordijk, L. 1990. The RAINS model of acidification — science and strategies in Europe. Kluwer Acad. Publ., Dordrecht, The Netherlands, 1991.Google Scholar
  2. Allard, M. and Moreau, G. 1986. Leaf decomposition in an experimentally acidified stream channel. - Hydrobiologia 139: 109–117.CrossRefGoogle Scholar
  3. Andersson, P. and Nyberg, P. 1984. Experiments with brown trout (Salmo trutta L.) during spring in mountain streams at low pH and elevated levels of iron, manganese and aluminium. - Rep. Inst. Freshwat. Res., Drottningholm, 61: 34–47.Google Scholar
  4. Andersson, T., Brydsten, L., Håkanson, L. and Nilsson, Å. 1987. Kvicksilver i svenska sjoar. [Mercury in Swedish lakes.] - Swedish Environm. Prot. Agency 3292.Google Scholar
  5. Andén, C., Henrikson, L., Olsson, M. and Nilsson, G. 1988. Effects of pH and aluminium on embryonic and early larval stages of Swedish frogs Rana arvalis, R. temporaria and R. dalmatina. - Holarct. Ecol. 11: 127–135.Google Scholar
  6. Appelberg, M., Henrikson, B.-I., Henrikson, L. and Svedäng, H. 1993. Biotic interactions within the littoral community of Swedish forest lakes during acidification. - Ambio 22: 290–297.Google Scholar
  7. Baker, J.P., Bernard, D.P., Christensen, S.W., Sale, M.J., Freda, J., Heltcher, K., Marmorek, D., Rowe, L., Scanlon, P., Suter, G., Warren-Hicks, W. and Welbourn, P. 1990. Biological effects of changes in surface water acid-base chemistry. In: Irving, P.M. (Ed.) Acidic deposition: state of science and technology, vol. II. Aquatic processes and effects. NAPAP Rep. 13, USA.Google Scholar
  8. Barr, J.F. 1986. Population dynamics of the common loon (Gavia immer) associated with mercury-contaminated waters in northwestern Ontario. - Can. Wildlife Serv. Occas. Paper 56: 1–25.Google Scholar
  9. Bendell, B.E. and McNicol, D.K. 1987. Fish predation, lake acidity and the decomposition of aquatic insects assemblages. - Hydrobiologia 150: 193–202.CrossRefGoogle Scholar
  10. Berdén, M., Nilsson, S.I., Rosén, K. and Tyler. G. 1987. Soil acidification — extent, causes and consequences. - Swedish Environm. Prot. Agency 3292.Google Scholar
  11. Bernes, C. 1991. Monitor 12 - Acidification and liming of Swedish freshwaters. - Swedish Environm. Prot. Agency Informs.Google Scholar
  12. Bernes, C. and Thörnelöf, E. 1990. Present and future acidification of Swedish lakes: model calculation based on extensive survey. - In: Kämäri, J. (Ed.) Environmental impact models to assess regional acidification. IIASA, Reidel amp; Co, pp. 83–107.Google Scholar
  13. Bishop, K. 1991. Is there more to acidity in organic-rich surface waters than air pollution? An example from northern Sweden. - Vatten 47: 342–347.Google Scholar
  14. Borg, H. 1988. Trace metals in Swedish forest lakes — factors influencing the distribution and speciation in water: - Acta Univ. Upsaliensis 1988-145: 1–21.Google Scholar
  15. Brezonik, P.L., Webster, K.E. and Perry, J.A. 1990. Effects of acidification on benthic community structure and benthic processes in the Little Rock Lake, Wisconsin. - Verh. Internat. Verein. Limnol. 24: 445–448.Google Scholar
  16. Brodin, Y.-W. (Ed.) 1990a. Effekter av svavel-och kvavebelastning på skogsmark, yt- och grundvatten. [English summary: Effects of sulphur and nitrogen deposition on forest soil, surface water and groundwater.] - Swedish Environm. Prot. Agency 3762.Google Scholar
  17. Brodin, Y.-W. 1990b. Midge fauna development in acidified lakes in northern Europe. - Phil. Trans. R. Soc., London B327: 295–298.Google Scholar
  18. Brodin, Y.-W. 1994. Acidification - an everlasting problem or is there hope? - Swedish Environm. Prot. Agency 4242.Google Scholar
  19. Burton, T.M. and Allen, J.W. 1986. Influence of pH, aluminium, and organic matter on stream invertebrates. - Can. J. Fish. Aquat. Sci. 43: 1285–1289.Google Scholar
  20. Degerman, E., Lindgren, G., Lingdell, P.-E. and Nyberg, P. 1987. Kartering av strom- fauna och fisk i mindre vattendrag i Norrlands inland och fjälltrakter i relation till forsurning. [Survey of stream-fauna and fish in small watercourses in the central and mountainous region of Norrland in relation to acidification.] - Inform. Inst. Freshw. Res., Drottningholm (2).Google Scholar
  21. Degerman, E., Engblom, E., Lingdell, P.-E., Melin, E. and Olofsson, E. 1991. Försurning i fjällen? [Acidification in the mountains?] - Inform. Inst. Freshw. Res., Drottningholm (2).Google Scholar
  22. Dickson, W. 1978. Some effects of acidification of Swedish lakes. - Verh. Internat. Verein. Limnol. 20: 851–856.Google Scholar
  23. Dickson, W. 1986. Some data on critical load for sulphur on surface waters. - In: Nilsson, J. (Ed.) Critical loads for sulphur and nitrogen. Nordic Counc. Minist. Miljorap. 1986:11, pp. 143–158.Google Scholar
  24. Dickson, W. 1988. Försurningsläget i svenska vatten och kalkningsbehovet. [Acidification of Swedish surface waters and liming requirements.] - Vatten 44: 300–304.Google Scholar
  25. Dickson, W. 1990. Acidification of lakes and streams in northern Sweden. - Nordic Counc. Minist. Miljorap. 1990: 2: 94–99.Google Scholar
  26. Eilers, J.M., Lien, G.J. and Berg, R.G. 1984. Aquatic organisms in acidic environments: a literature review. - Dep. Nat. Res., Wisconsin, Techn. Bull. 150.Google Scholar
  27. Elwood, J.W. and Mulholland, P.J. 1989. Effects of acidic precipitation on stream ecosystems. - In: Adriano, D.C. and Johnson, A.H. (Eds.) Biological and ecological effects. Acidic precipitation, vol. 2. Springer, Berlin Heidelberg New York, pp. 85–135.Google Scholar
  28. Engblom, E. and Lingdell, P.-E. 1984. The mapping of short-term acidification with the help of biological indicators. - Inst. Freshwat. Res., Drottningholm, 61: 60–68.Google Scholar
  29. Engblom, E. and Lingdell, P.-E. 1991. Forsurning och bottenfaunaförändringar i Sverige. [Acidification and changes in benthic fauna in Sweden.] - Vatten 47: 348–351.Google Scholar
  30. Eriksson, F., Hörnström, E., Mossberg, P. and Nyberg, P. 1983. Ecological effects of lime treatment of acidified lakes and rivers in Sweden. - Hydrobiologia 101: 145–164.CrossRefGoogle Scholar
  31. Eriksson, M.O.G. 1987. Some effects of freshwater acidification on birds. - ICBP Techn. Publ. 6: 1–8.Google Scholar
  32. Eriksson, M.O.G., Henrikson, L., Nilsson, B.-I., Nyman, H.G., Oscarson, H.G., Stenson, J. A.E. and Larsson, P.K. 1980. Predator-prey relations important for the biotic change in acidified lakes. - Ambio 9: 248–249.Google Scholar
  33. Falkengren-Grerup, U. 1987. Long-term changes in pH of forest soils in southern Sweden. - Environ. Poll. 43: 79–90.CrossRefGoogle Scholar
  34. Fleischer, S., Andersson, G., Brodin, Y.-W., Dickson, W., Herrmann, J. and Muniz, I. 1993. Acid water research in Sweden - knowledge for tomorrow?. - Ambio 22: 258–263.Google Scholar
  35. Gahnström, G. and Fleischer, S. 1985. Microbial glucose transformation in sediment from acid lakes. - Ecol. Bull. ( Stockholm ) 37: 287–292.Google Scholar
  36. Grahn, O. 1977. Macrophyte succession in Swedish lakes caused by deposition of airborne acid substances. - Water Air Soil Poll. 7: 295–305.CrossRefGoogle Scholar
  37. Grahn, O., Hultberg, H. and Landner, L. 1974. Oligotrophication — a self-accelerating process in lakes subjected to excessive supply of acid substances. - Ambio 3: 93–94.Google Scholar
  38. Grennfelt, P. and Thornelöf, E. (Eds.) 1992. Critical loads for nitrogen. - Nordic Counc. Minist., Miljorep. 1992: 41.Google Scholar
  39. Hallbäcken, L. and Tamm, C.-O. 1986. Changes in soil acidity from 1927 to 1982–1984 in a forest area of south-west Sweden. - Scand. J. Forest Res. 1: 219–232.Google Scholar
  40. Harvey, H.H. and McArdle, J.M. 1986. Composition of the benthos in relation to pH in the LaCloche lakes. - Water Air Soil Poll. 30: 529–536.CrossRefGoogle Scholar
  41. Havas, M. and Hutchinson, T.C. 1983. The Smoking Hills: natural acidification of an aquatic ecosystem. - Nature 301: 23–27.CrossRefGoogle Scholar
  42. Hendrey, G.R. 1976. Effects of pH on the growth of periphytic algae in artificial stream channels. - SNSF, Oslo-Ås, Norway, Internat. Rep. 25.Google Scholar
  43. Henriksen, A. and Brakke, D.F. 1988. Increasing contribution of nitrogen to the acidity of surface waters in Norway. - Water Air Soil Poll. 42: 183–201.CrossRefGoogle Scholar
  44. Henriksen, A., Kämäri, J., Posch, M. and Wilander, A. 1992. Critical loads of acidity to Nordic surface waters. - Ambio 21: 356–363.Google Scholar
  45. Henrikson, L. and Oscarson, H.G. 1981. Corixids (Hemiptera — Heteroptera), the new top predator in acidified lakes. - Verh. Internat. Verein. Limnol. 21: 1616–1620.Google Scholar
  46. Herrmann, J., Degerman, E., Gerhardt, A., Johansson, C., Lingdell, P.-E. and Muniz, I. 1993. Acid-stress effects on stream biology. - Ambio 22: 298–307.Google Scholar
  47. Ivens, W., Kauppi, P., Lövblad, G. and Westling, O. 1989. Throughfall monitoring as a means of monitoring deposition to forest ecosystems — evaluation of European data. - Utrecht Univ. Rep. AD-1989-01.Google Scholar
  48. Jansson, M.G., Persson, G. and Broberg, O. 1986. Phosphorus in acidified lakes: the example of Lake Gårdsjön, Sweden. - Hydrobiologia 39: 81–96.CrossRefGoogle Scholar
  49. Kämäri, J., Amann, M., Brodin, Y.-W., Chadwick, M.J., Henriksen, A., Hettelingh, J.- P., Kuylenstierna, J.C.I., Posch, M. and Sverdrup, H. 1992. The use of critical loads for the assessment of future alternatives for acidification. - Ambio 21: 377–386.Google Scholar
  50. Kelly, C.A., Rudd, J.W.M., Furutani, A. and Schindler, D.W. 1984. Effects of lake acidification on rates of organic matter decomposition in sediments. - Limnol. Oceanogr. 29: 687–694.Google Scholar
  51. Kerekes, J., Tembley, C. and Pollock, P. 1985. Organic versus anthropogenic acidity in the tributaries of the Kejimujik watersheds in western Nova Scotia. - In: Internat. Symp., Acidic Precipitation, 1985, Muskoka, Ontario, Canada, Abstracts, p. 225.Google Scholar
  52. Lazarek, S. 1985. Epiphytic algal production in the acidified Lake Gårdsjön, SW Sweden. - Ecol. Bull. ( Stockholm ) 37: 213–218.Google Scholar
  53. Leivestad, H. 1982. Effects from acid rain on fish. - In: Schneider, T. and Grant, L. (Eds.) air pollution and nitrogen oxides. Elsevier Sci. Publ. Comp., Amsterdam, pp. 567–576.Google Scholar
  54. Lingdell, P.-E. and Engblom, E. 1990. Rena och oforsurade vatten finns dom? [Can pristine and non-acidified waters still be found?] - Swedish Environm. Prot. Agency 3708.Google Scholar
  55. Lovblad, G., Amann, M., Andersen, B., Hovmand, M., Joffre, S. and Pedersen, U. 1992. Deposition of sulphur and nitrogen in the Nordic countries: present and future. - Ambio 21: 339–347.Google Scholar
  56. Mackey, R.J. and Kersey, K.E. 1985. A preliminary study of aquatic insect communities and leaf decomposition in acid streams near Dorset, Ontario. - Hydrobiologia 122: 3–13.Google Scholar
  57. McNeely, R. and Gummer, W.D. 1984. A reconnaissance survey of the environmental chemistry in east-central Ellesmere Island, N.W.T. - Arctic 37: 210–223.Google Scholar
  58. Nihlgård, B. 1990. Effekter på skog [Effects on forest]. - In: Brodin, Y.-W. (Ed.) Effekter av svavel-och kvavebelastning skogsmark, yt- och grundvatten. [English summary: Effects of sulphur and nitrogen deposition on forest soil, surface water and groundwater.] - Swedish Environm. Prot. Agency 3762, pp. 65–83.Google Scholar
  59. Nilsson, S.I. 1993. Acidification of Swedish oligotrophic lakes - interactions between deposition and forest growth and effects on lake-water quality. - Ambio 22: 272–276.Google Scholar
  60. Odén, S. 1968. The acidification of air and precipitation and its consequences on the natural environment. - Swed. Nat. Sci. Res. Council, Ecol. Comm. Bull. 1: 1–68.Google Scholar
  61. Okland, J. and Okland, K.A. 1986. The effects of acid deposition on benthic animals in lakes and streams. - Experientia 42: 471–486.CrossRefGoogle Scholar
  62. Olem, H. 1991. Liming acidic surface waters. Lewis Publ., Chelsea, Michigan, USA.Google Scholar
  63. Olsson, H. and Pettersson, A. 1993. Oligotrophication of acidified lakes — a review of hypotheses. - Ambio 22: 312–317.Google Scholar
  64. Ormerod, S.J., Allison, N., Hudson, D. and Tyler, S.J. 1986. The distribution of breeding dippers (Cinclus cinclus (L.); Aves) in relation to stream acidity in upland Wales. - Freshwat. Biol. 16: 501–507.Google Scholar
  65. Ormerod, S.J., Boole, P., McCohan, C.P., Weatherley, N.S., Pascoe, D. and Edwards, R.W. 1987. Short-term experimental acidification of a Welch stream: comparing the biological effects of hydrogen ions and aluminium. - Freshwat. Biol. 17: 341–356.Google Scholar
  66. Otto, C. and Svensson, B. 1983. Properties of acid brown water streams in south Sweden. - Arch. Hydrobiol. 99: 15–36.Google Scholar
  67. Pough, F.H. 1976. Acid precipitation and embryonic mortality of spotted salamanders, Ambystoma maculatum. - Science 192: 68–70.CrossRefGoogle Scholar
  68. Renberg, I., Brodin, Y.-W., Cronberg, G., El-Daoushy, F., Oldfield, F., Rippey, B., Sandoy, S., Wallin, J.-E. and Wik, M. 1990. Recent acidification and biological changes in Lilla Öresjön southwest Sweden, and the relation to atmospheric pollution and land-use history. - Phil. Trans. R. Soc., London B327: 391–396.Google Scholar
  69. Renberg, I., Korsman, T. and Anderson, N.J. 1993. A temporal perspective of lake acidification in Sweden. - Ambio 22: 264–271.Google Scholar
  70. Roelofs, J.G.M. 1983. Impact of acidification and eutrophication on macrophyte communi¬ties in soft waters in the Netherlands - Aquat. Bot. 17: 139–155.Google Scholar
  71. Sandnes, H. 1993. Calculated budgets for airborne acidifying components in Europe. - EMEP MSC-W Rep. 1/93 (Norway).Google Scholar
  72. Skogheim, O.K., Rosseland, B.O. and Sevaldrud, I. 1984. Deaths of spawners of Atlantic salmon in River Ogna, SW Norway, caused by acidified aluminium-rich water. - Rep. Inst. Freshwat. Res., Drottningholm 61: 195–202.Google Scholar
  73. Stoner, J.H., Gee, A.S. and Wrade, K.R. 1984. The effects of acidification on the ecology of streams in the Upper Tywi catchment in West Wales. - Environ. Poll. 35: 125–157.Google Scholar
  74. Sverdrup, H., Warfvinge, P., Frogner, T., Håaya, A.O., Johansson, M. and Andersen, B. 1992. Critical loads for forest soils in the Nordic countries. - Ambio 21: 348–355.Google Scholar
  75. Swedish Environmental Protection Agency 1994. Strategy for sustainable development - enviro ’93. - Swedish Environm. Prot. Agency 4234.Google Scholar
  76. Torstensson, P. and Liljelund, L.-E. 1989. Flora- och faunaförändringar i terrestra miljöer — orsakade av luftföroreningar och försurning. [Changes in terrestrial flora and fauna attributable to air pollutants and acidification.] - Swedish Environm. Prot. Agency 3604.Google Scholar
  77. Ulrich, B. and Meyer, H. 1987. Chemischer Zustand der Waldböden Deutschlands zwischen 1920 und 1960, Ursachenund Tendenzen seiner Veranderung. - Ber. Forsch. Zent. Waldokösyst., Univ. Göttingen, Germany B6.Google Scholar
  78. Van Breemen, N. and van Dijk, H.F.G. 1988. Ecosystem effects of atmospheric deposition of nitrogen in The Netherlands. - Environ. Poll. 54: 249–274.CrossRefGoogle Scholar
  79. Wiederholm, T. 1989. Bedomningsgrunder för sjöar och vattendrag. Bakgrundsdokument 1. Näringsämnen, syre, ljus, försurning. [Assessment bases for lakes and watercourses. Background document 1. Nutrients, oxygen, light, acidification.] - Swedish Environm. Prot. Agency 3627.Google Scholar
  80. Wiklander, G., Nordlander, G. and Anderson, R. 1991. Leaching of nitrogen from a forested catchment at Soderåsen in southern Sweden. - Water Air Soil Poll. 55: 263–282.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • Y.-W. Brodin
    • 1
  1. 1.Swedish Environmental Protection AgencySolnaSweden

Personalised recommendations