Skip to main content

Tribology of Artificial Joints

  • Chapter

Abstract

More than half a million hip, knee, shoulder, elbow, wrist, finger, and ankle joint prostheses made from engineered materials are implanted world-wide every year to replace diseased natural joints. The breakthrough in artificial joint replacement was achieved with the introduction of approved materials, such as CoCrMo cast alloys with suitable biocompatibility and resistance and with optimized implantation technique using aseptic surgery. Nowadays joint replacement operations are standard, with long-term success rates of more than 10 years [3, 4]. Materials which can be used as biomaterials in endoprosthetics are subjected to complex conditions. For this reason, so-called modular prosthesis systems, which partly resolve the conflicting requirements for components with fixation and tribological requirements, have found wide use in recent years. Using the knowledge from more than 20 years ago, that it is primarily polymer wear particles which significantly affect the long-term results of cemented and cementless prostheses due to osteolysis and subsequent loosening, there is now increased interest in the tribology and material optimization of articulating components of implants [1, 23]. This contribution provides an overview of the tribological validation of new material combinations and designs, together with a brief report on experience.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bobyn JD, Collier JP, Mayor MB, McTighe T, Tanzer M, Vaughn BK (1993) Particulate debris in THA: problems and solutions. Scientific exhibition at the 61st AAOS, pp 1–6

    Google Scholar 

  2. Cooper JR, Dowson D, Fisher I (1993) The effect of transfer film and surface roughness on the wear of lubricated UHMWPE. Clin Mater 14: 295–302

    Article  CAS  Google Scholar 

  3. Joshi AB, Poter ML, Trail IA, Hunt LP, Murphy JCM, Hardinge K (1993) Long-term results of Charnley low-friction arthroplasty in young patients. JBJS 75-B: 616–623

    Google Scholar 

  4. Malchau H, Herberts P, Ahnfelt L, Johnell O (1993) Prognosis of THP. Scientific exhibition at the 61st AAOS, San Francisco, pp 1–9

    Google Scholar 

  5. McKee GK (1982) Total hip replacement-past, present and future. Biomaterials 3: 130–135

    Article  PubMed  CAS  Google Scholar 

  6. McKellop HA, Clarke IC (1984) Evolution and evaluation of materials screening machines and joint simulators in predicting in vivo wear phenomena. In: Ducheyne P, Hasting GW (eds) Functional behavior of orthopedic biomaterials, vol II: Applications. CRC, Boca Raton, pp 51–85

    Google Scholar 

  7. Mittelmeier H, Heisel J (1990) Fifteen years of experience with ceramic hip prosthese. In: Aldinger G, Sell S, Beyer A (eds) Noncemented total hip replacement. Thieme, Stuttgart, pp 142–150

    Google Scholar 

  8. Paul JP (1967) Forces transmitted by joints in the human body. Proc Inst Mech Eng 181: 8–15

    Google Scholar 

  9. Plante-Bordeneuve, P, Freeman MAR (1993) Tibial HDPE wear in conforming tibiofemoral prostheses. J Bone Joint Surg [Br] 75 /4: 630–636

    CAS  Google Scholar 

  10. Plitz W, Hoss HU (1980) Untersuchungen zum Verschleifimechanismus bei revidierten Hiiftendoprothesen mit Gleitflachen aus Al203-Keramik. Biomed Tech 25: 165–168

    Article  Google Scholar 

  11. Ruesch R, Thony C (1981) Reibungsversuche an kiinstlichen Hüftgelenken. Diplomar- beit, Technikum Buchs

    Google Scholar 

  12. Rydell NW (1966) Forces acting on the femoral head prostheses. Acta Orthop Scand Suppl 88

    Google Scholar 

  13. Schurz J (1983) Biorheologie. Probleme und Ergebnisse in der Medizin. Naturwissen- schaften 70: 602–608

    Article  CAS  Google Scholar 

  14. Semlitsch MF, Streicher RM, Weber H (1989) Verschleifiverhalten von Pfannen und Kugeln aus CoCrMo-Gufilegierung bei langzeitig implantierten Ganzmetall-Huftpro- thesen. Orthopadie 18: 36–41

    Google Scholar 

  15. Sioshansi, P, Oliver RW, Matthews FD (1985) Wear improvement of surgical alloys by ion implantation. J Vac Sci Tech A3: 2670–2674

    Article  CAS  Google Scholar 

  16. Stallforth H, Ungethiim M (1978) Die tribologische Testung von Knieendoprothesen. Biomed Tech 23 /12: 295–304

    Article  CAS  Google Scholar 

  17. Streicher RM (1991) Examinations of explanted hip joint cups made of UHMWPE. In: Willert HG, Buchhorn G, Eyerer P (eds) UHMWPE as biomaterial in orthopedic surgery. Hogrefe & Huber, Bern, pp 196–201

    Google Scholar 

  18. Streicher RM (1993) UHMW-Polyethylen als Werkstoff fiir artikulierende Komponenten von Gelenkendoprothesen. Biomed Tech 38 /12: 303 - 313

    Article  CAS  Google Scholar 

  19. Streicher RM, Schon R, Semlitsch M (1990) Untersuchung des tribologischen Verhaltens von Metall/Metall-Kombinationen für künstliche Hüftgelenke. Biomed Tech 35 /5: 107–111

    Article  CAS  Google Scholar 

  20. Streicher RM, Weber H, Schon R, Semlitsch M (1991) New surface modifiaction for Ti-6Al-7Nb alloy: oxygen diffusion hardening ( ODH ). Biomaterials 12: 125–129

    Google Scholar 

  21. Ungethiim M (1980) Tribologie der Gelenke und Endoprothesen. Osteosyn Endoproth 2: 91–100

    Google Scholar 

  22. Weber BG (1981) Total hip replacement: rotating versus fixed and metal against ceramic heads. In: Salvati E (ed) The Hip. Mosby, USA, pp 264–275

    Google Scholar 

  23. Willert HG, Semlitsch MF (1977) Reactions of the articular capsule to wear products of artificial joint prostheses. J Biomed Mater Res 11: 157–164

    Article  PubMed  CAS  Google Scholar 

  24. Wright KWJ (1982) Friction and wear of materials and joint replacement prostheses. In: Williams DF (ed) Biocompatibility of orhtopedic implants vol I. CRC, Boca Raton, pp 141–195

    Google Scholar 

  25. Zichner LP, Willert HG (1992) Comparison of alumina-polyethylene and metal- polyethylene in clinical trials. Clin Orthop 282: 86–94

    PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Streicher, R.M. (1995). Tribology of Artificial Joints. In: Morscher, E.W. (eds) Endoprosthetics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79306-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79306-6_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79308-0

  • Online ISBN: 978-3-642-79306-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics