Tribology of Artificial Joints

  • R. M. Streicher

Abstract

More than half a million hip, knee, shoulder, elbow, wrist, finger, and ankle joint prostheses made from engineered materials are implanted world-wide every year to replace diseased natural joints. The breakthrough in artificial joint replacement was achieved with the introduction of approved materials, such as CoCrMo cast alloys with suitable biocompatibility and resistance and with optimized implantation technique using aseptic surgery. Nowadays joint replacement operations are standard, with long-term success rates of more than 10 years [3, 4]. Materials which can be used as biomaterials in endoprosthetics are subjected to complex conditions. For this reason, so-called modular prosthesis systems, which partly resolve the conflicting requirements for components with fixation and tribological requirements, have found wide use in recent years. Using the knowledge from more than 20 years ago, that it is primarily polymer wear particles which significantly affect the long-term results of cemented and cementless prostheses due to osteolysis and subsequent loosening, there is now increased interest in the tribology and material optimization of articulating components of implants [1, 23]. This contribution provides an overview of the tribological validation of new material combinations and designs, together with a brief report on experience.

Keywords

Fatigue Titanium Toxicity Carbide Cobalt 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bobyn JD, Collier JP, Mayor MB, McTighe T, Tanzer M, Vaughn BK (1993) Particulate debris in THA: problems and solutions. Scientific exhibition at the 61st AAOS, pp 1–6Google Scholar
  2. 2.
    Cooper JR, Dowson D, Fisher I (1993) The effect of transfer film and surface roughness on the wear of lubricated UHMWPE. Clin Mater 14: 295–302CrossRefGoogle Scholar
  3. 3.
    Joshi AB, Poter ML, Trail IA, Hunt LP, Murphy JCM, Hardinge K (1993) Long-term results of Charnley low-friction arthroplasty in young patients. JBJS 75-B: 616–623Google Scholar
  4. 4.
    Malchau H, Herberts P, Ahnfelt L, Johnell O (1993) Prognosis of THP. Scientific exhibition at the 61st AAOS, San Francisco, pp 1–9Google Scholar
  5. 5.
    McKee GK (1982) Total hip replacement-past, present and future. Biomaterials 3: 130–135PubMedCrossRefGoogle Scholar
  6. 6.
    McKellop HA, Clarke IC (1984) Evolution and evaluation of materials screening machines and joint simulators in predicting in vivo wear phenomena. In: Ducheyne P, Hasting GW (eds) Functional behavior of orthopedic biomaterials, vol II: Applications. CRC, Boca Raton, pp 51–85Google Scholar
  7. 7.
    Mittelmeier H, Heisel J (1990) Fifteen years of experience with ceramic hip prosthese. In: Aldinger G, Sell S, Beyer A (eds) Noncemented total hip replacement. Thieme, Stuttgart, pp 142–150Google Scholar
  8. 8.
    Paul JP (1967) Forces transmitted by joints in the human body. Proc Inst Mech Eng 181: 8–15Google Scholar
  9. 9.
    Plante-Bordeneuve, P, Freeman MAR (1993) Tibial HDPE wear in conforming tibiofemoral prostheses. J Bone Joint Surg [Br] 75 /4: 630–636Google Scholar
  10. 10.
    Plitz W, Hoss HU (1980) Untersuchungen zum Verschleifimechanismus bei revidierten Hiiftendoprothesen mit Gleitflachen aus Al203-Keramik. Biomed Tech 25: 165–168CrossRefGoogle Scholar
  11. 11.
    Ruesch R, Thony C (1981) Reibungsversuche an kiinstlichen Hüftgelenken. Diplomar- beit, Technikum BuchsGoogle Scholar
  12. 12.
    Rydell NW (1966) Forces acting on the femoral head prostheses. Acta Orthop Scand Suppl 88Google Scholar
  13. 13.
    Schurz J (1983) Biorheologie. Probleme und Ergebnisse in der Medizin. Naturwissen- schaften 70: 602–608CrossRefGoogle Scholar
  14. 14.
    Semlitsch MF, Streicher RM, Weber H (1989) Verschleifiverhalten von Pfannen und Kugeln aus CoCrMo-Gufilegierung bei langzeitig implantierten Ganzmetall-Huftpro- thesen. Orthopadie 18: 36–41Google Scholar
  15. 15.
    Sioshansi, P, Oliver RW, Matthews FD (1985) Wear improvement of surgical alloys by ion implantation. J Vac Sci Tech A3: 2670–2674CrossRefGoogle Scholar
  16. 16.
    Stallforth H, Ungethiim M (1978) Die tribologische Testung von Knieendoprothesen. Biomed Tech 23 /12: 295–304CrossRefGoogle Scholar
  17. 17.
    Streicher RM (1991) Examinations of explanted hip joint cups made of UHMWPE. In: Willert HG, Buchhorn G, Eyerer P (eds) UHMWPE as biomaterial in orthopedic surgery. Hogrefe & Huber, Bern, pp 196–201Google Scholar
  18. 18.
    Streicher RM (1993) UHMW-Polyethylen als Werkstoff fiir artikulierende Komponenten von Gelenkendoprothesen. Biomed Tech 38 /12: 303 - 313CrossRefGoogle Scholar
  19. 19.
    Streicher RM, Schon R, Semlitsch M (1990) Untersuchung des tribologischen Verhaltens von Metall/Metall-Kombinationen für künstliche Hüftgelenke. Biomed Tech 35 /5: 107–111CrossRefGoogle Scholar
  20. 20.
    Streicher RM, Weber H, Schon R, Semlitsch M (1991) New surface modifiaction for Ti-6Al-7Nb alloy: oxygen diffusion hardening ( ODH ). Biomaterials 12: 125–129Google Scholar
  21. 21.
    Ungethiim M (1980) Tribologie der Gelenke und Endoprothesen. Osteosyn Endoproth 2: 91–100Google Scholar
  22. 22.
    Weber BG (1981) Total hip replacement: rotating versus fixed and metal against ceramic heads. In: Salvati E (ed) The Hip. Mosby, USA, pp 264–275Google Scholar
  23. 23.
    Willert HG, Semlitsch MF (1977) Reactions of the articular capsule to wear products of artificial joint prostheses. J Biomed Mater Res 11: 157–164PubMedCrossRefGoogle Scholar
  24. 24.
    Wright KWJ (1982) Friction and wear of materials and joint replacement prostheses. In: Williams DF (ed) Biocompatibility of orhtopedic implants vol I. CRC, Boca Raton, pp 141–195Google Scholar
  25. 25.
    Zichner LP, Willert HG (1992) Comparison of alumina-polyethylene and metal- polyethylene in clinical trials. Clin Orthop 282: 86–94PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • R. M. Streicher

There are no affiliations available

Personalised recommendations