Advertisement

F-type H+-ATPase: Catalysis and Proton Transport

  • Atsuko Iwamoto
  • Hiroshi Omote
  • Robert K. Nakamoto
  • Masatomo Maeda
  • Masamitsu Futai
Conference paper
Part of the NATO ASI Series book series (NATO ASI, volume 89)

Abstract

F0F1 H+ATPase (or F-type ATPase) catalyzes ATP synthesis or hydrolysis coupling with proton translocation (for reviews, see Futai et al., 1989; Senior, 1990; Fillingame, 1990). The F-type ATPase of Escherichia coli is similar to those found in inner mitochondrial or chloroplast thylakoid membranes, and has contributed greatly to the understanding of this complicated enzyme. The catalytic site of the enzyme is in the P subunit or at the interface between the α and β subunits of the membrane extrinsic F1 sector. The proton pathway is formed from the a, b, and c subunits of the membrane intrinsic Fo sector. The γ, δ, and ε subunits of F1 are required functionally and structurally to connect the catalytic subunits to the Fo sector. The mechanism of ATP hydrolysis can be studied using purified F1 (F1 — ATPase).

Keywords

Catalytic Site Mutant Enzyme Energy Coupling Proton Translocation Phosphate Moiety 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dunn, S. D., Futai, M. (1980) Reconstitution of a functional coupling factor from the isolated subunits of Escherichia coli Fi ATPase. J. Biol. Chem. 255: 113–118.Google Scholar
  2. Fillingame, R. H. (1990) Molecular mechanism of ATP synthesis by FiFo-type H+transporting ATP synthases. The Bacteria XII (Krulwich, T. A., ed) pp. 345–391, Academic Press, New York.Google Scholar
  3. Futai, M. (1977) Reconstitution of ATPase activity from the isolated a, p, and y subunits of the coupling factor, Fi, of Escherichia coli. Biochem. Biophys. Res. Commun. 79: 1231–1237.CrossRefPubMedGoogle Scholar
  4. Futai, M., Noumi, T., Maeda, M. (1989) ATP synthase (H+-ATPase): Results by combined biochemical and molecular biological approaches. Annu. Rev. Biochem. 58: 111–136.Google Scholar
  5. Futai, M., Iwamoto, A., Omote, H., Maeda, M. (1992a) A glycine-rich sequence in the catalytic site of F-type ATPase. J. Bioenerg. Biomemb. 24: 463–467.Google Scholar
  6. Futai, M., Iwamoto, A., Omote, H., Orita, Y., Shin, K., Nakamoto, R.K., Maeda, M. (1992b) Escherichia coli ATP synthase (F-ATPase): Catalytic site and regulation of H+ translocation. J. Exp.Biol. 172: 443–449.PubMedGoogle Scholar
  7. Ida, K., Noumi, T., Maeda, M., Fukui, T., Futai, M. (1991) Catalytic site of Fi-ATPase of Escherichia coli Lys-155 and Lys-201 of the (3 subunit are located near the y- phosphate group of ATP in the presence of Mg2+. J. Biol. Chem. 266: 5424–5429.Google Scholar
  8. Iwamoto, A., Miki, J., Maeda, M., Futai, M. (1990) H+-ATPase γ subunit of Escherichia coli.: Role of the conserved carboxyl-terminal region. J. Biol. Chem. 265: 5043–5048.Google Scholar
  9. Iwamoto, A., Omote, H., Hanada, H., Tomioka N., Itai, A, Maeda, M, Futai, M. (1991) Mutations in Ser-174 and the glycine-rich sequence (Gly-149, Gly-150, andThr- 156) in the p subunit of Escherichia coli H+-ATPase. J. Biol. Chem. 266: 16350–16355.Google Scholar
  10. Iwamoto, A., Park, M.-Y., Maeda, M., Futai, M. (1993) Domains near ATP γ phosphate in the catalytic site of H+-ATPase. Model proposed from mutagenesis and inhibitor studies. J. Biol. Chem. 268: 3156–3160.Google Scholar
  11. Jounouchi, M., Takeyama, M., Chaiprasert, P., Noumi, T., Moriyama, Y., Maeda, M., Futai, M. (1992a) Escherichia coli H+-ATPase: Role of the δ subunit in binding Fi to the Fo sector. Arch. Biochem. Biophys. 292: 376-381.Google Scholar
  12. Jounouchi, M., Takeyama, M., Noumi, T., Moriyama, Y., Maeda, M., Futai, M. (1992b) Role of the amino terminal region of the e subunit of Escherichia coli H+-ATPase (FoFi) Arch. Biochem. Biophys. 292: 87–94.Google Scholar
  13. Jounouchi, M., Maeda, M., Futai, M. (1993) The a subunit of ATP synthase (FoFi): The Lys-175 and the Thr-176 residues in the conserved sequence (Gly-X-X-X-X-Gly- Lys-Thr/Ser) are located in the domain required for stable subunit-subunit interaction. J. Biochem. 114: 171–176.Google Scholar
  14. Nakamoto, R. K., Shin, K., Iwamoto, A., Omote, H., Maeda, M., Futai, M. (1992) Escherichia coli FoFi-ATPase: residues involved in catalysis and coupling. Ann. N.Y. Acad. Sci. 671: 335–344.Google Scholar
  15. Nakamoto, R. K., Maeda, M., Futai, M. (1993) The y subunit of the Escherichia coli ATP synthase. Mutations in the carboxyl-terminal region restore energy coupling to the amino-terminal mutant γMet-23 → Lys. J. Biol. Chem. 268: 867–872.Google Scholar
  16. Omote, H., Maeda, M., Futai, M. (1992) Effects of mutations of conserved Lys-155 and Thr-156 residues in the phosphate-binding glycine-rich sequence of the Fi-ATPase p subunit of Escherichia coli. J. Biol. Chem. 267: 20571–20576.Google Scholar
  17. Omote, H., Maeda, M., Futai, M. in preparation.Google Scholar
  18. Park, M.-Y., Omote, H., Iwamoto, A., Maeda, M., Futai, M. in preparation.Google Scholar
  19. Senior, A. E. (1990) The proton-translocating ATPase of Escherichia coli. Annu. Rev. Biophys. Biophys. Chem. 19: 7–41.CrossRefPubMedGoogle Scholar
  20. Senior, A. E., Al-Shawi, M. K. (1992) Further examination of seventeen mutations in Escherichia coli Fi-ATPase p-subunit. J. Biol. Chem. 267: 21471–21478.PubMedGoogle Scholar
  21. Senior, A. E., Wilke-Mounts, S., and Al-Shawi, M. K. (1993) Lysine 155 in β-subunit is a catalytic residue of Escherichia coli Fi ATPase. J. Biol. Chem. 268: 6989–6994.PubMedGoogle Scholar
  22. Shin, K., Nakamoto, R. K., Maeda, M., Futai, M. (1992) FoFi-ATPase γ subunit mutations perturb the coupling between catalysis and transport. J. Biol. Chem. 267: 20835-20839.Google Scholar
  23. Takeyama, M., Ihara, K., Moriyama, Y., Noumi, T., Ida, K., Tomioka, N., Itai, A., Maeda, M., Futai, M. (1990) The glycine-rich sequence of the p subunit of Escherichia coli H+-ATPase is important for activity. J. Biol. Chem. 265: 21279–21284.Google Scholar
  24. Walker, J. E., Saraste, M., Gay, N. J. (1984) The unc operon: Nucleotide sequence, regulation and structure of ATP-synthase. Biochim. Biophys. Acta 768: 164–200.CrossRefPubMedGoogle Scholar
  25. Yoshida, M., Allison, W. S., Esch, F. S., Futai, M. (1982) The specificity of carboxyl group modification during the inactivation of the Escherichia coli Fi-ATPase with dicyclohexyl (14C)carbodiimide. J.Biol.Chem. 257: 10033–10037.PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • Atsuko Iwamoto
    • 1
  • Hiroshi Omote
    • 1
  • Robert K. Nakamoto
    • 1
  • Masatomo Maeda
    • 1
  • Masamitsu Futai
    • 1
  1. 1.Department of Organic Chemistry and Biochemistry Institute of Scientific and Industrial ResearchOsaka UniversityIbaraki, OsakaJapan

Personalised recommendations