Advertisement

The Gastric H/K ATPase β Subunit Gene and Transcriptional Pathways in Acid-Secreting Epithelia of the Stomach and Kidney

  • Ian R. van Driel
  • Paul A. Gleeson
  • Seong-Seng Tan
  • Ban-Hock Toh
Conference paper
Part of the NATO ASI Series book series (NATO ASI, volume 89)

Abstract

Stomach acid is produced by parietal cells and secreted into the gastric lumen for digestive and protective purposes. The gastric parietal cell has a highly developed acid secretory machinery that can maintain the pH of the gastric lumen at around pH 1 (Forte and Soil, 1993; Sachs et al., 1992; Faller et al., 1993; Rabon and Reuben, 1990). The central role of the gastric H/K ATPase in the secretion of gastric HC1 is undisputed. The protein is located in the membranes of the parietal cell tubulovesicles and secretory canaliculi. The mechanism of action and structure of the gastric H/K ATPase have been extensively reviewed in this volume and elsewhere. The protein is composed of two subunits, a catalytic α and a β subunit. The existence of the a subunit has been known for some time. The protein is 95 kDa and has a large number of membrane spanning domains (probably 8) (Sachs et al., 1992; Green and Stokes, 1992). The pß subunit was only recently discovered in a number of laboratories (Okamoto et al., 1990, Reuben et al. 1990, Shull, 1992, Toh et al, 1990). The 35 kDa protein core is highly glycosylated with N-linked glycans which may terminate in poly-N-acetyllactosamine structures (Callghan et al. 1990, 1992). The β subunit appears to be essential for membrane insertion, may contain intracellular trafficking signals and is required for functional activity (Horisberg et al., 1991; Gottardi and Caplan, 1993; Sachs et al., 1992)

Keywords

Parietal Cell Fatty Acid Binding Protein Subunit Gene Pancreatic Acinar Cell ATPase Subunit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexander, E.A. and Schwartz, J.H. (1992). Regulation of acidification in the rat inner medullary collecting duct. Am. J. Kidney Diseases 18: 612–618.CrossRefGoogle Scholar
  2. Callaghan, J.M., Toh, B.H., Pettitt, J.M., Humphris, D.C. and Gleeson, P.A. (1990) Poly-N- acetyllactosamine-specife tomato lectin interacts with gastric parietal cells: Identification of a tomato-laectin binding 60-90x1O3 Mr membrane glycoprotein of tubulovesicles. J.Cell Sci. 95: 563–576.PubMedGoogle Scholar
  3. Callaghan, J.M., Toh, B.H., Simpson, R.J., Baldwin, G.S. and Gleeson, P.A. (1992) Rapid Purification of the Gastric H+/K+-ATPase Complex by Tomato-Lectin Affinity Chromatography. Biochem.J. 283: 63–68.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Canfield, V.A. and Levenson, R. (1991). Structural organization an transcription of the mouse gastric H+K+-ATPase p subunit gene. Proc. Natl. Acad. Sci. U. S. A. 88: 8247–8251.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Cheval, L., Barlet-Bas, C., Khadouri, C., Feraille, E., Marsy, S., and Doucet, A. (1991). K+- ATPase-mediated Rb transport in rat collecting tubule: modulation during K+ deprivation. Am. J. Pathol. 260: F800–F805.Google Scholar
  6. Crowson, M.S. and Shull, G.E. (1992). Isolation and Characterization of a cDNA Encoding the Putative Distal Colon H+,K+-ATPase — Similarity of Deduced Amino Acid Sequence to Gastric H+,K+-ATPase and Na+,K+- ATPase and messenger RNA Expression in Distal Colon, Kidney, and Uterus. J. Biol. Chem. 267: 13740–13748.PubMedGoogle Scholar
  7. Curran, K.A., Hebert, M.J., Cain, B.D., and Wingo, C.S. (1992). Evidence for the presence of a K- dependent acidifying adenosine triphosphatase in the rabbit medulla. Kidney Int. 42: 1093–1098.CrossRefPubMedGoogle Scholar
  8. Davis, B.P., Hammer, R.E., Messing, A., and Macdonald, R.J. (1992). Selective Expression of Trypsin Fusion Genes in Acinar Cells of the Pancreas and Stomach of Transgenic Mice. J. Biol. Chem. 267: 26070–26077.PubMedGoogle Scholar
  9. Doucet, A. and Marsy, S. (1987). Characterisation of K-ATPase activity in distal nephron: stimulation by potassium depletion. Am. J. Physiol. 253: F418–F423.PubMedGoogle Scholar
  10. Faller, L.D., Smolka, A., and Sachs, G. (1993). The gastric H,K ATPase. In The enzymes of biological membranes, Vol. 3. A.N. Martonosi, ed. (New York: Plenum ), pp. 431–438.Google Scholar
  11. Forte, J.G. and Soli, A. (1993). Cell biology of hydrochloric acid secretion. In The Handbook of Physiology — The Gastrointestinal System III. S.G. Shultz, ed. ( Bethesda.: American Physiological Society ), pp. 207–228.Google Scholar
  12. Gluck, S. and Nelson, R. (1992). The Role of the V-ATPase in Renal Epithelial H+ Transport. J. Exp. Biol. 172: 205–218.PubMedGoogle Scholar
  13. Gottardi, C.J. and Caplan, M.J. (1993). An Ion-Transporting ATPase Encodes Multiple Apical Localization Signals. J. Cell Biol. 121: 283–293.CrossRefPubMedGoogle Scholar
  14. Green, N.M. and Stokes, D.L. (1992). Structural Modelling of P-Type Ion Pumps. Acta Physiol. Scand. 146: 59–68.Google Scholar
  15. Hamm, L.L., Weiner, I.D., and Vehaskari, V.M. (1991). Structural-functional characteristics of acid-base transport in rabbit collecting duct. Sem. Nephrol. 11: 453-464.Google Scholar
  16. Horisberg, J.-D., Jaunin, P., Reuben, M., Lasater, L.S., Chow, D.C., Forte, J.G., Sachs, G., and Geering, K. (1991). The H,K ATPase β-Subunit can act as a surrogate for the p-subunit of Na,K-pumps. J. Biol. Chem. 266: 19131–19134.Google Scholar
  17. Khadouri, C., Cheval, L., Marsy, S., Barlet-Bas, C., and Doucet, A. (1991). Characterization and control of proton-ATPase along the nephron. Kidney Int. 40: S71–S78.Google Scholar
  18. Kriz, W. and Kaissling, B. (1985). Structural organization of the mammalian kidney. In The kidney: Physiology and pathophysiology. D.W. Seldin and G. Giebisch, eds. ( New York: Raven Press ), pp. 265–306.Google Scholar
  19. Lane, L.K., Shull, M.M., Whitmer, K.R., and Lingrel, J.B. (1989). Characterization of two genes for the Human Na,K-ATPase β Subunit. Genomics 5: 445–453.CrossRefPubMedGoogle Scholar
  20. Lingrel, J.B., Orlowski, J., Shull, M.M., and Price, E.M. (1990). Molecular Genetics of Na,K ATPase. Prog.Nuc.Acid.Res.Molec.Biol. 38: 37–89.CrossRefGoogle Scholar
  21. Madsen, K.M. and Tisher, C.C. (1985). Structural-functional relationships of H+-secreting epithelia. Fed. Proc. 44: 2704–2709.Google Scholar
  22. Maeda, M., Oshiman, K.-I., Tamura, and Futai, M. (1990). Human gastric (H/K)-ATPase gene: Similarity to (Na/K)-ATPase genes in exon/intron organisation but difference in control region. J. Biol. Chem. 265: 9027–9032.Google Scholar
  23. Maeda, M. and Oshiman, K.I. (1992). The rat H,K ATPase p subunit gene and recognition of its control region by gastric DNA binding protein. J. Biol. Chem. 266: 21584–21588.Google Scholar
  24. Magyar, J.P. and Schanchner, M. (1993). Genomic structure of the adhesion molecule of glia (AMOG, Na/K-ATPase p2 subunit). Nucleic Acids Res. 18: 6695–6696.CrossRefGoogle Scholar
  25. Morley, G.P., Callaghan, J.M., Rose, J.B., Toh, B.H., Gleeson, P.A., and van Driel, I.R. (1992). The Mouse Gastric H/K ATPase p Subunit: Gene Structure and Co-Ordinate Expression with the a Subunit During Ontogeny. J. Biol. Chem. 267: 1165–1174.PubMedGoogle Scholar
  26. Newman, P.R., Greeb, J., Keeton, T.J., Reyes, A.A., and Shull, G.E. (1990). Structure of the human H,K-ATPase gene and comparison of the 5’-flanking sequences of the human and rat genes. DNA Cell Biol. 9: 749–762.CrossRefPubMedGoogle Scholar
  27. Okamoto, C.T., Karpilow, J.M., Smolka, A. and Forte, J.G. (1990) Isolation and characterization of gastric microsomal glycoproteins. Evidence for a glycosylated p-subunit of the H+/K+- ATPase. Biochim.Biophys.Acta 1037: 360–372.CrossRefPubMedGoogle Scholar
  28. Pettitt, J.M., Toh, B.H., Callaghan, J.M., Gleeson, P.A., and van Driel, I.R. (1993). Gastric parietal cell development: Expression of the H/K ATPase subunits coincides with the biogenesis of the secretory membranes. Immun. Cell Biol. 71: 191–200.CrossRefGoogle Scholar
  29. Reuben, M.A., Lasater, L.S. and Sachs, G. (1990) Characterization of a β-subunit of the gastric H+/K+-transporting ATPase. Proc.Natl.Acad.Sci.U.S.A. 57: 6767–6771.CrossRefGoogle Scholar
  30. Rabon, E.C. and Reuben, M.A. (1990). The mechanism and structure of the gastric H,K ATPase. Annu. Rev. Physiol. 52: 321–344.CrossRefPubMedGoogle Scholar
  31. Sachs, G., Besancon, M., Shin, J.M., Mercier, F., Munson, K., and Hersey, S. (1992). Structural Aspects of the Gastric H,K-ATPase. J. Bioenerg. Biomembrane. 24: 301–308.PubMedGoogle Scholar
  32. Saxen, L. (1987). Organogenesis of the kidney ( Cambridge: Cambridge University).CrossRefGoogle Scholar
  33. Shull, G.E. (1990) cDNA Cloning of the β-Subunit of the Rat Gastric H,K-ATPase. J.Biol.Chem. 265:12123–12126.Google Scholar
  34. Sweetser, D.A., Birkenmeier, E.H., Hoppe, P.C., McKeel, D.W., and Gordon, J.I. (1988). Mechanisms underlying generation of gradients in gene expression within the intestine: an analysis using transgenic mice containing fatty acid binding protein-human growth hormone genes. Genes. Dev. 2: 1318–1332.CrossRefPubMedGoogle Scholar
  35. Toh, B.H., Gleeson, P.A., Simpson, R.J., Moritz, R.L., Callaghan, J., Goldkorn, I., Jones, C.M., et al. (1990) The 60–90 kDa parietal cell autoantigen associated with autoimmune gastritis is a β subunit of the gastric H+/K+-ATPase (proton pump). Proc.Natl.Acad.Sci.U.S.A. 57: 6418–6422.CrossRefGoogle Scholar
  36. Verlander, J.W., Madsen, K.M., and Tisher, C.C. (1991). Structural-functional features of proton and bicarbonate transport in the rat collecting duct. Sem. Nephrol. 11: 465–478.Google Scholar
  37. Wingo, C.S. and Cain, B.D. (1993). The Renal H-K-ATPase: Physiological Significance and Role in Potassium Homeostasis. Annu. Rev. Physiol. 55: 323–347.CrossRefPubMedGoogle Scholar
  38. Wingo, C.S. (1989). Active proton secretion and potassium absorption in the rabbit outer medullary collecting duct: functional evidence for H+-K+-ATPase. J. Clin. Invest. 84: 361–365.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Wingo, C.S., Madsen, K.M., Smolka, A., and Tisher, C.C. (1990). H-K-ATPase immunoreactivity in cortical and outer medullary collecting duct. Kidney Int. 38: 985–990.CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • Ian R. van Driel
    • 1
  • Paul A. Gleeson
    • 1
  • Seong-Seng Tan
    • 2
  • Ban-Hock Toh
    • 1
  1. 1.Department of Pathology and ImmunologyMonash University Medical SchoolPrahranAustralia
  2. 2.Department of AnatomyThe University of MelbourneParkvilleAustralia

Personalised recommendations