Advertisement

Endoprothetik pp 114-126 | Cite as

Ganganalyse als biomechanisches Werkzeug zur Entwicklung von künstlichen Gelenken

  • Urs P. Wyss
  • Patrick A. Costigan

Zusammenfassung

Die Geometrie und Anordnung der Knochen, Bänder, Muskeln und anderer Weichteile ist ein fein abgestimmter Mechanismus, der die Gelenkbewegung steuert. Störungen der unteren Extremitäten in diesem Zusammenspiel führen zu Veränderungen des Ganges. Degenerative Gelenkerkrankungen [11,19], Unfälle oder chirurgische Eingriffe, wie Osteotomien [23] und Arthroplastiken [2], können diese Veränderungen bewirken. Die Ganganalyse ist deshalb eine wichtige Hilfe in der Entwicklung von künstlichen Gelenken für die unteren Extremitäten. Sie liefert Bewegungs-, Kraft- und Drehmomentdaten für verschiedene Tätigkeiten bei Einzelpersonen und Personengruppen. Die Resultate werden in bezug auf den Ersatz von Gelenken besprochen.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Andersson GBJ, Andriacchi TP, Galante JO (1981) Correlations between changes in gait and in clinical status after knee arthroplasty. Acta Orthop Scand 52: 569–573PubMedCrossRefGoogle Scholar
  2. 2.
    Andriacchi TP, Ogle JA, Galante JO (1977) Walking speed as a basis for normal and abnormal gait measurements. J Biomech 10: 261–268PubMedCrossRefGoogle Scholar
  3. 3.
    Andriacchi TP, Galante JO, Fermier RW (1982) The influence of total knee-replacement design on walking and stair-climbing. J Bone Joint Surg Am 64: 1328–1335PubMedGoogle Scholar
  4. 4.
    Bergmann G, Rohlmann A, Graichen F (1989) In-vivo-Messung der Hüftgelenkbelastung, 1. Teil: Krankengymnastik. Z Orthop 127: 672–679Google Scholar
  5. 5.
    Bernstein N (1935) Untersuchungen über die Biodynamik der Lokomotion, Bd 1: Biodynamik des Ganges des normalen erwachsenen Mannes. WIEM, Sov. Union, Moscow LeningradGoogle Scholar
  6. 6.
    Braune W, Fischer O (1895) Der Gang des Menschen, 1. Teil, Versuche am unbelasteten und belasteten Menschen. Abhandl. d. Math-Phys. Kl. K. Sächs. Gesellsch. Wissensch.Google Scholar
  7. 7.
    Bresler B, Frankel JP (1950) The forces and movements in the leg during level walking. Trans ASME 72: 27–35Google Scholar
  8. 8.
    Costigan PA, Wyss UP, Deluzio KJ, Li J (1992) Semiautomatic three-dimensional knee motion assessment system. Med Biol Eng Comput 30: 343–350PubMedCrossRefGoogle Scholar
  9. 9.
    Deluzio KJ, Wyss UP, Li J, Costigan PA (1993) A procedure to validate three-dimensional motion assessment systems. J Biomech 26: 753–759PubMedCrossRefGoogle Scholar
  10. 10.
    Harrington HJ (1976) A bioengineering analysis of force actions at the knee in normal and pathological gait. Biomed Eng 11: 167–172PubMedGoogle Scholar
  11. 11.
    Harrington IJ (1983) Static and dynamic loading patterns in knee joints with deformities. J Bone Joint Surg Am 65: 247–259PubMedGoogle Scholar
  12. 12.
    Johnson F, Leitl S, Waugh W (1980) The distribution of load across the knee. J Bone Joint Surg Br 62: 346–349PubMedGoogle Scholar
  13. 13.
    Kadaba MP, Ramakrishnan HK, Wootten ME (1990) Measurement of lower extremity kinematics during level walking. J Orthop Res 8: 383–392PubMedCrossRefGoogle Scholar
  14. 14.
    Knüsel O, Wyss UP, Frey O. (1984) Was bringt die Ganganalyse im Rahmen der orthopädischen Rehabilitation? Swiss Med 6/5a: 30–34Google Scholar
  15. 15.
    Lafortune MA, Cavanagh PR, Sommer HJ, Kalenak A (1992) Three-dimensional-kinematics of the human knee during walking. J Biomech 25: 347–357PubMedCrossRefGoogle Scholar
  16. 16.
    Li J (1992) An integrated gait analysis system (QGAIT) for evaluation of individual loading patterns at knee joint during gait. PhD Thesis, Queen’s University, Kingston, CanadaGoogle Scholar
  17. 17.
    Li J, Wyss UP, Costigan PA, Deluzio KJ (1993) An integrated procedure to assess knee- joint kinematics during gait using an optoelectric system and standardized X-rays. J Biomed Eng 15: 392–400PubMedCrossRefGoogle Scholar
  18. 18.
    Mattsson E, Broström LA, Linnarsson D (1990) Changes in walking ability after knee replacement. Int Orthop (SICOT) 14: 277–280CrossRefGoogle Scholar
  19. 19.
    Messier SP, Loeser RF, Hoover JL, Semble EL, Wise CM (1992) Osteoarthritis of the knee: effect on gait, strength, and flexibility. Arch Phys Med Rehabil 73: 29–36PubMedGoogle Scholar
  20. 20.
    Morrison JB (1968) Bioengineering analysis of force actions transmitted by the knee joint. Bio Med Eng 3: 164–170Google Scholar
  21. 21.
    Morrison JB (1969) Function of the knee joint in various activities. Bio Med Eng 4: 573–580Google Scholar
  22. 22.
    Morrison JB (1970) The mechanics of the knee joint in relation to normal walking. J Biomech 3: 51–61PubMedCrossRefGoogle Scholar
  23. 23.
    Prodromos CC, Andriacchi TP, Galante JO (1985) A relationship between gait and clinical changes following high tibial osteotomy. J Bone Joint Surg Am 67: 1188–1193PubMedGoogle Scholar
  24. 24.
    Radin EL, Yang KH, Riegger C, Kish VL, O’Connor JJ (1991) Relationship between lower limb dynamics and knee joint pain. J Orthop Res 9: 398–405PubMedCrossRefGoogle Scholar
  25. 25.
    Seireg A, Arvikar RJ (1975) The prediction of muscular load sharing and joint forces in lower extremities during walking. J Biomech 8: 89–102PubMedCrossRefGoogle Scholar
  26. 26.
    Siu D, Cooke TDV, Broekhoven LD, Lam M, Fisher B, Saunders G, Challis TW (1991) A standardized technique for lower limb radiography. Invest Radiol 26: 71–77PubMedCrossRefGoogle Scholar
  27. 27.
    Weber W, Weber E (1836) Mechanik der menschlichen Gehwerkzeuge. Dieterichsche Buchhandlung, GöttingenGoogle Scholar
  28. 28.
    Weidenhielm L, Svensson OK, Broström LA (1992) Change in adduction moment about the knee after high tibial osteotomy and prosthetic replacement in osteoarthritis of the knee. Clin Biomech 7: 91–96CrossRefGoogle Scholar
  29. 29.
    Weinstein JN, Andriacchi TP, Galante JO (1986) Factors influencing walking and stairclimbing following unicompartmental knee arthroplasty. J Arthroplasty 1: 109–115PubMedCrossRefGoogle Scholar
  30. 30.
    Whittle MW, Jefferson RJ (1989) Functional biomechanical assessment of the Oxford meniscal knee. J Arthroplasty 4: 231–243PubMedCrossRefGoogle Scholar
  31. 31.
    Winter DA (1979) Biomechanics of human movement. Wiley, New YorkGoogle Scholar
  32. 32.
    Wyss UP, McBride I, Murphy L, Olney SJ, Cooke TDV (1990) Joint reaction forces at the metatarsal-phalangeal joint in a normal elderly population. J Biomech 23: 977–984PubMedCrossRefGoogle Scholar
  33. 33.
    Wyss UP, Costigan PA, Okuno M, Sorbie C (1994) Net bone-on-bone forces at the knee joint. Canadian Orthopaedic Research Society, Winnipeg, CanadaGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • Urs P. Wyss
  • Patrick A. Costigan

There are no affiliations available

Personalised recommendations