Advertisement

Was lehren uns 30 Jahre Erfahrung mit dem künstlichen Gelenkersatz?

  • H.-G. Willert
  • M. Semlitsch

Zusammenfassung

Seit mehr als 25 Jahren verfolgen wir die Entwicklung des künstlichen Gelenkersatzes, in dessen bewegter Geschichte sich Erfolge und Mißerfolge aneinanderreihen. An dieser Entwicklung haben wir selbst mitgearbeitet und auf den Gebieten der Orthopädie, der pathologischen Anatomie und der Biomaterialforschung eigene Erfahrungen gemacht. Die Lehren, die wir hier aus den Erfolgen und Mißerfolgen ziehen, spiegeln deshalb auch in erster Linie unsere persönlichen, subjektiven Ansichten wider.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Agins HJ, Alcock NW, Bansal M, Salvati EA, Wilson PD, Pellici PM, Bullough PG (1988) Metallic wear in failed titanium-alloy total hip replacements. J Bone Joint Surg 70 [Am]: 347–356PubMedGoogle Scholar
  2. 2.
    Amstutz HC, Clarke IC (1991) Evolution of hip arthroplasty. In: Amstutz HC (ed) Hip arthroplasty. Churchill Livingstone, New York Edinburgh London Melbourne Tokyo, pp 1–14Google Scholar
  3. 3.
    Amstutz HC, Yao J, Dorey FJ, Gruen TA (1991) Acrylic fixation — Stem and socket replacement: Results, principles, and technique. In: Amstutz HC (ed) Hip arthroplasty. Churchill Livingstone, New York Edinburgh London Melbourne Tokyo, pp 239–260Google Scholar
  4. 4.
    Bergmann G, Graichen F, Rohlmann A (1992) Loading of hip implants by torsional moments. 38 th Annual Meeting, Orthopaedic Research Society, Washington, D.C., February 17–20, p 19Google Scholar
  5. 5.
    Bergmann G, Graichen F, Rohlmann A (1992) Load reduction of hip implants by forearm crutches. VIII Meeting of the European Society of Biomechanics, Rome Italy, June 21–24, p 300Google Scholar
  6. 6.
    Bergmann G, Graichen F, Rohlmann A (1993) Hip joint loading during walking and running, measured in two patients. J Biomech 26 /8: 969–990PubMedGoogle Scholar
  7. 7.
    Black J, Sherk H, Bonini J, Rostocker WR, Schajowitz F, Galante J (1990) Metallosis associated with a stable titanium-alloy femoral component in total hip replacement. J Bone Joint Surg [Am] 72: 126–130Google Scholar
  8. 8.
    Bobyn JD, Pilliar RM, Cameron HU, Weatherly GC (1980) The optimum pore size for the fixation of porous-surfaced metal implants by the ingrowth of bone. Clin Orthop 150: 263–270PubMedGoogle Scholar
  9. 9.
    Carlsson AS, Gentz GF, Linder L (1983) Localized bone resorption in the femur in mechanical failure of cemented total hip arhroplasties. Acta Orthop Scand 54: 396–402PubMedGoogle Scholar
  10. 10.
    Charnley J (1960) Anchorage of femoral head prosthesis to the shaft of femur. J Bone Joint Surg [Br] 42: 28Google Scholar
  11. 11.
    Charnley J (1967) Total prosthetic replacement of the hip. Centre for Hip Surgery, Wrightington Hospital, Internal Publication No 4, September 1967Google Scholar
  12. 12.
    Charnley J (1970) Acrylic cement in orthopaedic surgery. Churchill Livingstone, Edinburgh LondonGoogle Scholar
  13. 13.
    Charnley J (1975) Fracture of femoral prostheses in total hip replacement: A clinical study. Clin Orthop 111: 105–120PubMedGoogle Scholar
  14. 14.
    Charnley J, Kettlewell J (1965) The elimination of slip between prosthesis and femur. J Bone Joint Surg [Br] 47: 56Google Scholar
  15. 15.
    Engh CA, Bobyn JD, Glassman AH (1987) Porous coated hip replacement. The factors governing bone ingrowth, stress shielding, and clinical results. J Bone Joint Surg [BR] 69: 45Google Scholar
  16. 16.
    Engh CA, Bobyn JD (1988) Results of porous-coated hip replacement using the AML prosthesis. In: Fitzgerald R jr (ed) Non-cemented total hip arthroplasty. Raven, New York, pp 393–406Google Scholar
  17. 17.
    Engh CA, McGovern TF, Engh CA jr, Macalino GE (1993) Clinical experience with the anatomic medullary locking (AML) prosthesis for primary total hip replacement. In: Morrey BF (ed) Biological, material and mechanical considerations of joint replacement. Raven, New York, pp 167–184Google Scholar
  18. 18.
    Fiechter TH, Stanisic M, Frei W (1988) Granulombildung bei nicht gelockerten TEP. Orthop Praxis 6: 397Google Scholar
  19. 19.
    Follaci FM, Charnley J (1969) A comparison of the results of femoral head prostheses with and without cement. Clin Orthop 62: 156–161Google Scholar
  20. 20.
    Galante J, Rostoker W, Lueck R, Ray RD (1971) Sintered fiber metal composites as a basis for attachments of implants to bone. J Bone Joint Surg [Am] 53: 101Google Scholar
  21. 21.
    Galante J (1988) Clinical results with the HGP cementless total hip prosthesis. In: Fitzgerald R jr (ed) Non-cemented total hip arthroplasty. Raven, New York, pp 427–431Google Scholar
  22. 22.
    Geduldig D, Dörre E, Happel M, Lade R, Prüssner P, Willert HG, Zichner L (1975) Welche Aussicht hat die Biokeramik als Implantatmaterial in der Orthopädie? Med Orthop Tech 6: 138–143Google Scholar
  23. 23.
    Gierse H, Maaz B, Pelster C (1988) Probleme der Endler-Pfanne — Diskrepanz zwischen radiologischem und klinischem Befund bei mittelfristigen Ergebnissen. Orthop Praxis 6: 368–369Google Scholar
  24. 24.
    Goldring SR, Jasty M, Roelke M, Petrison KK, Bringhurst FR, Schiller AL, Harris WH (1988) Biological factors that influence the development of a bone-cement membrane. In: Fitzgerald R jr (ed) Non-cemented total hip arthroplasty. Raven, New York, pp 35–39Google Scholar
  25. 25.
    Gluck Th (1890) Die Invaginationsmethode der Osteo- und Arthroplastik. Berlin Klin Wochenschr 33: 732–757Google Scholar
  26. 26.
    Gluck Th (1891) Referat über die durch das moderne chirurgische Experiment gewonne- nen positiven Resultate, betreffend die Naht und den Ersatz von Defekten höherer Gewebe, sowie über die Verwertung resorbierbarer und lebendiger Tampons in der Chirurgie. Arch Klin Chir 41: 187Google Scholar
  27. 27.
    Haboush EJ (1953) A new operation for arthroplasty of the hip based on biomechanics, photoelasticity, fast setting dental acrylic and other considerations. Bull Hosp Joint Dis NY 14: 242Google Scholar
  28. 28.
    Harris WH, Schiller AL, Scholler JM, Freiberg RA, Scott R (1976) Extensive localized bone resorption in the femur following total hip replacement. J Bone Joint Surg [Am] 58: 612Google Scholar
  29. 29.
    Heilmann K, Diezel PB, Rossner JA, Brinkmann KA (1975) Morphological studies in tissues surrounding alloarthroplastic joints. Virchows Arch A Pathol Anat Histol 366: 93–106PubMedGoogle Scholar
  30. 30.
    Henrichsen E, Jansen K, Krogh-Poulsen W (1953) Experimental investigations of the tissue reactions to acrylic plastics. Acta Orthop scand 22: 141Google Scholar
  31. 31.
    Henssge EJ, Peschel U (1987) Anatomisch angepaßte Hüftendoprothese mit spöngios-metallischer Oberfläche. Chir Praxis 37: 503–512Google Scholar
  32. 32.
    Herren Th, Remagen W, Schenk R (1987) Histologic der Implantat-Knochengrenze bei zementierten und nicht-zementierten Endoprothesen. Orthopäde 61: 239–251Google Scholar
  33. 33.
    Hofmann AA, Bloebaum RD, Rubman MH, Bachus KN, Plaster RL (1992) Microscopic analysis of autograft bone applied at the interface of porous-coated devices in human cancellous bone. Int Orthop 16: 349–358PubMedGoogle Scholar
  34. 34.
    Huddlestone HD (1988) Femoral lysis after cemented hip arthroplasty. J Arthroplasty 3: 285–297Google Scholar
  35. 35.
    Jasty MJ, Floyd WE, Schiller AL, Goldring SR, Harris WH (1986) Localized osteolysis in stable, non-septic total hip replacement. J Bone Joint Surg [Am] 68: 912Google Scholar
  36. 36.
    Jones LC, Hungerford DS (1987) Cement disease. Clin Orthop 225: 192–206Google Scholar
  37. 37.
    Judet J, Judet R (1950) Use of an artificial femoral head for arthroplasty of the hip joint. J Bone Joint Surg [Br] 32: 166Google Scholar
  38. 38.
    Judet R, Siguier M, Brumpt B, Judet T (1978) A noncemented total hip prosthesis. Clin Orthop 137: 76–84PubMedGoogle Scholar
  39. 39.
    Kiaer S (1951) Preliminary report on hip arthroplasty by use of acrylic head. Soc Int Chir Orthop, Stockholm 1951. Lielens, Bruxelles, p 533Google Scholar
  40. 40.
    Kiaer S, Jansen K, Krogh-Poulsen W, Henrichsen E (1951) Experimental investigation of the tissue reaction to acrylic plastics. Soc Int Chir Orthop, Stockholm 1951. Lielens, Bruxelles, p 534Google Scholar
  41. 41.
    Knahr K, Böhler M, Frank P, Plenk H, Salzer M (1987) Fünf-Jahres-Erfahrungen mit der Polyäthylen-Füßchenpfanne Modell Gersthof. Z Orthop 125: 375–381PubMedGoogle Scholar
  42. 42.
    Lennox DW, Schofield BH, McDonald DF, Riley LH jun (1987) A histologic comparison of aseptic loosening of cemented, press-fit, and biolologic ingrowth prostheses. Clin Orthop 225: 171PubMedGoogle Scholar
  43. 43.
    Lintner F, Böhm G, Bösch P, Endler M, Zweymüller K (1988) Ist hochdichtes Polyäthylen als Implantatmaterial zur zementfreien Verankerung von Hüftendoprothesen geeignet? Z Orthop 126: 688–692PubMedGoogle Scholar
  44. 44.
    Lintner F, Zweymüller K, Brand G (1986) Tissue reaction to titanium endoprostheses — autopsy studies in four cases, J Arthroplasty 1: 183–195PubMedGoogle Scholar
  45. 45.
    Lombardi AV, Mallory TH, Vaughn BK, Droulliard P (1989) Aseptic loosening in total hip arthroplasty secondary to osteolysis induced by wear debris from titanium-alloy modular femoral heads. J Bone Joint Surg [Am] 71: 1337–1342Google Scholar
  46. 46.
    Lord G, Bancel P (1983) The madreporique cementless total hip arthroplasty: new experimental data and a seven-year follow-up study. Clin Orthop 176: 67–76PubMedGoogle Scholar
  47. 47.
    Lord G, Hardy JR, Kummer FJ (1979) An uncemented total hip replacement. Clin Orthop 141: 2–16PubMedGoogle Scholar
  48. 48.
    Lorenz M, Semlitsch M, Panic B, Weber H, Willert HG (1978) Dauerschwingfestigkeit von Kobaltbasislegierungen hoher Korrosionsbeständigkeit für künstliche Hüftgelenke. Technische Rundschau Sulzer 1 /1978, S. 31–40Google Scholar
  49. 49.
    Maguire JK, Cosci MF, Lynch MH (1987) Foreign body reaction to polymeric debris following total hip arthroplasty. Clin Orthop 216: 213PubMedGoogle Scholar
  50. 50.
    McKee GK, Watson-Farrar J (1966) Replacement of arthritic hips by the McKee-Farrar prosthesis. J Bone Joint Surg [Br] 48: 245–259Google Scholar
  51. 51.
    McKee GK (1970) Development of total prosthetic replacement of the hip. Clin Orthop 72: 85PubMedGoogle Scholar
  52. 52.
    McLelland SJ, James RL, Simmons N (1986) Atraumatic removal of a well-fixed porous ingrowth hip prosthesis. Orthop Rev 15: 387–392Google Scholar
  53. 53.
    Mirra JM, Marder RA, Amstutz HC (1982) The pathology of failed total joint arthroplasty. Clin Orthop 170: 175–183PubMedGoogle Scholar
  54. 54.
    Moore AT (1952) Metal hip joint. A new self-locking metallic prosthesis. Sth med J (Bghm Ala): 45: 10–15Google Scholar
  55. 55.
    Moore AT (1957) The self-locking metal hip prosthesis. J Bone Joint Surg [Am] 39: 811Google Scholar
  56. 56.
    Morscher E, Dick W, Kernen V (1982) Cementless fixation of polyethylene acetabular component in total hip arthroplasty. Arch Orthop Trauma Surg 99: 223–230PubMedGoogle Scholar
  57. 57.
    Müller M, Buchhorn GH (1994) Clinical Experience with total hip replacements — A review of the available literature. In: Buchhorn GH, Willert HG (eds) Technical principles, design and safety of joint implants. Hogrefe & Huberl, Seattle Toronto Bern Göttingen, pp 353–368Google Scholar
  58. 58.
    Patka P, Slingerland ACH, De Groot K, Van Velzen D (1991) Attrition of femoral head and neck prosthesis. In: Willert HG, Buchhorn GH (eds) Ultra-High Molecular weight polyethylene as biomaterial in orthopedic surgery. Hogrefe & Huber, Toronto Lewistin NY Bern Göttingen Stuttgart, pp 232–235Google Scholar
  59. 59.
    Pazzaglia UE, Ghisellini F, Barbieri D, Ceciliani L (1988) Failure of the stem in total hip replacement — A study of aetiology and mechanism of failure in 13 cases. Arch Orthop Trauma Surg 107: 195–202PubMedGoogle Scholar
  60. 60.
    Remagen W, Morscher E (1984) Histological results with cement-free implanted hip sockets of polyethylene. Arch Orthop Trauma Surg 103: 145–151PubMedGoogle Scholar
  61. 61.
    Revell PA, Weightman B, Freeman MAR, Vernon-Roberts B (1978) The production and biology of polyethylene wear debris. Arch Orthop Traum Surg 91: 167Google Scholar
  62. 62.
    Rose RM, Radin EL (1982) Wear of polyethylene in total hip prosthesis. Clin Orthop 170: 107–115PubMedGoogle Scholar
  63. 63.
    Schenk RK, Wehrli U (1989) Zur Reaktion des Knochens auf eine zementfreie SL-Femur-Revisionsprothese — Histologische Befunde an einem fünfeinhalb Monate post operationem gewonnenen Autopsiepräparat. Orthopäde 18: 454–462PubMedGoogle Scholar
  64. 64.
    Schmalzried TP, Finerman GAM (1988) Osteolysis in aseptic failure. In: Fitzgerald R jun (ed) Non-cemented total hip arthroplasty. Raven, New York, p 303Google Scholar
  65. 65.
    Schmidt M (1992) Spezifische Adsorption organischer Moleküle auf oxidiertem Titan: „Bioaktivität“auf molekularem Niveau. Osteologie 1: 222–235Google Scholar
  66. 66.
    Schmidt M, Steinemann SG (1991) XPS studies of amino acids adsorbed on titamium dioxide surfaces. Fresenius J Anal Chem 341: 412–415Google Scholar
  67. 67.
    Scott WW jr, Riley LH, Dorfman HD (1985) Focal lytic lesions associated with femoral stem loosening in total hip prosthesis. AJR 144: 977–982Google Scholar
  68. 68.
    Semlitsch M (1992) 25 years Sulzer development of implant materials for total hip prostheses. Sulzer Medicajournal Spring 1992Google Scholar
  69. 69.
    Semlitsch M, Lehmann M, Weber H, Dörre E, Willert HG (1977) New prospects for a prolonged functional life-span of artificial hip joints by using the material combination polyethylene/aluminium oxide ceramic/metal. J Biomed Mat Res 11: 536–552Google Scholar
  70. 70.
    Semlitsch M, Lorenz M, Wintsch W (1973) Bruchuntersuchungen an gegossenen und geschmiedeten Kobaltbasis-Legierungen mit dem Rasterelektronen-Mikroskop und Verhütungsmaßnahmen gegen Ermüdungsbrüche und Hüftgelenkendoprothesen. Beitr Elektronenmikroskop Direktabb Oberfl 6: 263–286Google Scholar
  71. 71.
    Semlitsch M, Panic B (1980) Corrosion fatigue testing of femoral head prostheses made of implant alloys of different fatigue resistance. In: Hastings GW, Williams DF (eds) Mechanical properties of biomaterials. Wiley & Sons, New York pp 323–335Google Scholar
  72. 72.
    Semlitsch M, Panic B (1983) Ten years of experience with test criteria for fracture-proof anchorage stems of artificial hip joints. Engin Med 12: 185–198Google Scholar
  73. 73.
    Semlitsch M, Streicher RM, Weber H (1989) Verschleißverhalten von Pfannen und Kugeln aus CoCrMo-Gußlegierung bei langzeitig implantierten Ganzmetall-Hüftprothesen. Orthopäde 18: 377–381PubMedGoogle Scholar
  74. 74.
    Semlitsch M, Streicher RM, Weber H (1994) Long-term results with metal/metal pairing in artificial hip joints. In: Buchhorn GH, Willert HG (eds) Technical principles, design and safety of joint implants. Hogrefe & Huber, Seattle Toronto Bern Göttingen, pp 62–67Google Scholar
  75. 75.
    Semlitsch M, Weber H (1992) Titanlegierungen für zementlose Hüftprothesen. In: Hipp E, Gradinger R, Ascherl R (Hrsg) Die zementlose Hüftprothese. Demeter, Gräfelfingen, S 18–26Google Scholar
  76. 76.
    Semlitsch M, Weber H, Streicher RM, Schön R (1992) Joint replacement components made of hot-forged and surface-treated Ti-6AL-7Nb alloy. Biomaterials 13: 781–788PubMedGoogle Scholar
  77. 77.
    Semlitsch M, Willert HG, Dörre E (1975) Neue Werkstoffpaarung A1203 — Keramik/ Polyaethylen zur Verminderung des Polyaethylenabriebs bei Gelenkpfannen von Hüfttotalendoprothesen. Med Orthop Tech 6: 143–144Google Scholar
  78. 78.
    Spotorno L, Schenk RK, Dietschi C, Romagnoli S, Mumenthaler A (1987) Unsere Erfahrungen mit nicht-zementierten Prothesen. Orthopäde 16: 225–238PubMedGoogle Scholar
  79. 79.
    Steinemann SG, Mäusli PA (1988) Titanium alloys for surgical implants — biocompatibility from physicochemical principles. In: Lacombe P, Tricot R, Beranger G (eds) Sixth World Conference on Titanium. Les éditions de physique, Les Ulis pp 535–540Google Scholar
  80. 80.
    Streicher RM, Schön R, Semlitsch M (1990) Untersuchung des tribologischen Verhaltens von Metall/Metall-Kombinationen für künstliche Hüftgelenke. Biomed Tech 35: 107–111Google Scholar
  81. 81.
    Streicher RM, Weber H, Schön R, Semlitsch M (1991) New surface modification of Ti-6Al-7Nb alloy: Oxygen diffusion hardening. Biomaterials 12: 125–129Google Scholar
  82. 82.
    Stühmer KG (1995) Das Ravensburger Hüftendoprothesensystem: Lamellenschaft und Schraubpfanne. In: METASUL in der Hüftendoprothetik. Huber, BernGoogle Scholar
  83. 83.
    Thompson FR (1954) Two-and-a-half years’ experience with a Vitallium intramedullary hip prosthesis. J Bone Joint Surg [Am] 36: 489Google Scholar
  84. 84.
    Townley CA (1982) Hemi- and total articular replacement arthroplasty of the hip with the fixed femoral cup. Orthop Clin North Am 13: 869PubMedGoogle Scholar
  85. 85.
    Vails J (1952) A new prosthesis for arthroplasty of the hip. J Bone Joint Surg [Br] 34: 308Google Scholar
  86. 86.
    Vernon-Roberts B, Freeman MAR (1976) Morphological and analytical studies of the tissues adjacent to joint prostheses: Investigations into the causes of loosening of prostheses. In: Schaldach M, Hohmann D (eds) Advances in artificial hip and knee joint technology. Springer, Berlin Heidelberg New York, pp 148–186Google Scholar
  87. 87.
    Wagner H, Wagner M (1993) Femur-Revisionsprothese. Z Orthop 131: 574–577PubMedGoogle Scholar
  88. 88.
    Waugh W, Charnley J (1990) The man and the hip. Springer, LondonGoogle Scholar
  89. 89.
    Webb PJ, Wright KWJ, Winter GD (1980) The Monk „Soft top“endoprosthesis — clinical, biomechanical and histopathological observations. J Bone Joint Surg [Br] 62: 174–178Google Scholar
  90. 90.
    Weber BG, Fiechter Th (1989) Polyäthylen-Verschleiß und Spätlockerung der Totalprothese des Hüftgelenkes. Orthopäde 18: 370–376PubMedGoogle Scholar
  91. 91.
    Weightman B (1977) Friction, lubrication and wear. In: Swanson SAV, Freeman MAR (eds) The scientific basis of joint replacement. Pitman Medical, Turnbridge Wells, United Kingdom, p 46Google Scholar
  92. 92.
    Wiles P (1957) The Surgery of the osteo-arthritic hip. Br J Surg 45: 488–497Google Scholar
  93. 93.
    Willert HG (1973) Tissue reactions around joint implants and bone cement. In: Chapchal G (ed) Arthroplasty of the hip. Thieme, Stuttgart, pp 11–21Google Scholar
  94. 94.
    Willert HG (1991) Ein neues Hüftgelenkendoprothesensystem für die Implantation mit Knochenzement. In: Neugebauer H (Hrsg) Was gibt es neues in der Medizin? Müller, Wien, S 141–148Google Scholar
  95. 95.
    Willert HG (1991) Differences and similarities of osteolyses from particulate polyethylene and PMMA-bone cement. In: Willert HG, Buchhorn GH (eds) Ultra-high molecular weight polyethylene as biomaterial in orthopedic surgery. Hogrefe & Huber, Toronto Lewiston NY Bern Göttingen Stuttgart, pp 89–103Google Scholar
  96. 96.
    Willert HG, Bertram H, Buchhorn GH (1990) Osteolysis in alloarthroplasty of the hip, the role of ultra high molecular weight polyethylene wear particels. Clin Orthop 258: 95–107PubMedGoogle Scholar
  97. 97.
    Willert HG, Buchhorn GH (1992) Biologische Fixation und knöcherne Reaktion auf zementlose Implantate — Heilung, Integration, Irritation. In: Hipp E, Gradinger R, Ascherl R (Hrsg) Die zementlose Hüftprothese. Demeter, Gräfelfingen, S 49–53Google Scholar
  98. 98.
    Willert HG, Buchhorn GH (1993) Particle disease due to wear of ultrahigh molecular weight polyethylene. Findings from retrieval studies. In: Morrey BF (ed) Biological, material and mechanical considerations of joint replacement. Raven, New York, pp 87–102Google Scholar
  99. 99.
    Willert HG, Buchhorn GH, Hess Th (1989) Die Bedeutung von Abrieb und Materialer-müdung bei der Prothesenlockerung an der Hüfte. Orthopäde 18: 350–369PubMedGoogle Scholar
  100. 100.
    Willert HG, Lintner F (1987) Morphologie des Implantatlagers bei zementierten und nichtzementierten Gelenkimplantaten. Langenbecks Arch Chir 372: 447–455PubMedGoogle Scholar
  101. 101.
    Willert HG, Ludwig J, Semlitsch M (1974) Reaction of bone to methacrylate after hip arthroplasty. J Bone Joint Surg [Am] 56: 1368–1382Google Scholar
  102. 102.
    Willert HG, Puis P (1972) Die Reaktion des Knochens auf Knochenzement bei der Alloarthroplastik der Hüfte. Arch Orthop Unfallchir 72: 33–71PubMedGoogle Scholar
  103. 103.
    Willert HG, Semlitsch M (1976) Tissue reactions to plastic and metallic wear products of joint endoprostheses. In: Gschwendt N, Debrunner HU (eds) Total hip prosthesis. Huber, Bern Stuttgart Vienna, pp 205–239Google Scholar
  104. 104.
    Willert HG, Semlitsch M (1977) Reactions of the articular capsule to wear products of artificial joint prostheses. J Biomed Mater Res 11: 157–164PubMedGoogle Scholar
  105. 105.
    Willert HG, Semlitsch M, Buchhorn GH, Kriete U (1978) Materialverschleiß und Gewebereaktion bei künstlichen Gelenken. Orthopäde 7: 62Google Scholar
  106. 106.
    Wiltse LL, Hall RH, Stenehjem JC (1957) Experimental studies regarding the possible use of self-curing acrylic in orthopaedic surgery. J Bone Joint Surg [Am] 39: 961–972Google Scholar
  107. 107.
    Zichner LP, Willert HG (1992) Comparison of Alumina/Polyethylene and Metal/Polyethylene in clinical trials. Clin Orthop 282: 86–94PubMedGoogle Scholar
  108. 108.
    Zweymüller K, Deckner A, Lintner F, Semlitsch M (1988) Die Weiterentwicklung des zementfreien Systems durch das SL-Schaftprogramm. Med Orthop Tech 108: 10–15Google Scholar
  109. 109.
    Zweymüller K, Lintner F, Semlitsch M (1988) Biologic fixation of a press-fit titanium hip joint endoprosthesis. Clin Orthop 235: 165–206Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • H.-G. Willert
  • M. Semlitsch

There are no affiliations available

Personalised recommendations