Simulation of the Electron-Phonon Interaction in Infinite Dimensions

  • J. K. Freericks
  • M. Jarrell
Part of the Springer Proceedings in Physics book series (SPPHY, volume 78)

Abstract

The electron-phonon interaction corresponding to the Holstein model (with Coulomb repulsion) is simulated in infinite dimensions using a novel quantum Monte Carlo algorithm. The thermodynamic phase diagram includes commensurate charge-density-wave phases, incommensurate charge-density-wave phases, and superconductivity. The crossover from a weak-coupling picture (where pairs both form and condense at T c ) to a strong-coupling picture (where preformed pairs condense at T c ) is illustrated with the onset of a double-well structure in the effective phonon potential.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    W. Metzner and D. Vollhardt, Phys. Rev. Lett. 62, 324 (1989).ADSCrossRefGoogle Scholar
  2. [2]
    T. Holstein, Ann. Phys. 8, 325 (1959).ADSCrossRefGoogle Scholar
  3. [3]
    J. Hubbard, Proc. Royal Soc. London (Ser. A) 276, 238 (1963).ADSCrossRefGoogle Scholar
  4. [4]
    H. Schweitzer and G. Czycholl, Z. Phys. B 77, 327 (1990).Google Scholar
  5. [5]
    W. Metzner, Phys. Rev. B 43, 8549 (1991).ADSCrossRefGoogle Scholar
  6. [6]
    U. Brandt and C. Mielsch, Z. Phys. B 75, 365 (1989).ADSCrossRefGoogle Scholar
  7. [7]
    F. J. Ohkawa, Phys. Rev. B 44, 6812 (1991).Google Scholar
  8. F. J. Ohkawa, Prog. Theor. Phys. Suppl. 106, 95 (1991).ADSCrossRefGoogle Scholar
  9. [8]
    A. Georges and G. Kotliar, Phys. Rev. B 45, 6479 (1992).ADSCrossRefGoogle Scholar
  10. [9]
    M. Jarrell, Phys. Rev. Lett. 69, 168 (1992).ADSCrossRefGoogle Scholar
  11. [10]
    J. E. Hirsch and R. M. Fye, Phys. Rev. Lett. 56, 2521 (1986).ADSCrossRefGoogle Scholar
  12. [11]
    V. Zlatić and B. Horvatić, Solid State Commun. 75, 263 (1990).ADSCrossRefGoogle Scholar
  13. [12]
    E. Müller-Hartmann, Z. Phys. B 74, 507 (1989).ADSCrossRefGoogle Scholar
  14. E. Müller-Hartmann, Z. Phys. B 76, 211 (1989).ADSCrossRefGoogle Scholar
  15. [13]
    M. Jarrell and Th. Pruschke, Z. Phys. B. 90, 187 (1993).ADSCrossRefGoogle Scholar
  16. [14]
    W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes (Cambridge University Press, Cambridge, 1986).Google Scholar
  17. [15]
    Obeying causality is crucial to guarantee that the procedure described here is properly Herglotz.Google Scholar
  18. [16]
    J. K. Freericks, M. Jarrell, and D. J. Scalapino, Phys. Rev. B 48, 6302 (1993).ADSCrossRefGoogle Scholar
  19. J. K. Freericks, M. Jarrell, and D. J. Scalapino, to appear in Europhys. Lett. (1994)Google Scholar
  20. [17]
    We would like to thank H.-B. Schüttler for suggesting we examine an effective phonon potential in this manner. See also J. Mustre de Leon, et al. Phys. Rev. Lett. 68, 3236 (1992).ADSCrossRefGoogle Scholar
  21. J. Zhong and H.-B. Schüttler, Phys. Rev. Lett. 69, 1600 (1992).ADSCrossRefGoogle Scholar
  22. [18]
    C. C. Yu and P. W. Anderson, Phys. Rev. B 29, 6165 (1984).ADSCrossRefGoogle Scholar
  23. [19]
    H. F. Trotter, Proc. Am. Math. Soc. 10 545 (1959).MATHMathSciNetCrossRefGoogle Scholar
  24. M. Suzuki, Prog. Theor. Phys. 56, 1454 (1976)MATHADSCrossRefGoogle Scholar
  25. [20]
    J. E. Hirsch, Phys. Rev. B, 28, 4059 (1983)..ADSCrossRefGoogle Scholar
  26. J. E. Hirsch, 31, 4403 (1985).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • J. K. Freericks
    • 1
  • M. Jarrell
    • 2
  1. 1.Department of PhysicsUniversity of CaliforniaDavisUSA
  2. 2.Department of PhysicsUniversity of CincinnatiCincinnatiUSA

Personalised recommendations