Recent Developments in Monte-Carlo Simulations of First-Order Phase Transitions

  • W. Janke
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 78)

Abstract

In the past few years considerable progress has been made in Monte Carlo simulations of first-order phase transitions and in the analysis of the resulting finite-size data. In this paper special emphasis will be placed on multicanonical simulations using multigrid update techniques, on numerical estimates of interface tensions, and on accurate methods for determining the transition point and latent heat.

Keywords

Covariance Autocorrelation Pyramid 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J.D. Gunton, M.S. Miguel, and P.S. Sahni, in Phase Transitions and Critical Phenomena, Vol. 8, eds. C. Domb and J.L. Lebowitz (Academic Press, New York, 1983).Google Scholar
  2. [2]
    K. Binder, Rep. Prog. Phys. 50 (1987) 783.ADSCrossRefGoogle Scholar
  3. [3]
    For recent reviews, see, e.g., Dynamics of First Order Phase Transitions, eds. H. J. Herrmann, W. Janke, and F. Karseh (World Scientific, Singapore, 1992).Google Scholar
  4. [4]
    B.A. Berg and T. Neuhaus, Phys. Lett. B267 (1991) 249.ADSGoogle Scholar
  5. [5]
    For earlier related ideas, see G.M. Torrie and J.P. Valleau, Chem. Phys. Lett. 28 (1974) 578.ADSCrossRefGoogle Scholar
  6. G.M. Torrie and J.P. Valleau, J. Comp. Phys. 23 (1977) 187.ADSCrossRefGoogle Scholar
  7. [7]
    W. Janke in Ref.[3], p.365; and in Physics Computing’ 92, eds. R.A. de Groot and J. Nadrchal (World Scientific, Singapore, 1993), p.351.Google Scholar
  8. [8]
    A.D. Kennedy, in Lattice’ 92, Nucl. Phys. (Proc. Suppl.) 30 (1993) 96.ADSCrossRefGoogle Scholar
  9. [9]
    B.A. Berg and T. Neuhaus, Phys. Rev. Lett. 68 (1992) 9.ADSCrossRefGoogle Scholar
  10. [10]
    W. Janke, B.A. Berg, and M. Katoot, Nucl. Phys. B382 (1992) 649.ADSCrossRefGoogle Scholar
  11. [11]
    K. Rummukainen, Nucl. Phys. B390 (1993) 621.ADSCrossRefGoogle Scholar
  12. [12]
    B. Grossmann and S. Gupta, Phys. Lett. B319 (1993) 215.ADSGoogle Scholar
  13. [13]
    A. Billoire, T. Neuhaus, and B.A. Berg, Nucl. Phys. B396 (1993) 779.ADSCrossRefGoogle Scholar
  14. [14]
    A. Billoire, T. Neuhaus, and B.A. Berg, Nucl. Phys. B413 (1994) 795.ADSCrossRefGoogle Scholar
  15. [15]
    B.A. Berg, U. Hansmann, and T. Neuhaus, Phys. Rev. B47 (1993) 497.ADSGoogle Scholar
  16. B.A. Berg, U. Hansmann, and T. Neuhaus, Z. Phys. B90 (1993) 229.ADSCrossRefGoogle Scholar
  17. [16]
    B. Grossmann and M.L. Laursen, in Ref.[3], p.375; and Nucl. Phys. B408 (1993) 637.ADSCrossRefGoogle Scholar
  18. B. Grossmann, M.L. Laursen, T. Trappenberg, and U.-J. Wiese, Phys. Lett. B293 (1992) 175.ADSGoogle Scholar
  19. [17]
    K. Binder, in Monte Carlo Methods in Statistical Physics, ed. K. Binder (Springer, New York, 1979), p.1.Google Scholar
  20. [18]
    See also the articles in Finite-Size Scaling and Numerical Simulations of Statistical Systems, ed. V. Privman (World Scientific, Singapore, 1990).Google Scholar
  21. [19]
    A.D. Sokal, Monte Carlo Methods in Statistical Mechanics: tFoundations and New Algorithms, Cours de Troisième Cycle de la Physique en Suisse Romande, Lausanne, 1989; and in Quantum Fields on the Computer, ed. M. Creutz (World Scientific, Singapore, 1992), p.211.Google Scholar
  22. [20]
    C.F. Baillie, Int. J. Mod. Phys. C1 (1990) 91.ADSGoogle Scholar
  23. [21]
    R.H. Swendsen, J.-S. Wang, and A.M. Ferrenberg, in The Monte Carlo Method in Condensed Matter Physics, ed. K. Binder (Springer, Berlin, 1992), p.75.Google Scholar
  24. [22]
    J. Goodman and A.D. Sokal, Phys. Rev. Lett. 56 (1986) 1015.ADSCrossRefGoogle Scholar
  25. J. Goodman and A.D. Sokal, Phys. Rev. D40 (1989) 2035.Google Scholar
  26. [23]
    G. Mack, in Nonperturbative quantum field theory, Cargèse 1987, ed. G. ‘tHooft et al. (Plenum, New York, 1988).Google Scholar
  27. G. Mack and S. Meyer, Nucl. Phys. B (Proc. Suppl.) 17 (1990) 293.ADSCrossRefGoogle Scholar
  28. M. Hasenbusch, S. Meyer, and G. Mack, Nucl. Phys. B (Proc. Suppl.) 20 (1991) 110.ADSCrossRefGoogle Scholar
  29. [24]
    D. Kandel, E. Domany, D. Ron, A. Brandt, and E. Loh, Jr., Phys. Rev. Lett. 60 (1988) 1591.ADSMathSciNetCrossRefGoogle Scholar
  30. D. Kandel, E. Domany, and A. Brandt, Phys. Rev. B40 (1989) 330.ADSGoogle Scholar
  31. [25]
    W. Hackbusch, Multi-Grid Methods and Applications (Springer, Berlin, 1985).MATHGoogle Scholar
  32. S.F. McCormick (ed.), Multigrid Methods. Theory, Applications, and Supercomputing (Dekker, New York, 1988).MATHGoogle Scholar
  33. [26]
    W. Janke and T. Sauer, Chem. Phys. Lett. 201 (1993) 499.Google Scholar
  34. [27]
    W. Janke and T. Sauer, in Proceedings of the Fourth International Conference Path Integrals from me V to MeV: Tutzing ‘92, eds. H. Grabert, A. Inomata, L.S. Schulman, and U. Weiss, (World Scientific, Singapore, 1993), p.17.Google Scholar
  35. [28]
    W. Janke and T. Sauer, FU Berlin preprint FUB-HEP 9/93, to appear in Phys. Rev. E49 (March 1994).Google Scholar
  36. [29]
    W. Janke and T. Sauer, FU Berlin preprint FUB-HEP 15/93, submitted to J. Stat. Phys.Google Scholar
  37. [30]
    R. Toral and A. Chakrabarti, Phys. Rev. B42 (1990) 2445.ADSGoogle Scholar
  38. See also A. Milchev, D.W. Heermann, and K. Binder, J. Stat. Phys. 44 (1986) 749.ADSCrossRefGoogle Scholar
  39. [31]
    These values are comparable with the more familiar order-disorder interface tensions in 2D q-state Potts models with q = 9,14, and 19; cp. Table 2.Google Scholar
  40. [32]
    R.G. Miller, Biometrika 61 (1974) 1MATHMathSciNetGoogle Scholar
  41. B. Efron, The Jackknife, the Bootstrap and other Resampling Plans (SIAM, Philadelphia, PA, 1982).CrossRefGoogle Scholar
  42. [33]
    K. Binder, Phys. Rev. A25 (1982) 1699.ADSGoogle Scholar
  43. K. Binder, Z. Phys. B43 (1981) 119.ADSCrossRefGoogle Scholar
  44. [34]
    For a general review of the Potts model, see e.g. F.Y. Wu, Rev. Mod. Phys. 54 (1982) 235.ADSCrossRefGoogle Scholar
  45. F.Y. Wu, ibid. 55 (1983) 315 (Erratum).ADSCrossRefGoogle Scholar
  46. [35]
    C. Borgs and W. Janke, J. Phys. I (France) 2 (1992) 2011.CrossRefGoogle Scholar
  47. [36]
    J. de Coninck, A. Messager, S. Miracle-Solé, and J. Ruiz, J. Stat. Phys. 52 (1988) 45.MATHADSCrossRefGoogle Scholar
  48. J. de Coninck, A. Messager, S. Miracle-Solé, and J. Ruiz, R. Schonmann, J. Stat. Phys. 52 (1988) 61.CrossRefGoogle Scholar
  49. [37]
    A. Messager, S. Miracle-Solé, J. Ruiz, and S. Shlosman, Commun. Math. Phys. 140 (1991) 275.MATHADSCrossRefGoogle Scholar
  50. [38]
    L. Laanait, Phys. Lett. A124 (1987) 480.ADSMathSciNetGoogle Scholar
  51. [39]
    E. Buffenoir and S. Wallon, J. Phys. A26 (1993) 3045.ADSMathSciNetGoogle Scholar
  52. [40]
    A. Klü mper, A. Schadschneider, and J. Zittartz, Z. Phys. B76 (1989) 247.ADSCrossRefGoogle Scholar
  53. [41]
    A. Klümper, Int. J. Mod. Phys. B4 (1990) 871.ADSGoogle Scholar
  54. [42]
    S. Gupta, preprints HLRZ 22/93, 65/93, Jülich (1993).Google Scholar
  55. [43]
    K. Binder, Phys. Rev. A25 (1982) 1699.ADSGoogle Scholar
  56. K. Binder, Z. Phys. B43 (1981) 119.ADSCrossRefGoogle Scholar
  57. [44]
    W. Janke and S. Kappler, Mainz preprint (1993), to appear in Lattice ‘93, Nucl. Phys. (Proc. Suppl.) B (1994); and preprint in preparation.Google Scholar
  58. [45]
    U. Wolff, Phys. Rev. Lett. 62 (1989) 361.ADSCrossRefGoogle Scholar
  59. [46]
    R.H. Swendsen and J.S. Wang, Phys. Rev. Lett. 58 (1987) 86.ADSCrossRefGoogle Scholar
  60. [47]
    M. E. Fisher and A.N. Berker, Phys. Rev. B26 (1982) 2507.ADSGoogle Scholar
  61. V. Privman and M.E. Fisher, J. Stat. Phys. 33 (1983) 385.ADSMathSciNetCrossRefGoogle Scholar
  62. K. Binder and D.P. Landau, Phys. Rev. B30 (1984) 1477.ADSGoogle Scholar
  63. M.S.S. Challa, D.P. Landau, and K. Binder, Phys. Rev. B34 (1986) 1841.ADSGoogle Scholar
  64. P. Peczak and D.P. Landau, Phys. Rev. B39 (1989) 11932.ADSGoogle Scholar
  65. V. Privman and J. Rudnik, J. Stat. Phys. 60 (1990) 551.MATHADSCrossRefGoogle Scholar
  66. For a review, see V. Privman in Ref.[18]. A special case with α = 2, e.g., happens if the number of stable phases on both sides of the transition are equal, see Refs. [48, 49].Google Scholar
  67. [48]
    C. Borgs and R. Kotecky, J. Stat. Phys. 61 (1990) 79.ADSMathSciNetCrossRefGoogle Scholar
  68. C. Borgs and R. Kotecky, Phys. Rev. Lett. 68 (1992) 1734.ADSCrossRefGoogle Scholar
  69. [49]
    C. Borgs, R. Kotecky, and S. Miracle-Solé, J. Stat. Phys. 62 (1991) 529.ADSCrossRefGoogle Scholar
  70. [50]
    C. Borgs and W. Janke, Phys. Rev. Lett. 68 (1992) 1738.ADSCrossRefGoogle Scholar
  71. [51]
    W. Janke, Phys. Rev. B47 (1993) 14757.ADSGoogle Scholar
  72. [52]
    A.M. Ferrenberg and R.H. Swendsen, Phys. Rev. Lett. 61 (1988) 2635.ADSCrossRefGoogle Scholar
  73. A.M. Ferrenberg and R.H. Swendsen, ibid. 63 (1989) 1658 (Erratum).Google Scholar
  74. [53]
    J. Lee and J.M. Kosterlitz, Phys. Rev. Lett. 65 (1990) 137.MATHADSMathSciNetCrossRefGoogle Scholar
  75. J. Lee and J.M. Kosterlitz, Phys. Rev. B43 (1991) 3265.ADSGoogle Scholar
  76. [54]
    R.J. Baxter, J. Phys. C6 (1973) L445.ADSGoogle Scholar
  77. [55]
    A. Hüller, Z. Phys. B88 (1992) 79.ADSCrossRefGoogle Scholar
  78. R.W. Gerling and A. Hüller, Z. Phys. B90 (1993) 207.ADSCrossRefGoogle Scholar
  79. [56]
    W. Kerler and A. Weber, Phys. Rev. B47 (1993) 11563.ADSGoogle Scholar
  80. [57]
    K. Binder, K. Vollmayr, H.-P. Deutsch, J.D. Reger, M. Scheucher, and D.P. Landau, in Ref.[3], p.253.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • W. Janke
    • 1
  1. 1.Institut für PhysikJohannes Gutenberg-UniversitätMainzGermany

Personalised recommendations