Skip to main content

Numerical Zero-Temperature Results for the 3d Edwards-Anderson Ising Spin Glass

  • Conference paper
Computer Simulation Studies in Condensed-Matter Physics VII

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 78))

  • 170 Accesses

Abstract

A study of the zero temperature properties of the 3d Edwards-Anderson Ising spin glass, by means of multicanonical simulations is reported. Finite size scaling fits of the data are carried out for two hypothetical scenarios: Parisi mean field theory versus a droplet scaling ansatz. With a zero temperature scaling exponent y = 0.72 ±0.12 the data are well described by the droplet scaling ansatz. Alternatively, a description in terms of the Parisi mean field behavior is still possible. The two scenarios give significantly different predictions on lattices of size ≥ 123.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Mézard, G. Parisi, and M.A. Virasoro, Spin Glass Theory and Beyond (World Scientific, 1987).

    Google Scholar 

  2. K.H. Fischer and J.A. Hertz, Spin Glasses (Cambridge University Press, 1991).

    Google Scholar 

  3. D.L. Stein (editor), Spin Glasses and Biology, Directions in Condensed Matter Physics — Vol. 6, (World Scientific, 1992).

    Google Scholar 

  4. R.N. Bhatt and A.P. Young, Phys. Rev. Lett. 54, 924 (1985)

    Article  ADS  Google Scholar 

  5. A.T. Ogielski and I. Morgenstern, Phys. Rev. Lett. 54, 928 (1985).

    Article  ADS  Google Scholar 

  6. A.T. Ogielski, Phys. Rev. B 32, 7384 (1985).

    Article  ADS  Google Scholar 

  7. R.N. Bhatt and A.P. Young, Phys. Rev. B 37, 5606 (1988).

    Article  ADS  Google Scholar 

  8. E. Marinari, G. Parisi and F. Ritort, preprint, cond-mat/9310041 (1993).

    Google Scholar 

  9. W.L. McMillan, J. Phys. C 17, 3179 (1984).

    Article  ADS  Google Scholar 

  10. A.J. Bray and M.A. Moore, J. Phys. C 18, L699 (1985).

    Google Scholar 

  11. D.S. Fisher and D.A. Huse, Phys. Rev. Lett. 56, 1601 (1986).

    Article  ADS  Google Scholar 

  12. A.J. Bray and M.A. Moore, in Heidelberg Colloquium on Glassy Dynamics, edited by J.L. van Hemmen and I. Morgenstern, Lecture Notes in Physics, Vol. 275 (Springer, New York, 1987).

    Google Scholar 

  13. D.S. Fisher and D.A. Huse, Phys. Rev. B 38, 386 (1988).

    Article  ADS  Google Scholar 

  14. A. Bovier and J. Fröhlich, J. Stat. Phys. 44, 347 (1986).

    Article  ADS  Google Scholar 

  15. S. Caracciolo, G. Parisi, S. Patarnello and N. Sourlas, J. Phys. France 51, 1877 (1990).

    Article  Google Scholar 

  16. D.A. Fisher and D.A. Huse, J. Physique I France 1, (1991) 621.

    Article  ADS  Google Scholar 

  17. N. Kawashima and N. Ito, J. Phys. Soc. Japan 62, 435 (1993). au[18]_R.R.P. Singh and D.A. Huse, J. Appl. Phys. 69, 5225 (1991).

    Article  ADS  Google Scholar 

  18. R.E. Hetzel, R.N. Bhatt and R.R.P. Singh, Europhys. Lett. 22, 383 (1993).

    Article  ADS  Google Scholar 

  19. B. Berg and T. Neuhaus, Phys. Lett. B 267, 249 (1991).

    Article  ADS  Google Scholar 

  20. B. Berg and T. Neuhaus, Phys. Rev. Lett. 68, 9 (1992).

    Article  ADS  Google Scholar 

  21. B. Berg and T. Celik, Phys. Rev. Lett. 69, 2292 (1992).

    Article  ADS  Google Scholar 

  22. B. Berg and T. Celik, Int. J. Mod. Phys. C 3, 1251 (1992).

    Article  ADS  Google Scholar 

  23. B. Berg, U. Hansmann, and T. Celik, preprint, submitted to Phys. Rev. B.

    Google Scholar 

  24. G.M. Torrie and J.P. Valleau, J. Comp. Phys. 23, 187 (1977).

    Article  ADS  Google Scholar 

  25. E. Marinari and G. Parisi, Europhys. Lett. 19, 451 (1992).

    Article  ADS  Google Scholar 

  26. W. Kerler and P. Rehberg, preprint, cond-mat/9402049 (1994).

    Google Scholar 

  27. B. Berg, T. Celik and U. Hansmann, Europhys. Lett. 22, 63 (1993).

    Article  ADS  Google Scholar 

  28. B. Berg and C. Vohwinkel, in preparation.

    Google Scholar 

  29. W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling, Numerical Recipes (Cambridge University Press, 1988).

    Google Scholar 

  30. S. Kirkpatrick, Phys. Rev. B 16, 4630 (1977).

    Article  ADS  Google Scholar 

  31. I. Morgenstern and K. Binder, Z. Phys. B 39, 227 (1980).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Berg, B.A. (1994). Numerical Zero-Temperature Results for the 3d Edwards-Anderson Ising Spin Glass. In: Landau, D.P., Mon, K.K., Schüttler, HB. (eds) Computer Simulation Studies in Condensed-Matter Physics VII. Springer Proceedings in Physics, vol 78. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79293-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79293-9_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79295-3

  • Online ISBN: 978-3-642-79293-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics