Non-Arrhenius Conductivity in a Driven System of Interacting Lattice Gas

  • R. B. Pandey
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 78)

Abstract

A Monte Carlo simulation is used to study the conductivity of an interacting lattice gas in presence of a linear gradient field. The conductivity is evaluated in the steady state although the system is not in thermal equilibrium. Effects of the concentration of the caniers and the temperature are analyzed. The conductivity shows a nonmonotonic dependence on the concentration and a non-Anhenius dependence over a wide range of temperatures.

Keywords

Lime Macromolecule 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    For a comprehensive review and further references, see: B. Schmittmann and R.K.P. Zia, to appear in Phase Transitions and Critical Phenomena, C. Domb and J.L. Lebowitz, editors, (Academic, N.Y.)Google Scholar
  2. [2]
    See, e.g., D. J. Amit, Field Theory, the Renormalization Group, and Critical Phenomena (2nd edition: World Scientific, Singapore 1984).Google Scholar
  3. [3]
    W. Lenz, Phys. Zeitschrift 21, 613 (1920).Google Scholar
  4. [4]
    R.J. Glauber, J. Math. Phys. 4, 294 (1963).MATHADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    K. Kawasaki, Phys. Rev. 145, 224 (1963).ADSMathSciNetCrossRefGoogle Scholar
  6. [6]
    H.W.J. Blote, J.R, Heringa, A. Hoogland, and R.K.P. Zia, J. Phys. A: Math. Gen. 23, 3799 (1990).ADSCrossRefGoogle Scholar
  7. [7] H.W.J. Blote, J.R. Heringa, A. Hoogland, and R.K.P. Zia, Int. Journ. Mod. Phys. B5, 685 (1991).ADSCrossRefGoogle Scholar
  8. [8]
    S. Katz, J.L. Lebowitz, and H. Spohn, Phys. Rev. B28, 1655 (1983)ADSGoogle Scholar
  9. S. Katz, J.L. Lebowitz, and H. Spohn, J. Stat. Phys. 34, 497 (1984).ADSMathSciNetCrossRefGoogle Scholar
  10. [9]
    H.K. Janssen and B. Schmittmann, Z. Phys. B64, 503 (1986).ADSCrossRefGoogle Scholar
  11. K.-t. Leung and J.L. Cardy, J. Stat. Phys. 44, 567 (1986)ADSMathSciNetCrossRefGoogle Scholar
  12. K.-t. Leung and J.L. Cardy, J. Stat. Phys. 44, 1087 (1986).ADSCrossRefGoogle Scholar
  13. K. Gawedzki and A. Kupiainen, Nucl. Phys. B2 69, 45 (1986).MathSciNetCrossRefGoogle Scholar
  14. [10]
    P.L. Garrido, J.L. Lebowitz, C. Maes, and H. Spohn, Phys. Rev. A42, 1954 (1990).ADSMathSciNetGoogle Scholar
  15. Z. Cheng, P.L. Garrido, J.L. Lebowitz, and J.L. Valles, Europhys. Lett. 14, 507 (1991).ADSCrossRefGoogle Scholar
  16. [11]
    B. Schmittmann and R.K.P. Zia, Phys. Rev. Lett. 66, 357 (1991).ADSCrossRefGoogle Scholar
  17. [12]
    K.E. Bassler and Z. Racz, preprint (1994).Google Scholar
  18. [13]
    E.L. Praestgaard, H. Larsen, and R.K.P. Zia, Europhys. Lett. 25, 447 (1994).ADSCrossRefGoogle Scholar
  19. [14]
    B. Schmittmann, Europhys. Lett. 24(2), 109 (1993).ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • R. B. Pandey
    • 1
  1. 1.Department of Physics and Astronomy, Program in Scientific ComputingUniversity of Southern MississippiHattiesburgUSA

Personalised recommendations