Skip to main content

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 78))

  • 172 Accesses

Abstract

The Fixed-Phase method, a stochastic approach to deal with complex hermitian Hamiltonians, is reviewed in the context of fermions coupled to external electromagnetic sources. The method uses as a key ingredient a trial phase that plays the role of gauge function in the unitary transformation that maps the original fermion problem to a boson problem for the modulus of the wavefunction. In particular, we investigate the ground state of an ideal 2d electron gas in high magnetic fields at various densities and for filling fractions ν = 1/m. At high electron densities, the Quantum Hall liquid is the stable phase despite the character of particle interactions. Magnetophonon correlations turn out to be essential to explain the transition to an electron Wigner crystal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. The Quantum Hall Effect, edited by R. E. Prange and S. M. Girvin (Springer-Verlag, New York, 1990), 2nd ed.; Quantum Hall Effect, edited by M. Stone (World Scientific, Singapore, 1992); E. Fradkin, Field Theories of Condensed Matter Systems (Addisson-Wesley, Redwood City, CA, 1991), Chapters 9,10; A. Karlhede, S. A. Kivelson and S. L. Sondhi, in Correlated Electron Systems, edited by V. J. Emery, (World Scientific, Singapore, 1993).

    Google Scholar 

  2. G. Ortiz, D.M. Ceperley, and R.M. Martin, Phys. Rev. Lett. 71, 2777 (1993).

    Article  ADS  Google Scholar 

  3. H. W. Jiang, R. L. Willett, H. L. Stornier, D. C. Tsui, L. N. Pfeiffer and K. W. West, Phys. Rev. Lett. 65, 633 (1990).

    Article  ADS  Google Scholar 

  4. M. B. Santos, Y. W. Suen, M Shayegan, Y. P. Li, L. W. Engel and D. C. Tsui, Phys. Rev. Lett. 68, 1188 (1992). au[4]_Elements of the Hilbert space £2 N of a quantum mechanical system (i.e, wavefunctions) which differ only by a global phase are equivalent and said to belong to the same ray.

    Article  ADS  Google Scholar 

  5. It is possible to generalize the method to finite temperatures, allowing us to explore the thermodynamic properties of fermion systems with broken time-reversal symmetry (Ref. [15]).

    Google Scholar 

  6. M. Hamermesh, Group Theory (Addison-Wesley, Reading, Massachusetts, 1962).

    MATH  Google Scholar 

  7. All the phases ϕ are defined modulo 2π.

    Google Scholar 

  8. Notice the formal similarity between Eq.(9) and the conservation of the ” diamagnetic” component of the current density.

    Google Scholar 

  9. A. Messiah, Quantum Mechanics, Vol. 2 (Interscience, New York, 1961).

    Google Scholar 

  10. P. J. Reynolds, D. M. Ceperley, B. J. Alder, and W. A. Lester Jr., J. Chem. Phys. 77, 5593 (1982).

    Article  ADS  Google Scholar 

  11. B. H. Wells, in Methods in Computational Chemistry, Vol. 1, edited by S. Wilson (Plenum, New York, 1987) p. 311.

    Google Scholar 

  12. Coincident planes (ri = rj) are hyperplanes of dimension dNd. If the only nodal surfaces were coincident planes we could solve the fermion problem exactly. In fact, this is what happens in ld; in higher dimensions the situation is more complicated. For a clear discussion of fermion nodes see D. M. Ceperley, J. Stat. Phys. 66, 1237 (1991).

    Google Scholar 

  13. D. M. Ceperley and M. H. Kalos, in Monte Carlo Methods in Statistical Physics, edited by K. Binder, (Springer Verlag, Berlin, 1979), p. 145.

    Google Scholar 

  14. P. J. Reynolds, et al., Int. J. Quant. Chem. 29, 589 (1986).

    Article  Google Scholar 

  15. R. B. Laughlin, Phys. Rev. Lett. 50, 1395 (1983).

    Article  ADS  Google Scholar 

  16. This is the experimental consensus, although there are probably other, more exotic, possibilities to explore.

    Google Scholar 

  17. G. Ortiz, D. M. Ceperley and R. M. Martin (to be published).

    Google Scholar 

  18. Note that our convention is for e and B to be positive. One must be careful in this respect, because some authors use different conventions.

    Google Scholar 

  19. F. D. M. Haldane, Phys. Rev. Lett. 55, 2095 (1985).

    Article  ADS  Google Scholar 

  20. F. D. M. Haldane and E. H. Rezayi, Phys. Rev. B 31, 2529 (1985).

    Article  ADS  Google Scholar 

  21. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products (Academic, New York, 1980), p. 921.

    MATH  Google Scholar 

  22. R. Price, P. M. Platzman, and S. He, Phys. Rev. Lett. 70, 339 (1993).

    Article  ADS  Google Scholar 

  23. G. Ortiz and P. Ballone, Europh. Lett. 23, 7 (1993). G. Ortiz and P. Ballone (preprint Urbana 1993).

    Article  ADS  Google Scholar 

  24. E. P. Wigner, Phys. Rev. 46, 1002 (1934).

    Article  MATH  ADS  Google Scholar 

  25. X. Zhu and S. G. Louie, Phys. Rev. Lett. 70, 335 (1993).

    Article  ADS  Google Scholar 

  26. P. K. Lam and S. M. Girvin, Phys. Rev. B 30, 473 (1984).

    Article  ADS  Google Scholar 

  27. P. K. Lam and S. M. Girvin, Phys. Rev. B 31, 613(E) (1985).

    Article  ADS  Google Scholar 

  28. In this context, large B-fields means that the cyclotron frequency ωc is such that ωc ≫ ω L(k) + ωT(k) for all k’s, where ω L (T) are the longitudinal (transverse) vibrating modes of the 2d triangular lattice without a magnetic field.

    Google Scholar 

  29. G. Ortiz and D. M. Ceperley (unpublished).

    Google Scholar 

  30. B. I. Halperin, P. A. Lee and N. Read, Phys. Rev. 47, 7312 (1993).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ortiz, G. (1994). Simulating 2d Fermions in Strong Magnetic Fields. In: Landau, D.P., Mon, K.K., Schüttler, HB. (eds) Computer Simulation Studies in Condensed-Matter Physics VII. Springer Proceedings in Physics, vol 78. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79293-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79293-9_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79295-3

  • Online ISBN: 978-3-642-79293-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics