Skip to main content

Channel Function and Channel-Lipid Bilayer Interactions

  • Chapter
Modelling the Dynamics of Biological Systems

Part of the book series: Springer Series in Synergetics ((SSSYN,volume 65))

Abstract

Ion channels are integral membrane proteins that form aqueous pores, which span the lipid bilayer moiety of biological membranes and provide for highly selective transfer of ions across the membrane. Ion transfer through the pore can occur at very high rates, and it is possible to use electrophysiological measuring techniques to record the function of single channels in real time. Ion channels are therefore useful for examining many aspects of macromolecular dynamics. The control of channel function is due to transitions between different channel states (conformations). The distribution between these states is determined by the channel’s intrinsic characteristics and by its interactions with the (membrane) environment, neither of which are well understood. We show, using the well-characterized gramicidin A channel as an example, that membrane control of channel function can be rationalized by considering the energetics of channel-bilayer interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agre, P., G. M. Preston, B. L. Smith, J. S. Jung, S. Eaina, C. Moon, W. B. Gugggino, and S. Nielsen. 1993. Aqyaporin CHIP: the archetypical molecular water channel. Am. J. Physiol. 265:F463-F476.

    Google Scholar 

  • Andersen, O. S. 1978. Permeability properties of unmodified lipid bilayer membranes. In Membrane Transport in Biology, G. Giebisch, D. C. Tosteson, and H.H. Ussing, ed. Springer-Verlag, Berlin. 369–446.

    Google Scholar 

  • Andersen, O. S. 1983. Ion movement through gramicidin. A channels Single-channel measurements at very high potentials. Biophys. J. 41:119–133.

    Article  Google Scholar 

  • Andersen, O. S. 1989. Kinetics of ion movement mediated by carriers and channels. Meth Enzymol. 171:62–112.

    Article  Google Scholar 

  • Andersen, O. S., and R. E. Koeppe, II. 1992. Molecular determinants of channel function. Physiol. Rev. 72:S89-S158.

    Google Scholar 

  • Andersen, O. S., D. B. Sawyer, and R. E. Koeppe, II. 1992. Modulation of channel function by the host bilayer. In Biomembrane Structure and Function, B. P. Gaber, and K. R. K. Easwaran, ed. Adenine Press, Schenectady, NY. 227–244.

    Google Scholar 

  • Arsen’ev, A. S., I. L. Barsukov, V. F. Bystrov, A. L. Lomize, and Y. A. Ovchinnikov, 1985. Proton NMR study of gramicidin. A transmembrane ion channel Head-to- head right- handed, single-stranded helixes. FEBS Lett. 186:168–174.

    Article  Google Scholar 

  • Auerbach, A. 1993. A statistical analysis of acetylcholine receptor activation in Xenopus myocytes: stepwise versus concerted models of gating. J. Physiol. 461:339–378.

    Google Scholar 

  • Bean, C. P. 1972. The physics of porous membranes-neutral pores. In Membranes, A Series of Advances, 1–54.

    Google Scholar 

  • Benz, R., O. Frohlich, P. Lauger, and M. Montal, 1975. Electrical capacity of black lipid films and of lipid bilayers made from monolayers. Biochim, Biophys. Acta. 394:323–334.

    Article  Google Scholar 

  • Bienvenue, A., and J. S. Marie, 1994. Modulation of protein function by lipids. Curr. Top. Membr. 40:319–354.

    Article  Google Scholar 

  • Bockris, J. O. M., and A. K. N. Reddy. 1970. Modern Electrochemistry. Volume I. Plenum Press, New York.

    Google Scholar 

  • Burnashev, N. A., A. I. Undrovinas, I. A. Fleidervish, J. C. Makielski, and L. V. Rosenshtraukh. 1991. Modulation of cardiac sodium channel gating by lysophos- phatidylcholine. J. Mol. Cell. Cardiol. 23 (Suppl. I):23–30.

    Article  Google Scholar 

  • Busath, D. D. 1993. The use of physical methods in determining gramicidin channel structure and function. Ann. Rev. Physiol. 55:473–501.

    Article  Google Scholar 

  • Correa, A. M., and F. Bezanilla. 1944. Gating of the squid sodium channel at positive potentials. II. Single channels reveal two open states. Biophys. J. 66:1864–1878.

    Article  Google Scholar 

  • Cowan, S. W., and J. P. Rosenbusch. 1994. Folding pattern diversity of integral membrane proteins. Science. 264:914–916.

    Article  ADS  Google Scholar 

  • Cox, B. G., G. R. Hedwig, A. J. Parker, and D. W. Watts, 1974. Solvation of ions. XIX Thermodynamic properties for transfer of single ions between protic and dipolar aprotic solvents. Aust. J. Chem. 27:477–501.

    Article  Google Scholar 

  • Cullis, P. R., and B. de Kruijff. 1979. Lipid polymorphism and the functional roles of lipids in biological membranes. Biochim Biophys Acta. 559:399–420.

    Google Scholar 

  • DaTorre, S. D., M. H. Creer, S. M. Pogwizd, and P. B. Corr. 1991. Amphipathic lipid metabolites and their relation to arrythmogenesis in the ischemic heart. J. Mol. Cell. Cardiol. 23 (Suppl. I): 11–22.

    Article  Google Scholar 

  • de Gennes, P. G., and J. Prost. 1993. The Physics of Liquid Crystals, 2nd Ed. Clarendon Press, Oxford.

    Google Scholar 

  • de Kruyff, B., A. M. H. P. van den Besselaar, and L. L. M. van Deenen. 1977. Outside- inside distribution and translocation of lysophosphatidylcholine in phosphatidylcholine vesicles as determined by 13C-NMR using (N-13CH3)-enriched lipids. Biochim. Biophys. Acta. 465:443–453.

    Article  Google Scholar 

  • Devaux, P. F., and M. Seigneuret. 1985. Sepcificity of lipid-protein interactions as determined by spectroscopic techniques. Biochim. Biophys. Acta. 822:63–125.

    Google Scholar 

  • Durkin, J. T., L. L. Providence, R. E. Koeppe II, and O. S. Andersen, 1993. Energetics of heterodimer formation among gramicidin analogues with an NH2- terminal addition or deletion. Consequences of a missing residue at the join in channel. J. Mol. Biol. 231:1102–1121.

    Article  Google Scholar 

  • Eddlestone, G. T., and S. Ciani. 1991. Lysophospholipids modulate the K(ATP) channel. Biophys. J. 59:16a (Abstract).

    Google Scholar 

  • Eisenberg, R. S. 1990. Channels as enzymes. J. Membrane Biol. 115:1–12.

    Article  Google Scholar 

  • Elliott, J. R, D. Needham, J. P. Dilger, and D. A. Haydon. 1983. The effects of bilayer thickness and tension on gramicidin single-channel lifetime. Biochim. Biophys. Acta. 735:95–103.

    Article  Google Scholar 

  • Ferry, J. D. 1936. Statistical evaluation of sieve constants in ultrafiltration. J. Gen Physiol. 20:95–104.

    Article  Google Scholar 

  • Fersht, A. 1985. Enzyme structure and mechanism, 2nd Ed. W. H. Freeman and Company, New York.

    Google Scholar 

  • Finkelstein, A. 1985. The ubiquitous presence of channels with wide lumens and their gating by voltage. Ann. N. Y. Acad. Sci. 456:26–32.

    Article  ADS  Google Scholar 

  • Gibson, N. J., and M. F. Brown. 1993. Lipid headgroup and acyl chain composition modulate the MI-MII equilibrium of rhodopsin in recombinant membranes. Biochemistry. 32:2438–2455.

    Article  Google Scholar 

  • Gilbert, D. L., and G. Ehrenstein, 1984. Membrane surface charge. Curr. Top. Membr. Transp. 22:407–421.

    Google Scholar 

  • Green, M. E., and J. Lewis, 1991. Monte carlo simulation of the water in a channel with charges. Biophys. J. 59:419–426.

    Article  Google Scholar 

  • Green, W. N., and O. S. Andersen. 1991. Surface charges and ion channel function. Ann. Rev. Physiol. 53:341–359.

    Article  Google Scholar 

  • Gruner, S. M. 1985. Intrinsic curvature hypothesis for biomembrane lipid composition: arole for nonbilayer lipids. Proc. Natl. Acad. Sci. USA. 82:3665–3669.

    Article  ADS  Google Scholar 

  • Gruner, S. M. 1989. Stability of lyotropic phases with curved interfaces. J Phys Chem. 93:7562–7570.

    Article  Google Scholar 

  • Gruner, S. M. 1991. Lipid membrane curvature elasticity and protein function. In Biologically Inspired Physics, L. Peliti, ed. Plenum Press, New York. 127–135.

    Google Scholar 

  • Hanai, T., D. A. Haydom, and J. Tayulor. 1965b. The influence of lipid composition and some adsorbed proteins on the capacitance of black hydrocarbon membranes. J. Theoret. Biol. 9:422–423.

    Article  Google Scholar 

  • Hanai, T., D. A. Haydon, and J. Taylor. 1965a. The variation of capacitance and conductance of bimolecular lipid membranes with area. J. Theoret. Biol. 9:433–443.

    Article  Google Scholar 

  • Hazel, J. R. 1988. Homeoviscous adaptation in animal cell membranes. In Physiological Regulation of Membrane Fluidity, R. C. Aloia, C. C. Curtain, and L. M. Gordon, ed. Alan R. Liss, Inc., New York. 149–188.

    Google Scholar 

  • Helfrich, P., and E. Jakobsson. 1990. Calculation of deformation energies and conformations in lipid membranes containing gramicidin channels. Biophys. J. 57:1075–1084.

    Article  Google Scholar 

  • Helfrich, W. 1973. Elastic properties of lipid bilayers: theory and possible experiments. Z. Naturforsch. 28C:693–703.

    Google Scholar 

  • Hille, B. 1972. The permeability of the sodium channel to metal cations in myelinated nerve. J. Gen. Physiol. 59:637–658

    Article  ADS  Google Scholar 

  • Hille, B. 1973. Potassium channels in myelinated nerve: Selective permeability to small cations. J. Gen. Physiol. 61:669–686.

    Article  Google Scholar 

  • Hille, B. 1992. Ionic Channels of Excitable Membranes, 2nd Ed. Sinauer Associates, Inc., Sunderland, Massachusetts.

    Google Scholar 

  • Hille, B., A. M. Woodhull, and B. I. Shapiro, 1975. Negative surface charge near sodium channels of nerve: divalent ions, monovalent ions, and pH. Phil. Trans. R. Soc. Lond. B. 270:301–318.

    Article  ADS  Google Scholar 

  • Hodgkin, A. L., and A. F. Huxley. 1952. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117:500–544.

    Google Scholar 

  • Hodgkin, A. L., and B. Katz. 1949. The effect of sodium ions on the electrical activity of the giant axon of the squid. J. Physiol. 108:37–77.

    Google Scholar 

  • Hoffmann, E. K., and L. O. Simonsen. 1989. Membrane mechanisms in volume and pH regulation in vertebrate cells. Physiol Rev. 69:315–382.

    Google Scholar 

  • Horn, R. 1984. Gating of channels in nerve and muscle: A stochastic approach. Curr. Top. Membr. Transp. 21:53–97.

    Google Scholar 

  • Huang, C.-H., J. P. Sipe, S. T. Chow, and R. B. Martin. 1974. Differential interaction of cholesterol with phosphatidylcholine on the innner and outer surface of lipid bilayer vesicles. Proc. Natl. Acad. Sci. USA. 71:359–362.

    Article  ADS  Google Scholar 

  • Huang, H. W. 1986. Deformation free energy of bilayer membrane and its effect on gramicidin channel lifetime. Biophys. J. 50:1061–1070.

    Article  Google Scholar 

  • Hui, S.-W., and A. Sen. 1989. Effects of lipid packing on polymorphic phase nehavior and membrane properties. Proc. Natl. Acad. Sci. USA. 86:5825–5829.

    Article  ADS  Google Scholar 

  • Hwang, T.-C., S. E. Guggino, and W. B. Guggino. 1990. Direct modulation of secretory chloride channels by arachidonic and other cis unsaturated fatty acids. Proc. Natl. Acad. Sci. USA. 87:5706–5709.

    Article  ADS  Google Scholar 

  • Kasai, M., and T. R. J.-P. C. Podleski. 1970. Some structural properties of excitable membranes labelled by fluorescent probes. FEBS Lett. 7:13–19.

    Article  Google Scholar 

  • Keller, S. L., S. M. Bezrukov, S. M. Gruner, M. W. Tate, I. Vodyanoy, and V. A. Parsegian. 1993. Probability of alamethicin conductance states varies with nonlamellar tendency of bilayer phospholipids. Biophys. J. 65:23–27.

    Article  Google Scholar 

  • Ketchem, R. R., W. Hu, and T. A. Cross. 1993. High-resolution conformation of gramicidin A in a lipid bilayer by solid state-state NMR. Science. 261:1457–1460.

    Article  ADS  Google Scholar 

  • Killian, J. A. 1992, Gramicidin and gramicidin-lipid interactions. Biochim. Biophys. Acta. 1113:391–425.

    Google Scholar 

  • Kiyosue, T., and M. Arita. 1986. Effects of lysophosphatidylcholine on resting potassium conductance of isolated guinea pig ventricular cells. Pfiiigers Arch. 406:296–302.

    Article  Google Scholar 

  • Kraut, J. 1988. How do enzymes work? Science. 242:533–540.

    Article  ADS  Google Scholar 

  • Kumar, V. V., B. Malewicz, and W. J. Baumann. 1989. Lysophosphatidylcholine stabilizes small unilamellar phosphatidylcholine vesicles. Phosphorus-31 NMR evidence for the “wedge” effect. Biophys. J. 55:789–792.

    Article  Google Scholar 

  • Lee, A. G. 1991. Lipids and their effects on membrane proteins: Evidence against a role for fluidity. Prog. Lipid. Res. 30:323–348.

    Article  Google Scholar 

  • Lundbaek, J. A., and O. S. Andersen. 1994. Lysophospholipids modulate channel function bu altering the mechanical properties of lipid bilayers. J. Gen Physiol. 104: in press.

    Google Scholar 

  • Lager, P. 1973. Ion transport through pores Rate-theory analysis. Biochim. Biophys. Acta. 311:423–441.

    Article  Google Scholar 

  • Mackay, D. H. J., P. H. Berens, K. R. Wilson, and A. T. Hagler. 1984. Structure and dynamics of ion transport through gramicidin A. Biophys. J. 46:229–2480.

    Article  Google Scholar 

  • McCarthy, M. P., and M. A. Moore. 1992. Effects of lipids and detergents on the conformation of the nicotinic acetylcholine receptor from Torpedo californica. J. Biol. Chem. 267:7655–7663.

    Google Scholar 

  • McElhaney, R. N. 1985. Membrane lipid fluidity, phase state, and membrane function in prokaryotic microorganisms. In Membrane Fluidity in Biology. Vol. 4, Cellular Aspects, R. C. Aloia, and J. M. Boggs, ed. Academic Press, New York. 147–208.

    Google Scholar 

  • McMurchie, E. J. 1988. Dietary lipids and the regulation of membrane fluidity and function. In Physiological Regulation of Membrane Fluidity, R. C. Aloia, C. C. Curtain, and L. M. Gordon, ed. Alan R. Liss, Inc., New York. 189–237.

    Google Scholar 

  • McNamee, M. G., and T. M. Fong. 1988. The effects of membrane lipids and fluidity on acetylcholine receptor function. In Lipid domains and the Relationship to Membrane Function, R. C. Aloia, C. C. Curtain, and L. M. Gordon, ed. Alan R. Liss, New York. 43–62.

    Google Scholar 

  • Milks, L. C., N. M. Kumar, R. Houghtopn, N. Unwin, and N. B. Gilula. 1988. Topology of the 32-kd liver gap junction protein determined by site-directed antibody localizations. EMBO J. 7:2967–2975.

    Google Scholar 

  • Mouritsen, O. G., and M. Bloom. 1984. Mattress model of lipid-protein interactions in membranes. Biophys. J. 46:141–153.

    Article  Google Scholar 

  • Numa, S. 1989. A molecular review of neurotransmitter receptors and ionic channels. Harvey Lect. 83:121–165.

    Google Scholar 

  • O’Connell, A. M., R. E. Koeppe II, and O. S. Andersen. 1990. Kinetics of gramicidin channel formation in lipid bilayers: transmembrane monomer association. Science. 250:1256–1259.

    Article  ADS  Google Scholar 

  • Oishi, K., B. Zheng, and J. F. Kuo. 1990. Inhibition of Na,K-ATPase and sodium pump by protein kinase C regulators sphingosine, lysophosphatidylcholine, and oleic acid. J. Biol. Chem. 265:70–75.

    Google Scholar 

  • Ordway, R. W., J. V. Walsh Jr., and J. J. Singer. 1989. Arachidonic acid and other fatty acids directly activate potassium channels in smooth cells. Science. 244:1176–1179.

    Article  ADS  Google Scholar 

  • Palmer, L. G., and H. Sackin. 1992. Electrophysiological analysis of transepithelial transport. In The Kidney: Physiology and Pathophysiology, 2nd Ed., D. W. Seldin, and G. Giebisch, ed. Raven Press, New York. 361–405.

    Google Scholar 

  • Parsegian, A. 1969. Energy of an ion crossing a low dielectric membrane: Solutions to four relevant electrostatic problems. Nature. 221:844–846.

    Article  ADS  Google Scholar 

  • Partenskii, M. B., M. Cai, and P. C. Jordan. 1991. Influence of pore-former charge distribution on the electrostatic properties of dipolar water chains in transmembrane ion channels. Electrochim. Acta. 36:1753–1756.

    Article  Google Scholar 

  • Partenskii, M. B., and P. C. Jordan. 1992. Nonlinear dielectric behavior of water in transmembrane ion channels: Ion energy barriers and the channel dielectric constant. J. Phys. Chem. 96:3906–3910.

    Article  MATH  Google Scholar 

  • Perutz, M. F. 1990. Mechanisms of cooperativity and allosteric regulation in proteins. Cambridge University Press, Cambridge.

    Google Scholar 

  • Pope, C. G., B. W. Urban, and D. A. Haydon. 1982. The influence of n-alkanols and cholesterol on the duration and conductance of gramicidin single channels in monoolein bilayers. Biochim Biophys Acta. 688:279–283.

    Article  Google Scholar 

  • Rosenberg, P. A., and A. Finkelstein. 1978a. Interaction of ions and water in gramicidin A channels. Streaming potentials across lipid bilayer membranes. J. Gen. Physiol. 72:327–340.

    Article  Google Scholar 

  • Rosenberg, P. A., and A. Finkelstein. 1978b. Water permeability of gramicidin A- treated lipid bilayer membranes. J. Gen. Physiol. 72:341–350.

    Article  Google Scholar 

  • Sackin, H. 1994. Stretch-activated ion channels. In Cellular and Molecular Physiology of Cell Volume Regulation, K. Strange, ed. CRC Press, Boca Raton. 215–240.

    Google Scholar 

  • Sandermann, H., Jr. 1978. Regulation of membrane enzymes by lipids. Biochim. Biophys. Acta. 515:209–237.

    Google Scholar 

  • Sarges, R., and B. Witkop. 1965. Gramicidin A. V. The structure of valine- and isoleucine- gramicidin A. J. Am. Chem. Soc. 87:2011–2019.

    Article  Google Scholar 

  • Sawyer, D. B., R. E. Koeppe, II, and O. S. Andersen. 1989. Induction of conductance heterogeneity in gramicidin channels. Biochemistry. 28:6571–6583.

    Article  Google Scholar 

  • Schatzberg, P. 1965. Diffusion of water through hydrocarbon liquids. J. Polymer. Sci., Part C. 10:87–92.

    Google Scholar 

  • Schurr, J. M. 1970a. The role of diffusion in bimolecular solution kinetics. Biophys. J. 10:701–716.

    Google Scholar 

  • Schurr, J. M. 1970b. The role of diffusion in enzyme kinetics. Biophys. J. 10:717–727.

    Article  Google Scholar 

  • Shimada, T., and A. P. Somlyo. 1992. Modulation of voltage-dependent Ca channel current by arachidonic acid and other long-chain fatty acids in rabbit intestinal smooth muscle. J. Gen. Physiol. 100:27–44.

    Article  Google Scholar 

  • Sigworth, F. J. 1993. Voltage gating of ion channels. Q. Rev. Biophys. 27:1–40.

    Article  Google Scholar 

  • Sine, S. M., T. Claudio, and F. J. Sigworth, 1990. Activation of torpedo acetylcholine receptors expressed in mouse fibroblasts: Single channel current kinetics reveal distinct agonist binding affinities. J. Gen. Physiol. 96:395–437.

    Article  Google Scholar 

  • Singer, S. J., and G. L. Nicolson. 1972. The fluid mosaic model of the structure of cell membranes. Science. 175:720–731.

    Article  ADS  Google Scholar 

  • Spray, D. C., and J. M. Burt. 1990. Structure-activity relations of the cardiac gap junction channel. Am. J. Physiol. 258:C205.

    Google Scholar 

  • Stockton, G. W., and I. C. P. Smith. 1976. A deuterium nuclear magnetic resonance study of the condensing effect of cholesterol on egg phsophatidyl;choline bilayer membranes. I. Perdeuterated fatty acid probes. Chem Phys Lipids. 17:251–263.

    Article  Google Scholar 

  • Stubbs, C. D., and A. D. Smith. 1984. The modification of mammalian membrane polyunsaturated fatty acid composition in relation to membrane fluidity and function. Biochim Biophys Acta. 779:89–137.

    Google Scholar 

  • Swarts, H. G. P., F. M. A. H. S. Stekhoven, and J. J. H. H. M., de Pont, 1990. Binding of unsaturated fatty acids to Na+,K+-ATPase leading to inhibition and inactivation. Biochim. Biophys. Acta. 1024:32–40.

    Article  Google Scholar 

  • Szollosi, J. 1994. Fluidity/viscosity of biological membranes. In Mobility and Proximity in Biological Membranes, S. Damjanovich, M. Edidin, J. Szollo, and L. Tron, ed. CRC Press, Boca Raton. 137–208.

    Google Scholar 

  • Tank, D. W., E. S. Wu, P. R. Meers, and W. W. Webb. 1982. Lateral diffusion of gramicidin C in phospholipid multibilayers. Effects of cholesterol and high gramicidin concentration. Biophys. J. 40:129–135.

    Article  Google Scholar 

  • Thompson, T. E., C. Huang, and B. J. Litman. 1974. Bilayers and biomembranes: compositional asymmetries induced by surface curvature. In The Cell Surface in Development, A. A. Moscona, ed. John Wileay & Sons, New York. 1–16.

    Google Scholar 

  • Tibbitts, T. T., D. L. D. Caspar, W. C. Philips, and D. A. Goodenough. 1990. Diffraction diagnosis of protein folding in gap junction connexons. Biophys. J. 57:1025–1036.

    Article  Google Scholar 

  • Unwin, N. 1989. The structure of ion channels in membranes of excitable cells. Neuron. 3:665–676.

    Article  Google Scholar 

  • Unwin, N. 1993. Nicotinic acetylcholine receptor at 9 A resolution. J. Mol. Biol. 229:1101–1124.

    Article  Google Scholar 

  • Unwin, N., C. Toyoshima, and E. Kubalek. 1988. Arrangement of the acetylcholine receptor subunits in the resting and desentisitized states, determined by cryo- electron microscopy of crystalllized Torpedo postsynaptic membranes. J. Cell. Biol. 107:1123–1138.

    Article  Google Scholar 

  • Unwin, P. N. T., and P. D. Ennis. 1984. Two configurations of a channel-forming membrane protein. Nature. 307:609–613.

    Article  ADS  Google Scholar 

  • Veatch, W. E., R. Mathies, M. Eisenberg, and L. Stryer. 1975. Simultaneous fluorescence and conductance studies of planar bilayer membranes contaning a highly active and fluorescent analog of gramicidin A. J. Mol. Biol. 99:75–92.

    Article  Google Scholar 

  • Vigh, L., D. A. Los, and M. Horvâth 1993. The primary signal in the biological perception of temperature: Pd-catalyzed hydrogénation of membrane lipids stimulated the expression of the desA gene in Synechocystis PCC6803. Proc. Natl. Acad. Sci. USA. 90:9090–9094.

    Article  ADS  Google Scholar 

  • Wallert, M. A., M. J. Ackerman, D. Kim, and D. E. Clapham. 1991. Two novel cardiac atrial K+ channels, IK, A A and IK, PC. J. Gen. Physiol. 98:921–939.

    Article  Google Scholar 

  • Weiss, M. S., U. Abele, J. Weckesser, W. Welte, E. Schiltz, and G. E. Schulz. 1991. Molecular architecture and electrostatic properties of a bacterial porin. Science. 254:1627–1630.

    Article  ADS  Google Scholar 

  • White, S. H. 1978. Formation of “solvent-free” black lipid bilayer membranes from glyceryl monooleate dispersed in squalene. Biophys J. 23:337–347.

    Article  Google Scholar 

  • Yeagle, P. L. (ed.). 1988. Biology of Cholesterol. CRC Press, Boca Raton.

    Google Scholar 

  • Zagotta, W. N., T. Hoshi, and R. W. Aldrich. 1994. Shaker potassium channel gating III: evaluation of kinetic models for activation. J. Gen. Physiol. 103:321–362.

    Article  Google Scholar 

  • Zakim, D., J. Kavecansky, and S. Scarlata. 1992. Are membrane enzymes regulated by the viscosity of the membrane environment. Biochemistry. 31:11589–11594.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Andersen, O.S., Lundbæk, J.A., Girshman, J. (1995). Channel Function and Channel-Lipid Bilayer Interactions. In: Mosekilde, E., Mouritsen, O.G. (eds) Modelling the Dynamics of Biological Systems. Springer Series in Synergetics, vol 65. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79290-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79290-8_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79292-2

  • Online ISBN: 978-3-642-79290-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics