Skip to main content

Part of the book series: Springer Series in Synergetics ((SSSYN,volume 65))

Abstract

The dynamics of spiral waves interacting with an impermeable boundary of an excitable medium is investigated. Experimental data on spiral waves rotating in a small piece of an excitable medium are presented. A wide variety of spatio-temporal scenarios of the spiral wave placed into a small disk is observed in computer simulations using a reaction-diffusion system. A simplified kinematical model describing wave fronts that move in the vicinity of an impermeable boundary is elaborated and used to analyze both stationary and nonstationary dynamic regimes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.T. Winfree: When time breaks down, Princeton Univ. Press, Princeton 1987

    Google Scholar 

  2. J.D. Murray: Mathematical biology, Springer Verlag, New York 1978

    Google Scholar 

  3. N. Wiener, A. Rosenblueth: The mathematical formulation of conduction of impulses in a network of connected excitable elements, specifically in cardiac muscle. Arch. Inst. Cardiol. Mexico 16, 205–265 (1946)

    MathSciNet  Google Scholar 

  4. M.A. Allessie, F.I.M. Bonke, F.J.G. Schopman: Circus movement in rabbit atrial muscle as a mechanism of tachycardia. Circul. Res., 33 54–62 (1973)

    Google Scholar 

  5. J.M. Davidenko, A.V. Pertsov, R. Salomonsz, W. Baxter, J. Jalife: Stationary and drifting spiral waves of excitation in isolated cardiac muscle. Nature 355, 349–351 (1992)

    Article  ADS  Google Scholar 

  6. N.A. Gorelova, J. Bures: Spiral waves of spreading depression in the isolated chicken retina. J. Neurobiology 14, 353–363 (1983)

    Article  Google Scholar 

  7. G. Gerisch: Stadienspezifische Aggregationsmuster bei Dictyostelium discoide- um. Wilhelm Roux Archiv Entwicklungsmech. Organismen 156, 127–144 (1965)

    Google Scholar 

  8. J. Lechleiter, S. Girard, E. Peralta, D. Clapham: Spiral calcium wave propagation and annihilation in Xenopus laevis oocytes. Science 252, 123–126 (1991)

    Article  ADS  Google Scholar 

  9. A.T. Winfree: Spiral waves of chemical activity. Science 175, 634–636 (1972)

    Article  ADS  Google Scholar 

  10. S.C. Müller, Th. Plesser, B. Hess: The structure of the core of the spiral wave in the Belousov-Zhabotinsky reagent. Science 230, 661–663 (1985)

    Article  ADS  Google Scholar 

  11. E. A. Yermakova, A. M. Pertsov: Interaction of rotating spiral waves with a boundary. Biophysics (USSR) 31, 855–859 (1986)

    Google Scholar 

  12. V. A. Davydov, V.S. Zykov: Spiral waves in a small disk and on a small sphere, Zh. Eksp. Teor. Phys. 76, 414–424 (1993)

    Google Scholar 

  13. J.A. Sepulchre, A. Babloyantz: Motions of spiral waves in oscillatory media and in presence of obstacles. Phys. Rev. E 48, 187–195 (1993)

    Article  ADS  Google Scholar 

  14. V. S. Zykov: Simulation of wave processes in excitable media. Manchester Uni. Press, Manchester 1988

    Google Scholar 

  15. A. S. Mikhailov, V. A. Davydov, V. S. Zykov: Complex dynamics of spiral waves and motion of curves. Physica D 70, 1–39 (1994)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. K. I. Agladze, V. I. Krinsky: Multi-armed vortices in an active chemical medium. Nature 296, 425–426 (1982)

    Article  ADS  Google Scholar 

  17. G.S. Skinner, H.L. Swinney: Periodic to quasiperiodic transition of chemical spiral rotation. Physica D 48, 1–16 (1991)

    Article  ADS  MATH  Google Scholar 

  18. R. J. Field, E. Körös, and R. M. Noyes J. Am. Chem. Soc. 94, 8649–8664 (1972)

    Article  Google Scholar 

  19. J. J. Tyson: A quantitative account of oscillations, bistability, and travelling waves in the Belousov-Zhabotinsky reaction. In: Oscillations and traveling waves in chemical systems. Eds. Field, R.J. Burger, M. (Wiley, New York, 1985) pp. 93–144

    Google Scholar 

  20. J. P. Keener, J. J. Tyson: Spiral waves in the Belousov-Zhabotinskii reaction. Physica D 21 307–324 (1986)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. W. Jahnke, W.E. Skaggs, A.T. Winfree: Chemical vortex dynamics in the Belousov-Zhabotinsky reaction and in the two-variable Oregonator model. J. Phys. Chem. 93, 740–749 (1989)

    Article  Google Scholar 

  22. W. Jahnke, A.T. Winfree: A survey of spiral-wave behaviors in the Oregonator model. Int. J. Bifurcation and Chaos 1, 445–466 (1991)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Müller, S.C., Warda, A., Zykov, V.S. (1995). Spiral Waves in Bounded Excitable Media. In: Mosekilde, E., Mouritsen, O.G. (eds) Modelling the Dynamics of Biological Systems. Springer Series in Synergetics, vol 65. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79290-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79290-8_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79292-2

  • Online ISBN: 978-3-642-79290-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics