Skip to main content

Land Surface Energy Budget

  • Conference paper
Remote Sensing and Global Climate Change

Part of the book series: NATO ASI Series ((ASII,volume 24))

  • 276 Accesses

Abstract

The motion of the Earth’s atmosphere is driven by differential heating. The reservoir of the available potential energy, which describes the difference between the actual state of the atmosphere and a hypothetical atmosphere at rest, is estimated to be about 55 x 105 Jm−2 as a mean value around the globe. This reservoir feeds the reservoir of kinetic energy (15 x 105 Jm−2), from where the energy dissipates into heat with a rate of 2.3 Wm−2. As these reservoirs are fairly constant in a climatological sense, the production rate of available potential energy and the transformation rate into kinetic energy has also to be 2.3 Wm−2. In traditional weather forecast models it was not necessary to put much effort into a precise description of the differential heating, the main source of available potential energy, because the time to exhaust the reservoirs mentioned above is given in months.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  • Abdellaoui, A., Becker, F., Olory-Hechinger, E., and Raffy, M., 1982, Thermal Inertia and Soil Moisture Mapping. Final Report, Groupe de Télédétection de Strasbourg.

    Google Scholar 

  • Anderson, J. M., and Wilson, S. B., 1984, The Physical Basis of Current Infrared Remote- Sensing Techniques and the Interpretation of Data from Aerial Surveys.International Journal of Remote Sensing, 5, 1–18

    Article  Google Scholar 

  • Axelsson, S. R. J., 1983, Thermal Modeling for the Interpretation of IR-Data.Proceedings of the 11th International Symposium on Remote Sensing of Environment, pp. 499–518.

    Google Scholar 

  • Barton, I. J., 1983, Dual Channel Satellite Measurement of Sea Surface Temperature. Quarterly Journal of the Royal Meterological Society, 109, 365–378.

    Article  Google Scholar 

  • Barton, I. J., 1985, Transmission Model and Ground-Truth Investigation of Satellite-Derived Sea Surface Temperatures. Journal of Climate and applied Meteorology, 124, 508–516.

    Article  Google Scholar 

  • Becker, F., Ramanantsizehena, P., and S toll, M. P., 1985, Angular variation of the bidirectional reflectance of bare soils in the thermal infrared band.Applied Optics, 24, 365–375.

    Article  CAS  Google Scholar 

  • Becker, F., and Raffy, M., 1987, Problems related to the determination of land surface parameters and fluxes over heterogeneous media from satellite data.Advances in Space Research, 11, 45–57.

    Article  Google Scholar 

  • Bolle, H.-J., 1982, Radiation and Energy Transport in the Earth Atmosphere System In The Handbook of Environmental Chemistry, Vol. 1, Part B, edited by O. Hutyinger (Berlin Heidelberg: Springer-Verlag), pp. 131–292

    Google Scholar 

  • Brehm, M., 1986, Experimentelle and numerische Untersuchungen der Hangwindschicht and ihrer Rolle bei der Erwaermung von Taelern. Miienchen Universitiits -Schriften, Meteo- rologisclies Institute, Wissenschaftliche Mitteilungen Nr 54.

    Google Scholar 

  • Biiettner, K. J. K., and Kern, C. D., 1965, The Determination of Infrared Emissivities of Terrestrial Surfaces. Journal of Geophysical Research, 70 1329–1337.

    Article  Google Scholar 

  • Byrne, G. F., Begg, J. E., Fleming, P. M., and Dunin, F.X., 1979, Remotely Sensed Land Cover Temperature and Soil Water Status - A Brief Review. Remote Sensing of Environment, 8, 291–305.

    Article  Google Scholar 

  • Callison, R. D., and Cracknell, A. P., 1984, Atmospheric correction to AVHRR brightness temperatures for waters around Great Britain. International Journal of Remote Sensing, 5, 185–198.

    Article  Google Scholar 

  • Cannizaro, G., Ricottilli, M., and Uliveri, C., 1985, Analysis of Different Algorithms for Sea Surface Temperature Retrieval from NOAA AVHRR Data Proceedings of the 19th International Symposium on Remote Sensing of Environment, held in Ann Arbor, MI.

    Google Scholar 

  • Carlson, T. N., Dodd, J. K., Benjamin, S. G., Cooper, J. N., 1981, Satellite Estimation of the Surface Energy Balance,Moisture Availability and Thermal Inertia Journal of Applied Meteorology, 20, 67–87.

    Article  Google Scholar 

  • Chen, J., 1984, Uncoupled Multi-Layer Model for the Transfer of Sensible and Latent Heat Flux Densities from Vegetation. Boundary-Layer Meteorology, 28, 213–225.

    Article  Google Scholar 

  • Colwell, R. N. (Editor), 1983, Manual of Remote Sensing, (Bethesda: American Society of Photogrammetry).

    Google Scholar 

  • Deardorff, J. W., 1978, Efficient Prediction of Ground Surface Temperature and Moisture, with Inclusion of a Layer of Vegetation. Journal of Geophysical Research, 83, 1889–1903.

    Article  Google Scholar 

  • Dickinson, R. E., 1983, Land surface processes and climate - surface albedos and energy balance. Advances in Geophysics, 25, 305–353.

    Article  Google Scholar 

  • Dickinson, R. E., 1987, Evapotranspiration in global climate models. Advances in Space Research, 11, 17–26.

    Article  Google Scholar 

  • Eagleson, P. S. (Editor), 1982, Land Surface Processes in Atmospheric General Circulation Models. (Cambridge: Cambridge University).

    Google Scholar 

  • Flannery, B. P., 1984, Energy Balance Models Incorporating Transport of Thermal and latent Energy. Journal of Atmospheric Science, 41, 414–421.

    Article  Google Scholar 

  • Gatlin, J. A., Sullivan, R. J., and Tucker, C. J., 1984, Considerations of and Improvements to Large-Scale Vegetation Monitoring IEEE Transactions on Geoscience and Remote Sensing, GE-22, 496–502.

    Google Scholar 

  • Geleyn, J. F., and Preuss, H. J., 1983, A New Data Set of Satellite-derived Surface Albedo Values for Operational Use at ECMWF. Archives of Meteorological and Geophysical Bio- clinatology, Series A, 32, 353–359.

    Article  Google Scholar 

  • Hayes, L., 1985, Review Article: The current use of TIROS-N series of meteorological satellites for land-cover studies. International Journal of Remote Sensing, 6, 35–45

    Article  Google Scholar 

  • Hechinger, E., Raffy, M., and Becker, F., 1982, Comparison Between the Accuracies of a new Discretization Method and an Improved Fourier Method to Evaluate Heat Transfers between Soil and Atmosphere. Journal of Geophysical Research, 87, 7325–7339.

    Article  Google Scholar 

  • Idso, S. B., Jackson, R. D., and Reginato, R. J., 1976, Compensating for Environmental Variability in the Thermal Inertia Approach to Remote Sensing of Soil Moisture. Journal of Applied Meteorology, 15, 811–817.

    Article  Google Scholar 

  • Jackson, R. D., 1982, Soil Moisture Inferences from Thermal-Infrared Measurements of Vegetation Temperatures. IEEE Transactions on Geoscience and Remote Sensing, GE-20, 282–285.

    Article  Google Scholar 

  • Jaeger, J. C., 1953, Conduction of heat in a solid with periodic boundary conditions, with an application to the surface of the Moon. Proceedings of the Cambridge Philosophical Society, 49, 353–359.

    Article  Google Scholar 

  • Kahle, A. B., 1977, A Simple Thermal Model of the Earth’s Surface for Geologic Mapping by Remote Sensing. Journal of Geopherical Research, 82, 1673–1680.

    Article  Google Scholar 

  • Kahle, A. B., Schieldge, J. P., and Alley, R. E., 1984, Sensitivity of Thermal Inertia Calculations to Variations in Environmental Factors.Remote Sensing of Environment, 16, 211–232.

    Article  Google Scholar 

  • Kid well, K. B., 1984, NOAA Polar Orbiter Data-Users Guide. (Washington D.C: NOAA/NESDIS).

    Google Scholar 

  • Klaassen, W., and van den Berg, W., 1984, Evapotranspiration Derived from Satellite Observed Surface Temperatures. Journal of Climate and Applied Meteorology, 24, 412–424.

    Article  Google Scholar 

  • Kneizys, F. X., Shettle, E. P., Gallery, W. O., Chetwynd, J. H., Abreu, L. W., Selby, J. E. A., Clough, S. A., and Fenn, R. W., 1983, Atmospheric Transmittance/Radiance: Computer Code LOWTRAN 6. US Air Force Geophysics Laboratory, AFGL-TR-83–0187.

    Google Scholar 

  • Koerner, Ch, 1985, Humidity Responses in Forest Trees: Precautions in Thermal Scanning Surveys. Archives of Meteorological and Geophysical Bioclinatology, B36, 83–98.

    Article  Google Scholar 

  • Kriebel, K. T., 1977, Reflection Properties of Vegetated Surfaces: Tables of Measured Spectral Biconicai Reflectance Factors. Müenchner Universitäts-Schriften, Meteorologisches Institut, Wissenschaftliche Mitteilungen Nr 29.

    Google Scholar 

  • Kriebel, K. T., Measured spectral bidirectional reflection properties of four vegetated surfaces. Applied Optics, 17, 253–259.

    Google Scholar 

  • Kriebel, K. T., 1979, Albedo of Vegetated Surfaces: Its Variability with Different Lrradiances. Remote Sensing of Environment, 8, 283–290.

    Article  Google Scholar 

  • Lauritson, L., Nelson, G. J., and Porto, F. W., 1988, Data Extraction and Calibration of TIROS-N/NOAA Radiometers. NOAA Technical Memorandum NESS 107-Rev 1.

    Google Scholar 

  • Mahrt, L., and Pan, H., 1984, A Two-Layer Model of Soil Hydrology. Boundary Layer Meteorology, 29, 1–20.

    Article  Google Scholar 

  • Mannstein, H., 1990, Die radiometrisch bestimmte Oberflaechentemperatur im Gebirge and die Ermittlung des Stroms fuehlbarer Waerme. DLR-FB 90–07.

    Google Scholar 

  • Mannstein, H., 1991, The skin temperature of mountain slopes and the determination of the sensible heat flux. ESA-TT-1220.

    Google Scholar 

  • Masuda, K., Takashima, T., and Takayama, Y., 1988, Emissivity of Pure and Sea Waters for the Model Sea Surface in the Infrared Window Regions. Remote Sensing of Environment, 24, 313–329.

    Article  Google Scholar 

  • Mccumber, M. C., and Pielke, R. A., 1981, Simulation of the Effects of Surface Fluxes of Heat and Moisture in a Numerical Model. Journal of Geophysical Research, 86, 9929–9938.

    Article  Google Scholar 

  • Miller, D. H., 1981, Energy at the Surface of the Earth. (New York: Academic) (in Press).

    Google Scholar 

  • Monin, A. S., and Zilitinkevich, S. S., 1986, On Description of Micro- and Mesoscale Phenomena in Numerical Models of the Atmosphere. Proceedings of WMO-IUGG Symposium on Numerical Weather Forecasting held in Tokyo, Japan, on 26 November - 4 December 1986, Technical Report of Japan Meteorological Agency No. 67, I.105-I.121.

    Google Scholar 

  • Nappo, C. J., 1969, Parameterization of Surface Moisture and Evaporation Rate in a Planetary Boundary Layer Model. Journal of Applied Meteorology, 14, 289–296.

    Article  Google Scholar 

  • Outcalt, S. J., 1972, The Development and Application of a Simple Digital Surface- Climate Simulator Journal of Applied Meteorology, 11, 629–636.

    Article  Google Scholar 

  • Pinker, R. T., and Corio, L. A., 1984, Surface Radiation Budget from Satellites. Monthly Weather Review, 112, 209–215.

    Article  Google Scholar 

  • Prandtl, 1942, 1.: Strmungslehre. Verlag Vieweg and Sohn, Braunschweig, 369–399.

    Google Scholar 

  • Pratt, D. A., and Ellyet, C. D., 1979, The Thermal Inertia Approach to Mapping of Soil Moisture and Geology. Remote Sensing of Environment, 8, 151–168.

    Article  Google Scholar 

  • Price, J. C., 1977, Thermal Inertia Mapping: A New View of the Earth.Journal of Geophysical Research, 82, 2582–2590.

    Article  Google Scholar 

  • Price, J. C., 1982, Estimation of Reginonal Scale Evapotraspiration Through Analysis of Satellite Thermal-Infrared Data. IEEE Transactions on Geoscience and Remote Sensing, GE-20 286–292.

    Article  Google Scholar 

  • Price, J. C., 1985, On the Analysis of Thermal Infrared Imagery: The Limited Utility of Apparent Thermal Inertia. Remote Sensing of Environment, 18, 59–73.

    Article  Google Scholar 

  • Reginatio, R. J., Jackson, R. D., and Pinter, P. J., 1985, Evapotranspiration Calculated from Remote Multispectrai and Ground Station Meteorological Data. Remote Sensing of Environment, 18, 75–89.

    Article  Google Scholar 

  • Rosema, A., Bijeleveld, J. H., Reininger, P., Tassone, G., Blyth, K., and Gurney, R. J., 1978, “TELL-US” - A Combined Surface Temperature, Soil Miosture and Evaporation Mapping Approach. Proceedings of the 12th International Symposium on Remote Sensing of the Environment, Environmental Research Institute of Michigan, pp. 2267–2276.

    Google Scholar 

  • Saltzman, B., and Pollack, J. A., 1977, Sensitivity of the Diurnal Surface Temperature Range to Changes in Physical Parameters. Journal of Applied Meteorology, 16, 614–619.

    Article  Google Scholar 

  • Schumann, U., 1990, Large-eddy simulation of the upslope boundary layer.Quarterly Journal of the Royal Meterological Society, 116, 637–670.

    Article  Google Scholar 

  • Schwalb, A., 1982, Modified Version of the TIROS N /NOAA A-G Satellite Series (NOAA E-J) - Advanced TIROS N (ATN). NOAA Technical Memorandum NESS 116.

    Google Scholar 

  • Seguin, B., Lagouarde, J. P., and Kerr, Y., 1986, Estimation of Regional Evaporation using Midday Surface Temperature from Satellite Thermal IR Data. Proceedings of the ISLSCP and Conference, held in Rome in December 1985, ESA SP-248 Paris: European Space Agency), pp.339–344.

    Google Scholar 

  • Sellers, P. J, Mintz, Y., Sud, Y. C., and Dalcher, A., 1986, A Simple Biosphere Model (SIB) for Use within General Circulation Models. Journal of Atmospheric Sciences, 43, 505–531.

    Article  Google Scholar 

  • Siegel, R., and Howell, J. R., 1982, Thermal Radiation Heat Transfer (Tokyo, Kogakusha: McGraw-Hill).

    Google Scholar 

  • Sievers, U., Forkel, R., and Zdunkowski, W., 1983, Transport Equations for Heat and Moisture in the Soil and their Application to Boundary Layer Problems. Beitraege zur Physik and der Atmosphaere (Contributions to Atmospheric Physics), 56, 58–83.

    Google Scholar 

  • Strong, A. E., and McClain, P. E., 1984, Improved ocean surface temperature from space - comparisons with drifting buoys. Bulletin of the American Meteorological Society, 65, 138–142.

    Article  Google Scholar 

  • Sutherland, R. A., 1985, Broadband and Spectral Emissivities (2–18 fim) of Some Natural Soils and Vegetation. Journal of Atmospheric and Oceanic Technology, 3, 199–202.

    Article  Google Scholar 

  • Taconet, O., Bernard, R., and Vidal-Madjar, D., 1986, Evapotranspiration over an Agricultural Region Using a Surface Flux/Temperature Model Based on NOAA-AVHRR Data. Journal of Climate and Applied Meteorology, 23, 284–307.

    Article  Google Scholar 

  • Thompson S. L., and Warren, S. G., 1982, Parameterization of Outgoing Infrared Radiation Derived from Detailed Radiative Calculations. Journal of Atmospherical Sciences, 39, 2667–2680.

    Article  Google Scholar 

  • Townshend, J. R. G., and Tucker, C. J., 1984, Objective Assessmant of Advanced Very High Resolution Radiometer Data for Land Cover Mapping. International Journal of Remote Sensing, 5, 497–504.

    Article  Google Scholar 

  • Watson, K., 1982, Geologic Application of Thermal Infrared Images.Proceeding of the IEEE, 63, 128–137.

    Article  Google Scholar 

  • Wesselink, 1948, Heat Conductivity and Nature of the Lunar Surface Material. Bulletin of the Astronomical Institutes of Netherlands 10, 351–363.

    Google Scholar 

  • Wetzel, P. J., 1982, Toward Parameterization of the Stable Boundary Layer. Journal of Applied Meteorology, 21, 7–13.

    Article  Google Scholar 

  • Wetzel, P. J., Atlas, D., and Woodward, R. H., 1983, Determining Soil Moisture from Geosynchronous Satellite Infrared Data. Journal of Climate and Applied Meteorology, 23, 374–391.

    Google Scholar 

  • Wetzel, P. J., Atlas, D., and Woodward, R. H., 1984, Determining Soil Moisture from Geosynchronous Satellite Infrared Data: A Feasibility Study. Journal of Climate and Applied Meteorology, 23, 375–391

    Article  Google Scholar 

  • Whiteman, C. D., and Dreiseitl, E. (Editors), 1984, Alpine Meteorology - Translations of Classic Contributions by A. Wagner, E. Ekhart and F. Defant. Pacific Northwest Lab., PNL-5141 ASCOT-84–3.

    Google Scholar 

  • Yates, H. W., Tarpley, J. D., Schneider, S. R., Mcginnis, D. F., and Scofield, R. A., 1984, The Role of Meteorological Satellites in Agricultural Remote Sensing. Remote Sensing of Environment, 14, 219–233.

    Article  Google Scholar 

  • Zdunkowski, W. G., Peagle, J., and Reilly, J. P., 1975, The Effekt of Soil Moisture upon Atmospheric and Soil Temperature Near the Air-Soil Interface. Archives of Meteorological and Geophysical Bioclimatology, A, 24, 245–268.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mannstein, H. (1994). Land Surface Energy Budget. In: Vaughan, R.A., Cracknell, A.P. (eds) Remote Sensing and Global Climate Change. NATO ASI Series, vol 24. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79287-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79287-8_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79289-2

  • Online ISBN: 978-3-642-79287-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics